首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary St. John's wort (Hypericum perforatum L.) is a medicinal plant used in the treatment of neurological disorders and has been recently shown to have anticancer potential. The principle medicinal components of St. John's wort are hypericin. pseudohypericin, and hyperforin. One of the problems associated with medicinal plant preparations including St. John's wort is the extreme variability in the phytochemical content, mostly due to environmental variability, and biotic and abiotic contamination during cropping. The current study was undertaken to transplant St. John's wort plants from in vitro bioreactors in a closed controlled environment system (CCES) with CO2 enrichment for the optimized production of biomas and phytochemicals. The growth and levels of hypericin, pseudohypericin, and hyperforin in plants grown in CCES were compared with those of the greenhouse and in vitro-grown plants. The environmental parameters in the greenhouse were found to be variable whereas in the CCES these parameters were controlled. Generally, all the growth parameters and hypericin and psendohypericin levels were significantly higher in the plants grown in the CCES. These results provide the first indication that growing St. John's wort plants, under CO2 enrichment in a closed environment system can enhance the biomass and medicinal contents. The adaptation of this growing system may be useful for the production of optimized products of St. John's wort and other medicinal species.  相似文献   

2.
Hypericin and pseudohypericin are polycyclic-phenolic structurally related compounds found in Hypericum perforatum L. (St John's wort). As hypericin has been found to bind to LDL one may assume that it can act as antioxidant of LDL lipid oxidation, a property which is of prophylactic/therapeutic interest regarding atherogenesis as LDL oxidation may play a pivotal role in the onset of atherosclerosis. Therefore, in the present paper hypericin, pseudohypericin and hyperforin, an other structurally unrelated constituent in St John's wort were tested in their ability to inhibit LDL oxidation. LDL was isolated by ultracentrifugation and oxidation was initiated either by transition metal ions (copper), tyrosyl radical (myeloperoxidase/hydrogen peroxide/tyrosine) or by endothelial cells (HUVEC). LDL modification was monitored by conjugated diene and malondialdehyde formation. The data show that all compounds (hypericin, pseudohypericin and hyperforin) at doses as low as 2.5 μmol/l are potent antioxidants in the LDL oxidation systems used. The results indicate that the derivatives found in Hypericum perforatum have possible antiatherogenic potential.  相似文献   

3.
Hypericum perforatum L. (St. John's Wort) has been used in modern medicine for treatments of depression and neuralgic disorders. An HPLC method with photodiode array detection for the rapid determination of the major active compounds, naphthodianthrones and phloroglucinols, has been developed. The method permits the determination of hypericin, protohypericin, pseudohypericin, protopseudohypericin, hyperforin and adhyperforin in an extract in less than 5 min. Good linearity over the range 0.5-200 microg/mL for hyperforin and 0.02-100 microg/mL for hypericin was observed. Intra-assay accuracy and precision varied from 0.1 to 17% within these ranges. Lower levels of quantitative determination were 2 microg/mL for hyperforin and 0.5 microg/mL for hypericin, while detection limits were 0.1 and 0.02 microg/mL, respectively.  相似文献   

4.
Herbal extracts of Hypericum perforatum L. (St. John's wort, SJW) are now successfully competing for status as a standard antidepressant therapy. Because of this, great effort has been devoted to identifying the antidepressive active compounds. In the present study we used the following strategy to evaluate the relative pharmacological importance of various extract components: 1. preparation of an hydroalcoholic SJW extract containing both hyperforin (3.2%) and hypericin (0.15%) (extract A); 2. step by step removal of hyperforin and hypericin led to the following extracts: Extract B, devoid of hyperforin but still containing hypericin (0.14%) and Extract C, free of hypericin and hyperforin but enriched in flavonoids ( approximately 12%). We characterized the in vivo activity profile of all three preparations using the tail suspension test (TST) in mice and the forced swimming test (FST) in rats as screening models. We further investigated the activity of pure hyperforin. Extract B and C (500 mg/kg each) as well as pure hyperforin (8 mg/kg) significantly shortened immobility time in the TST after acute pre-treatment whereas extract A was inactive. In the FST all three extracts decreased immobility time in a dosage of 500 mg/kg after acute as well as after repeated treatment. The present results clearly show that an SJW extract free of hyperforin and hypericin exerts antidepressant activity in behavioral models, supporting our working hypothesis that flavonoids are part of the constituents responsible for the therapeutic efficacy of SJW extracts. We also could show that hyperforin contributes to the beneficial properties of SJW extract, confirming the hypothesis that the crude SJW extract contains several constituents with antidepressant activity.  相似文献   

