共查询到20条相似文献,搜索用时 0 毫秒
1.
Hypothalamic concentrations of neuropeptide Y (NPY), a potent central appetite stimulant, increase dramatically in food-restricted and insulin-deficient diabetic rats. This suggest that NPY may drive hyperphagia in these conditions, which are characterized by weight loss and insulin deficiency. To test the hypothesis that insulin deficiency and weight loss are specific stimuli to hypothalamic NPY, we measured NPY concentrations in individual hypothalamic regions in rats with hyperphagia caused by insulin-induced hypoglycemia. Groups of 8 male Wistar rats were injected with ultralente insulin (20-60 U/kg) to induce either acute hypoglycemia (7 h after a single injection) or chronic hypoglycemia (8 days with daily injections). In hypoglycemic rats, plasma insulin concentrations were increased 6- to 7-fold compared with saline-injected controls; food intake was significantly increased with acute and chronic hypoglycemia and weight gain was significantly increased in the chronically hypoglycemic group. NPY concentrations were measured by radioimmunoassay in 8 hypothalamic regions microdissected from fresh brain slices. NPY concentrations were not increased in any region in either acute or chronic hypoglycemia. NPY therefore seems unlikely to mediate hyperphagia in hyperinsulinemia-induced hypoglycemia, supporting the hypothesis that weight loss is a specific stimulus to hypothalamic NPY and that insulin deficiency may be the metabolic signal responsible. 相似文献
2.
Neuropeptide Y (NPY) is a major hypothalamic peptide which is implicated in the regulation of energy balance and in the activation of the hypothalamo-pituitary adrenal axis. This study aimed primarily to determine the effects on regional hypothalamic NPY levels, of catabolism and weight loss induced in rats by the synthetic glucocorticoid, dexamethasone, injected daily at a dose of 0.4 mg/kg for 7 days. NPY concentrations were significantly raised in the paraventricular nucleus (PVN) of male Wistar rats (45%, p = 0.009; n = 10) compared with saline-injected controls (n = 10). Body weight (p less than 0.001) and food intake (p less than 0.001) were significantly reduced, plasma insulin concentrations were increased (p less than 0.001), but there was no change in glucose concentrations. Chronic dexamethasone treatment did not cause the marked NPY increases in the arcuate nucleus (ARC) and other hypothalamic regions which have been observed in other catabolic states causing weight loss. One possible explanation is the high insulin levels induced by dexamethasone, which may have prevented compensatory hyperphagia by suppressing an increase in hypothalamic NPYergic activity. We also examined the acute effects of a single dexamethasone injection on regional hypothalamic levels, to determine whether the drug had a direct action separate from that due to sustained weight loss. In the acute study, groups of rats (n = 7) were examined at 4 h after a single injection of dexamethasone or saline. NPY concentrations were significantly increased in the lateral hypothalamic area (LHA), (60%, p = 0.008) when compared with saline-injected controls, but there was no change in body weight or glucose or insulin concentrations during the 4h interval. Altered transport or release of NPY in the lateral hypothalamic area may be a result of acute feedback regulation by glucocorticoids on the hypothalamus. 相似文献
3.
Usman H. Malabu H. David McCarthy Pauline E. McKibbin Gareth Williams 《Peptides》1992,13(6):1097-1102
Fasting increases neuropeptide Y (NPY) concentrations in the arcuate nucleus (ARC), its site of synthesis, and in other regions of the rat hypothalamus. Neuropeptide Y is a potent central orexigenic agent and may therefore stimulate appetite during fasting. We tested the hypothesis that low plasma insulin levels stimulate ARC levels of NPY in fasted rats. Compared with freely fed controls (n = 8), rats fasted for 72 h (n = 8) showed significantly lower plasma insulin levels (28.9 ± 1.6 vs. 52.6 ± 5.7 pmol/l; p < 0.001) and higher ARC NPY concentrations (14.2 ± 1.8 vs. 8.4 ± 2.2 fmol/μg protein; p < 0.001). Fasted rats treated with subcutaneous insulin (5 U/kg/day; n = 10), which nearly normalized plasma insulin (46.6 ± 2.8 pmol/l), showed intermediate ARC NPY levels (11.2 ± 1.4 fmol/μg protein; p < 0.01 vs. controls and untreated fasted rats). Insulin administered peripherally, therefore, attenuates fasting-induced NPY increases in the ARC, supporting the hypothesis that hypoinsulinemia stimulates hypothalamic NPY. 相似文献
4.