5.
St. John's wort (Hypericum perforatum) is an herbal compound used in the treatment of burns, bruises, swelling, anxiety, and most recently, mild to moderate depression. The present study was designed to evaluate the antioxidant properties of St. John's wort in both cell-free and human vascular tissue. The experiment was performed initially in a cell-free system using Krebs buffer and a combination of xanthine/xanthine oxidase to initiate the production of the superoxide radical. Additionally, human placental vein was incubated in Krebs buffer without xanthine or xanthine oxidase to study the effects of St. John's wort on human tissue in vitro. Commercially available formulations of St. John's wort, standardized to either hypericin or hyperforin, were dissolved in an alkaline solution, and the following dilutions were made: 1:1, 1:2.5, 1:5, 1:7.5, 1:10, and 1:20. Lucigenin chemiluminescence was used to measure free radical production in both systems. A pro-oxidant effect was seen at the highest concentration, 1:1. Lower concentrations revealed antioxidant properties of the compound. All dilutions below 1:1 in both systems showed a dose-related inverse relationship of superoxide inhibition. The largest suppression was seen at the most dilute concentration, 1:20. The addition of 10(-3) M tiron inhibited the chemiluminescence signal, thereby confirming the production of superoxide. The results of this study suggest that St. John's wort inhibits free radical production in both cell-free and human vascular tissue.  相似文献   

6.
Temperature stress is known to cause many physiological, biochemical and molecular changes in plant metabolism and possibly alter the secondary metabolite production in plants. The hypothesis of the current study was that temperature stress can increase the secondary metabolite concentrations in St. John's wort. Plants were grown under controlled environments with artificial light using cool white fluorescent lamps and CO2 enrichment and 70-day-old plants were subjected for 15 days to different temperature treatments of 15, 20, 25, 30 and 35 degrees C before harvested. Major aim of the study was to increase the major secondary metabolites in St. John's wort by applying temperature stress and to evaluate the physiological status of the plant especially the photosynthetic efficiency and peroxidase activity of the leaf tissues exposed to different temperatures under precisely controlled environmental factors. Results revealed that relatively high (35 degrees C) or low (15 degrees C) temperatures reduced the photosynthetic efficiency of the leaves of St. John's wort plants and resulted in low CO2 assimilation. Net photosynthetic rates and the maximal quantum efficiency of PSII photochemistry of the dark adopted leaves (phi(p)max) decreased significantly in the leaves of plants grown under 35 or 15 degrees C temperature treatments. High temperature (35 degrees C) treatment increased the leaf total peroxidase activity and also increased the hypericin, pseudohypericin and hyperforin concentrations in the shoot tissues. These results provide the first indication that temperature is an important environmental factor to optimize the secondary metabolite production in St. John's wort and controlled environment technology can allow the precise application of such specific stresses.  相似文献   

7.
A selective and sensitive method for the simultaneous determination of hypericin and hyperforin--the two main active ingredients of St. John's Wort (SJW) extract--in human plasma depending on liquid/liquid-extraction and LC/MS/MS detection has been developed, validated after specifying the stability of the photosensitive hypericin in plasma samples during light exposure and applied to samples of a patient. After extraction with ethyl acetate/n-hexane in the darkness, sample extracts were chromatographed isocratically within 6 min on a Kromasil RP-18 column. The analytes were detected with tandem mass spectrometry in the selected reaction monitoring mode using an electrospray ion source. The limit of quantification was 0.05 ng/mL for hypericin and 0.035 ng/mL for hyperforin. The accuracy of the method varied between 101.9 and 114.2% and the precision ranged from 4.7 to 15.4% (S.D., batch-to-batch) for both analytes. The method was linear at least between 0.05 and 10 ng/mL for hypericin and between 0.035 and 100 ng/mL for hyperforin. Using this method hypericin and hyperforin were determined successfully in a patient over seven days following discontinuation of exposure with therapeutic doses of St. John's Wort extract.  相似文献   