Neuropeptide Y strongly stimulates food intake when it is injected in the hypothalamic paraventricular (PVN) and ventromedian (VMN) nuclei. In Sprague-Dawley (SD) rats, NPY synthesis in the arcuate nucleus (ARC) is increased by food deprivation and is normalized by refeeding. We have previously shown that the obese hyperphagic Zucker rat is characterized by higher NPY concentrations in this nucleus. NPY might therefore play an important role in the development of hyperphagia. The aim of the present study was to determine if the regulation by the feeding state works in the obese Zucker rat. For this purpose, 10 weeks-old male lean (n = 30) and obese (n = 30) Zucker rats were either fed ad libitum, either food-deprived (FD) for 48 hours or food-deprived for 48 h and refed (RF) for 6 hours. NPY was measured in several microdissected brain areas involved in the regulation of feeding behavior. NPY concentrations in the ARC was about 50% greater in obese rats than in lean rats (p less than 0.02) whatever the feeding state. In the VMN, NPY concentrations were higher in the lean FD rats than in the obese FD rat (p less than 0.001). Food deprivation or refeeding did not modify NPY in the ARC, in the VMN or in the dorsomedian nucleus whatever the genotype considered. On the other hand, food deprivation induced a significant decrease in NPY concentrations in the PVN of lean rats. This decrease was localized in the parvocellular part of this nucleus (43.0 +/- 1.9 (FD) vs 54.2 +/- 2.1 (Ad lib) ng/mg protein; p less than 0.005). Ad lib levels were restored by 6 hours of refeeding. These variations were not observed in the obese rat. The regulation of NPY by the feeding state in the Zucker rat was therefore very different from that described in the SD rats. Strain or age of the animals used might explain these differences. High NPY levels and absence of regulation in obese Zucker rats could contribute to the abnormal feeding behavior of these rats. 相似文献
5.
D-Trp(34)] neuropeptide Y is a potent and selective neuropeptide Y Y(5) receptor agonist with dramatic effects on food intake 总被引:3,自引:0,他引:3
Parker EM Balasubramaniam A Guzzi M Mullins DE Salisbury BG Sheriff S Witten MB Hwa JJ 《Peptides》2000,21(3):393-399
The neuropeptide Y (NPY) Y(5) receptor has been proposed to mediate several physiological effects of NPY, including the potent orexigenic activity of the peptide. However, the lack of selective NPY Y(5) receptor ligands limits the characterization of the physiological roles of this receptor. Screening of several analogs of NPY revealed that [D-Trp(34)]NPY is a potent and selective NPY Y(5) receptor agonist. Unlike the prototype selective NPY Y(5) receptor agonist [D-Trp(32)]NPY, [D-Trp(34)]NPY markedly increases food intake in rats, an effect that is blocked by the selective NPY Y(5) receptor antagonist CGP 71683A. These data demonstrate that [D-Trp(34)]NPY is a useful tool for studies aimed at determining the physiological roles of the NPY Y(5) receptor. 相似文献
6.
Decrease of hypothalamic neuropeptide Y gene expression by vanadyl sulfate in streptozotocin-induced diabetic rats. 总被引:1,自引:0,他引:1
In an attempt to elucidate the effect of vanadium compounds on the gene expression of neuropeptide Y (NPY), vanadyl sulfate (VOSO4) was orally administrated at the dose of 1 mg/kg body weight into streptozotocin-induced diabetic rats (STZ-diabetic rats) three times daily for 1 week. We found a marked lowering of plasma glucose with a significant decrease of food and water intake in these STZ-diabetic rats treated with VOSO4, although the weight gain was unaffected. The increase of hypothalamic NPY, both the mRNA level and peptide concentration, in STZ-diabetic rats was also reduced by this oral treatment of VOSO4. However, similar treatment of VOSO4 in normal rats failed to modify the feeding behavior and hypothalamic NPY gene expression. These data suggest that decrease of hypothalamic NPY gene expression by VOSO4 is related to the recovery of hyperphagia in diabetic rats lacking insulin. 相似文献
7.
Involvement of hypothalamic neuropeptide Y in regulating the amphetamine-induced appetite suppression in streptozotocin diabetic rats 总被引:2,自引:0,他引:2
Kuo DY 《Regulatory peptides》2005,127(1-3):19-26
BACKGROUND AND AIM: Amphetamine (AMPH) is a well-known anorectic agent. In normal rats, AMPH-induced anorexia has been attributed to its inhibitory action on hypothalamic neuropeptide Y (NPY), an appetite stimulant in the brain. In diabetic rats, however, if this anorectic response of AMPH might still be observed was uncertain. METHODS: Rats (including normal, diabetic and insulin-treated diabetic rats) were given daily with saline or AMPH for 6 days. Changes in food intake, plasma glucose level (PGL) and NPY content of these rats were measured and compared. RESULTS: The AMPH-induced anorectic response was altered in diabetic rats. Although the anorectic effects of AMPH on the first day of dosing were similar between diabetic and control rats, diabetic rats developed tolerance to this anorexia more rapidly than control rats. This alteration was independent of PGL since PGL levels were not changed following AMPH treatment and PGL normalization induced by phlorizin could not restore the level of AMPH anorexia. On the other hand, this alteration was dependent on the action of NPY because NPY contents were decreased following AMPH treatment and the replacement of insulin in diabetic rats could restore both NPY content and AMPH anorexia. CONCLUSION: These results suggested that the elevated hypothalamic NPY content in diabetic rats was involved in modifying the anorectic response of AMPH. 相似文献
8.
In view of the recent demonstrations that Neuropeptide Y (NPY) and adrenergic transmitters coexist in neurons of the rat brain, we have compared the effects of intraventricular (Ivt) injections of NPY and catecholamines on LH release and food intake in intact male rats. Of the three catecholamines, dopamine (DA), norepinephrine (NE) and epinephrine (E), only E (5.3 micrograms or 15.9 micrograms/rat) significantly stimulated LH release, although NE and E (5.3 micrograms/rat) were equally effective in eliciting food intake in satiated rats. Ivt administration of 10 micrograms NPY significantly stimulated LH release, whereas either lower (0.5 or 2 micrograms/rat) or higher (25 micrograms/rat) doses were ineffective. In contrast, NPY at doses of 0.5 - 10 micrograms/rat increased cumulative food intake in a dose-related fashion. These findings present preliminary evidence of the physiological correlates of the neuronal coexistence of adrenergic transmitters and NPY in the brain and raise the possibility that NPY may normally act either independently, in concert with or via adrenergic systems to evoke LH release and feeding responses in the rat. 相似文献
9.
Orexin A and neuropeptide Y that are known to induce a feeding response when applied centrally, in the present studies also caused hypothermia. Neuropeptide Y elicited hypothermia by depressing metabolic rate (without affecting heat loss mechanisms), while orexin A acted through enhancing peripheral heat loss (without affecting metabolic rate). Neither peptide induced coordinated thermoregulatory changes, both of them appeared to influence thermoregulation via different effector mechanisms. 相似文献
10.
Hyperphagia followed both central neuropeptide Y (NPY) administration and the presumed increase of endogenous NPY activity after food deprivation. NPY induced greater hyperphagia in cold-adapted than non-adapted rats; fasting of comparable severity caused similar hyperphagia in the two groups. NPY-receptor-antagonist D-Tyr(27,36), D-Thr32-NPY(27,36) or functional NPY-antagonist D-myo-inositol-1,2,6-trisphosphate attenuated the hyperphagic effect of both NPY and fasting in non-adapted rats. However, while completely preventing the NPY-hyperphagia, they did not influence the fasting-induced hyperphagia in cold-adapted rats. With cold-adaptation the sensitivity to NPY and to its antagonists increases, but the hypothalamic NPY loses from its fundamental role in the regulation of food intake, and the hyperphagia seen in cold-adaptation may need some other explanation. 相似文献
11.
Evidence suggests that the peptides galanin (GAL) and neuropeptide Y (NPY) interact with the amine norepinephrine (NE) in the hypothalamic paraventricular nucleus (PVN) to stimulate feeding behavior. To directly investigate the nature of these interactions, extracellular levels of PVN NE were monitored in freely-moving rats using the microdialysis/HPLC technique. Following PVN administration of GAL (0.3 nmol), NPY (78 pmol) or Ringer's solution, local NE levels were measured at 20-min intervals for 2 hrs postinjection, under two feeding conditions, namely, in the presence or absence of food. The results demonstrate different effects of these peptides on endogenous NE levels. Following GAL administration, PVN NE levels were enhanced by 80 to 90%, up to 40 min postinjection, independent of food availability. In contrast, following NPY injection, NE levels were significantly reduced 20 min postinjection with food absent, and when food was available, NE levels tended to be enhanced. These results, consistent with pharmacological and biochemical studies, reveal different patterns of peptide-amine interactions in the PVN. 相似文献
12.