8.
This investigation was designed to determine whether St. John's wort (SJW)(435 mg/kg/d), a readily available antidepressant, or its purported active constituents hypericin (1 mg/kg/d) and hyperforin (10 mg/kg/d) were able to induce various hepatic cytochrome P450 (CYP450) isoforms. SJW, hypericin and hyperforin were administered to male Swiss Webster mice for four consecutive days and hepatic microsomes were prepared on day 5. None of the three treatments resulted in a statistical change in total hepatic CYP450 (SJW treated 0.95 +/- 0.09 nmol/mg vs control 1.09 +/- 0.14 nmol/mg). Furthermore, the catalytic activities of CYP1A2. CYP2E1 and CYP3A were unchanged from control following all three treatments as determined by ethoxyresorufin O-deethylation, p-nitrophenol hydroxylation and erythromycin N-demethylation respectively. Additionally, western immunoblotting demonstrated that there was no significant change in the polypeptide levels of any of the three isoforms. These results indicate that four days of treatment with moderate to high doses of SJW, hyperforin or hypericin fails to induce these CYP450 isoforms in the male Swiss Webster mouse.  相似文献   

9.
An HPLC method for the quantitation of hypericin using a new and sensitive amperometric detection is presented. Hypericin was eluted isocratically using a mobile phase consisting of ammonium acetate, methanol and acetonitrile. The oxidation was carried out with a glassy carbon electrode at a potential of + 1.1 V vs. an Ag-AgCl-KCl reference electrode. Under the conditions described, hypericin was separated at a retention time (Rt) of 12 min. Linearity was obtained over the range 0.035-1.30 microg/mL (r = 0.9994). The limit of detection was determined to be 0.010 ng on-column for hypericin. The method was applied to the determination of total hypericin (hypericin, pseudohypericin, protohypericin and protopseudohypericin) in extracts of St. John's wort using hypericin as an external standard. The protoforms were converted into hypericin and pseudohypericin by subjecting the sample to artificial light prior to chromatographic analysis. For the evaluation of total hypericin, the peak areas of pseudohypericin (Rt 3.7 min) and hypericin (Rt 12.0 min) were combined. The relative standard deviation in analysing samples containing Hypericum ranged from 2.5 to 5.4%.  相似文献   

10.
A method for the simultaneous extraction of hypericin and hyperforin from a St. John's Wort extract, which is used in case of moderate depressions and skin injuries, from human plasma and serum by liquid-liquid extraction (LLE) with n-hexane-ethylacetate (70:30, w/w) was developed. A reversed-phase high-performance liquid chromatographic (RP-HPLC) method with UV, fluorescence (FLD) and mass spectrometric (MS) detection using electrospray ionization (ESI) was used to identify and quantify hypericin and hyperforin in the extracts from blood samples. Linearity was obtained in the ranges 8.4-28.7 ng/ml (hypericin) and 21.6-242.6 ng/ml (hyperforin). Recoveries were between 32.2 and 35.6% for hypericin and 100.1 and 89.9% for hyperforin. Intra-day accuracy and precision for this method ranged between 3.2 and 4.3% and 2.6 and 2.8%, respectively. After validation of the LLE, the method was tested on real plasma samples which were obtained by ingestion of St. John's Wort extract capsules. Blood samples were taken 2, 4, and 6 h after ingestion. Finally, this method proved to be highly suitable for clinical and pharmacologically relevant studies.  相似文献   

11.
St. John's wort has been found to be an effective and safe herbal treatment for depression in several clinical trials. However, the underlying mechanism of its therapeutic effects is unclear. Recent studies show that the loss and malfunction of oligodendrocytes are closely related to the neuropathological changes in depression, which can be reversed by antidepressant treatment. In this study, we evaluated the effects of hyperforin, a major active component of St. John's wort, on the proliferation, development and mitochondrial function of oligodendrocytes. The study results revealed that hyperforin promotes maturation of oligodendrocytes and increases mitochondrial function without affecting proliferation of an oligodendrocyte progenitor cell line and neural stem/progenitor cells. Hyperforin also prevented mitochondrial toxin-induced cytotoxicity in an oligodendrocyte progenitor cell line. These findings suggest that hyperforin may stimulate the development and function of oligodendrocytes, which could be a mechanism of its effect in depression. Future in vitro and in vivo studies are required to further characterize the mechanisms of hyperforin.  相似文献   

12.
Hypericin and pseudohypericin are polycyclic–phenolic structurally related compounds found in Hypericum perforatum L. (St John's wort). As hypericin has been found to bind to LDL one may assume that it can act as antioxidant of LDL lipid oxidation, a property which is of prophylactic/therapeutic interest regarding atherogenesis as LDL oxidation may play a pivotal role in the onset of atherosclerosis. Therefore, in the present paper hypericin, pseudohypericin and hyperforin, an other structurally unrelated constituent in St John's wort were tested in their ability to inhibit LDL oxidation. LDL was isolated by ultracentrifugation and oxidation was initiated either by transition metal ions (copper), tyrosyl radical (myeloperoxidase/hydrogen peroxide/tyrosine) or by endothelial cells (HUVEC). LDL modification was monitored by conjugated diene and malondialdehyde formation. The data show that all compounds (hypericin, pseudohypericin and hyperforin) at doses as low as 2.5 μmol/l are potent antioxidants in the LDL oxidation systems used. The results indicate that the derivatives found in Hypericum perforatum have possible antiatherogenic potential.  相似文献   

13.
V Schulz 《Phytomedicine》2001,8(2):152-160
Observational studies with preparations of St. John's wort have recorded an incidence of adverse events (AE) among those treated of between 1 and 3%. This is some ten times less than with synthetic antidepressants. The most common adverse events (1 per 300000 treated cases) among the spontaneous reports in the official register concern reactions of the skin exposed to light. Investigations in volunteers have shown that the threshold dose for an increased risk of photosensitisation is about 2-4 g/day of a usual commercial extract (equivalent to approximately 5-10 mg of the hypericin that causes the phenomenon). In view of the newly observed side effects and interactions, the following additional restrictions on use appear justified: as with all preparations in this group of indications, hypericum preparations must not be taken at the same time as other antidepressants. If co-medication with coumarin-type anticoagulants is unavoidable, it must only be undertaken provided the physician closely monitors clotting parameters. Co-medication with ciclosporin and indinavir, and for the time being, other protease inhibitors used in anti-HIV treatment, is absolutely contraindicated. Without exception, all preparations of St. John's wort must only be available through pharmacies.  相似文献   

14.
Lee JY  Duke RK  Tran VH  Hook JM  Duke CC 《Phytochemistry》2006,67(23):2550-2560
Literature indicates that herb-drug interaction of St. John's wort is largely due to increased metabolism of the co-administered drugs that are the substrates of cytochrome P450 (CYP) 3A4 enzyme, alteration of the activity and/or expression of the enzyme. The major St. John's wort constituents, acylphloroglucinols, were evaluated for their effects on CYP3A4 enzyme activity to investigate their roles in herb-drug interaction. Hyperforin and four oxidized analogues were isolated from the plant and fully characterized by mass spectral and NMR analysis. These acylphloroglucinols inhibited activity of CYP3A4 enzyme potently in the fluorometric assay using the recombinant enzyme. Furoadhyperforin (IC(50) 0.072 microM) was found to be the most potent inhibitor of CYP3A4 enzyme activity, followed by furohyperforin isomer 1 (IC(50) 0.079 microM), furohyperforin isomer 2 (IC(50) 0.23 microM), hyperforin (IC(50) 0.63 microM) and furohyperforin (IC(50) 1.3 microM). As the acylphloroglucinols are potent inhibitors of the CYP3A4 enzyme, their modulation of the enzyme activity is unlikely to be involved in increased drug metabolism by St. John's wort.  相似文献   

15.
Ultraviolet (UV) radiation is a potent activator of the human immunodeficiency virus (HIV) gene expression in a HeLa cell clone with stably integrated copies of the HIVcat reporter construct. Recently, we have shown that activation of p38 MAP kinase and NF-kappaB is necessary but not sufficient for triggering efficient HIV gene expression in response to UV. Here we demonstrate that St. John's wort is a potent inhibitor of the UV-induced activation of HIV gene expression in HeLa cells. Stably transfected HIVcat/HeLa cells were preincubated with different amounts (25-100 microl) of St. John's wort or gingko biloba extracts for 30 min, then irradiated with UV (30 J/m2). In contrast to ginkgo biloba, St. John's wort inhibited the UV-induced HIV gene expression in a dose-dependent manner. Furthermore, preincubation with St. John's wort (10, 20, and 30 microl) for 30 min before UV (30 J/m2) irradiation, PMA- and UV-induced NF-kappaB activation was completely blocked, whereas ginkgo biloba did not affect the PMA- and UV-induced NF-kappaB activation in HeLa cells. UV activation of p38 MAP kinase was not inhibited by St. John's wort or by ginkgo biloba. However, we found that p38 MAP kinase and JNK1 and -2 were activated by St. John's wort, but p44/42 MAP kinase was not activated by St. John's wort in HeLa cells. Hypericin an active ingredient in St. John's wort also inhibited the UV activation of HIV gene expression in HeLa cells. These results firmly confirm that St. John's wort is a potent inhibitor of the UV-induced activation of HIV gene expression in HeLa cells.  相似文献   