In these studies the pattern of feeding behavior during continuous intraventricular (IVT) infusion of NPY for 4 hr in the satiated female rat was monitored. Whereas saline infusion was ineffective, each of the three doses of NPY (117, 470 or 1175 pmol/hr) increased feeding during the entire 4 hr infusion and 2 hr postinfusion period. The cumulative food intake at the end of 4 hr of NPY infusion was enhanced in a dose-related fashion between 0, 117 and 470 pmol/hr; at 1175 pmol/hr food intake plateaued. In addition, the latency to initiate feeding response decreased in a dose-related fashion and feeding occurred in discrete (35-45) episodes during the 4 hr infusion period. Further, the total time feeding and local eating rate (g/min) increased significantly in response to the higher rates of NPY infusion. Concurrent infusion of cholecystokinin (CCK) at either equimolar or 2.5 x NPY dose, affected neither the NPY-induced cumulative food intake nor any other parameter of feeding behavior. On the other hand, cumulative food intake was significantly decreased in adrenalectomized rats in response to NPY infusion (470 pmol/hr); a response due primarily to a marked suppression in some, and almost complete cessation of food consumption in other rats during the second 2 hr period of NPY infusion. These studies show that continuous central infusion of NPY can produce sustained, intermittent feeding behavior and adrenalectomy significantly curtailed the duration of NPY effectiveness.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
13.
The effects of injecting or infusing neuropeptide Y (NPY) into the suprachiasmatic nucleus of rats on patterns of individual macronutrient and water intake were examined during the following 2 h and also across 12 and 24 h light/dark cycles. Increased total energy intake (218 and 170%) and energy intake from the dextrin/sucrose diet (499 and 247%) were observed in the 2 h following injection of 100 pmol NPY at early light and early dark, respectively, and in the following 24 h (total energy: 67%, dextrin/sucrose: 73%). Nocturnal casein energy intake was also increased (258%) following NPY injection. Continuous infusion of 10 pmol/h of NPY suppressed nocturnal total energy (36%) and dextrin/sucrose intake (36%) as well as 24 h energy intake from casein (43%). These results demonstrate divergent effects of NPY subsequent to different mode of administration. 相似文献
14.
Opposite regulation of hypothalamic orexin and neuropeptide Y receptors and peptide expressions in obese Zucker rats 总被引:3,自引:0,他引:3
Beck B Richy S Dimitrov T Stricker-Krongrad A 《Biochemical and biophysical research communications》2001,286(3):518-523
Many hyothalamic neuropeptides are involved in the regulation of food intake and body weight. The orexins (OX) which are synthesized in the lateral hypothalamus are among the most recently characterized whereas neuropeptide Y (NPY) belongs to a group of "older" peptides extensively studied for their effects on feeding behavior. Both stimulate food ingestion in rodents. In this experiment, we measured the expressions of these peptides as well as of their receptors (OX1-R and OX2-R, Y1 and Y5) in the hypothalamus of obese hyperphagic and lean Zucker rats by real-time RT-PCR using the TaqMan apparatus. NPY mRNA expression in the obese rats was significantly increased by a factor of 10 (P < 0.002) whereas expressions of the Y1 and Y5 receptors were decreased by 25% (P < 0.01) and 50% (P < 0.002), respectively. Their prepro-orexin mRNA expression was more than twofold decreased (P < 0.01) and expressions of their OX receptors 1 and 2 mRNA were five- and fourfold increased (P < 0.05), respectively. An inverse phenomenon was therefore noted between the two peptides: for NPY, increased levels and downregulation of receptors; and for OX, diminished levels with upregulation of receptors. The reasons for these changes might be linked to the absence of leptin signaling as similar profiles are found in the ob/ob mice. For orexins at least, other factors such as hyperglycemia might be involved. Based on anatomical considerations, a direct effect of NPY or of other brain peptides such as CRH cannot be excluded. We conclude that the diminution in the OX tone might participate in a counterregulatory system necessary to limit the noxious effects of NPY on food intake and body weight. 相似文献
15.