16.
The nuclear xenobiotic receptor PXR is activated by a wide variety of clinically used drugs and serves as a master regulator of drug metabolism and excretion gene expression in mammals. St. John's wort is used widely in Europe and the United States to treat depression. This unregulated herbal remedy leads to dangerous drug-drug interactions, however, in patients taking oral contraceptives, antivirals, or immunosuppressants. Such interactions are caused by the activation of the human PXR by hyperforin, the psychoactive agent in St. John's wort. In this study, we show that hyperforin induces the expression of numerous drug metabolism and excretion genes in primary human hepatocytes. We present the 2.1 A crystal structure of hyperforin in complex with the ligand binding domain of human PXR. Hyperforin induces conformational changes in PXR's ligand binding pocket relative to structures of human PXR elucidated previously and increases the size of the pocket by 250 A(3). We find that the mutation of individual aromatic residues within the ligand binding cavity changes PXR's response to particular ligands. Taken together, these results demonstrate that PXR employs structural flexibility to expand the chemical space it samples and that the mutation of specific residues within the ligand binding pocket of PXR tunes the receptor's response to ligands.  相似文献   

17.
Onoue S  Seto Y  Ochi M  Inoue R  Ito H  Hatano T  Yamada S 《Phytochemistry》2011,72(14-15):1814-1820
Extracts from St. John's Wort (SJW: Hypericum perforatum) have been used for the treatment of mild-to-moderate depression. In spite of the high therapeutic potential, orally administered SJW sometimes causes phototoxic skin responses. As such, the present study aimed to clarify the phototoxic mechanisms and to identify the major phototoxins of SJW extract. Photobiochemical properties of SJW extract and 19 known constituents were characterized with focus on generation of reactive oxygen species (ROS), lipid peroxidation, and DNA photocleavage, which are indicative of photosensitive, photoirritant, and photogenotoxic potentials, respectively. ROS assay revealed the photoreactivity of SJW extract and some SJW ingredients as evidenced by type I and/or II photochemical reactions under light exposure. Not all the ROS-generating constituents caused photosensitized peroxidation of linoleic acid and photodynamic cleavage of plasmid DNA, and only hypericin, pseudohypericin, and hyperforin exhibited in vitro photoirritant potential. Concomitant UV exposure of quercitrin, an SJW component with potent UV/Vis absorption, with hyperforin resulted in significant attenuation of photodynamic generation of singlet oxygen from hyperforin, but not with hypericin. In conclusion, our results suggested that hypericin, pseudohypericin, and hyperforin might be responsible for the in vitro phototoxic effects of SJW extract.  相似文献   

18.
Hypericum perforatum L. (St. John's wort) is an herbal remedy widely used in the treatment of mild to moderate depression. Hypericin, a photosensitive napthodianthrone, is believed to be the compound responsible for reversing the depression symptoms. In this study, novel in vitro cell culture systems of H. perforatum were used to monitor the effect of elicitation on cell growth and production of hypericin. A dramatic increase in cell growth and hypericin production was observed after exposure to jasmonic acid (JA). However, other elicitors such as salicylic acid (SA) and fungal cell wall elicitors failed to show any stimulatory effect on either cell growth or hypericin production. Cell cultures treated with JA and incubated in the dark showed increased growth and hypericin production as compared to the cultures grown under light conditions. Jasmonate induction in dark conditions played an important role in growth and hypericin production in cell suspension cultures, to our knowledge an undocumented observation.  相似文献   

19.
Hyperforin is a pharmacologically active constituent of Hypericum perforatum (St. John's wort). In vitro cultures of this medicinal plant were found to contain hyperforin and three related polyprenylated acylphloroglucinol derivatives. The accumulation of these compounds was coupled to shoot regeneration, with secohyperforin being the major constituent in morphogenic cultures. The structure of secohyperforin was elucidated online by LC-DAD, -MS, and -NMR. In multiple shoot cultures, the ratio of hyperforin to secohyperforin was strongly influenced by the phytohormones N6-benzylaminopurine (BAP) and naphthalene-1-acetic acid (NAA). While increasing concentrations of BAP stimulated the formation of hyperforin, increasing concentrations of NAA elevated the level of secohyperforin. No differential stimulation was observed after elicitor treatment. Hyperforin and secohyperforin are proposed to arise from a branch point in the biosynthetic pathway.  相似文献   

20.
Hyperforin is a lipophilic compound that is present in great amounts in St. John's wort and that has been described as the main responsible for the antidepressant effects of this medicinal plant. In the last few years, evidence has accumulated pointing to other different effects of hyperforin with potential pharmacological interest. They include other neurological effects, effects on inflammation, as well as antibacterial, antitumoral and antiangiogenic effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号