Chen Bing Sue Taylor † Michael J. Tisdale‡ Gareth Williams 《Journal of neurochemistry》2001,79(5):1004-1012
Weight loss normally stimulates hunger, through mechanisms that include falls in circulating leptin and insulin, leading to stimulation of hypothalamic neuropeptide Y (NPY). Here, we investigated the leptin, insulin and NPY to clarify why hunger is suppressed in mice with severe cachexia due to the MAC16 adenocarcinoma. MAC16-bearing mice progressively lost weight (19% below controls) and fat (- 61%) over 16 days after tumour transplantation, while total food intake fell by 10%. Pair-fed mice showed less wasting, with final weight being 9% and fat mass 25% below controls. Plasma leptin fell by 85% in MAC16 and 51% in pair-fed mice, in proportion to loss of fat. Plasma insulin was also reduced by 49% in MAC16 and 53% in pair-fed groups. Hypothalamic leptin receptor (OB-Rb) mRNA was significantly increased in both MAC16 (+ 223%) and pair-fed (+192%) mice. Hypothalamic NPY mRNA was also significantly raised in MAC16 (+152%) and pair-fed (+ 99%) groups, showing negative correlations with plasma leptin and insulin, and a positive association with OB-Rb mRNA. In MAC16-induced cachexia, leptin production and hypothalamic OB-Rb and NPY expression are regulated appropriately in response to fat depletion. Therefore, suppression of hunger is probably due to tumour products that inhibit NPY transport or release, or that interfere with neuronal targets downstream of NPY. 相似文献
16.
Kuo DY 《Journal of biomedical science》2002,9(2):126-132
This study investigated whether co-administration of dopamine D1 and D2 agonists might additively inhibit the feeding effect and whether this effect was mediated by the action on hypothalamic neuropeptide Y (NPY). The D1 agonist SKF 38393 (SKF) and D2 agonists apomorphine (APO) or quinpirole (QNP) were administered, alone or in combination, to examine this possibility. In single administration, decreases of daily food intake were observed only in rats treated twice a day with a higher dose of SKF, APO or QNP. However, combined administration of D1 and D2 agonists, with each agent at a dose that alone did not induce anorexia in one daily treatment, exerted a significant effect. These results reveal that co-activation of D1 and D2 receptors can additively reduce daily food intake and body weight. The same treatment also decreased the level of hypothalamic NPY 24 h post-treatment. These results suggest an additive effect during combined activation of D1 and D2 receptor subtypes to decrease food intake and body weight that are mediated by the action of hypothalamic NPY. Similar to the effects seen in healthy rats, combined D1/D2 administration was also effective in the reduction of food intake in diabetic rats, revealing the efficiency of D1/D2 agonist in the improvement of hyperphasia in diabetic animals. 相似文献
17.
Acute effects of PYY3-36 on food intake and hypothalamic neuropeptide expression in the mouse 总被引:9,自引:0,他引:9
Challis BG Pinnock SB Coll AP Carter RN Dickson SL O'Rahilly S 《Biochemical and biophysical research communications》2003,311(4):915-919
It has recently been suggested that gut-derived PYY(3-36) may be involved in the central mediation of post-prandial satiety signals. We have examined the acute effects of peripherally administered PYY(3-36) on food intake and hypothalamic gene expression of neuropeptides in mice. A single intraperitoneal injection of PYY(3-36) to mice that had been fasted for 24h resulted in a highly significant reduction in food intake at 6 and 24h post-injection but not at 48h. However, in freely fed mice, food intake was unaltered by PYY(3-36) administration. In the arcuate nucleus POMC mRNA expression was significantly elevated at 6h and remained elevated at 24h following PYY(3-36) injection. By contrast NPY mRNA expression in the arcuate nucleus was suppressed at 6h but not at 24h post-injection. In the lateral hypothalamus there were no differences in MCH mRNA expression at either time point. In conclusion, peripherally administered PYY(3-36) has a suppressive effect on food intake that is more prominent in recently fasted mice and lasts up to 24 h. This is associated with a short-lived suppression of NPY mRNA, a longer lasting increase in POMC mRNA but no change in MCH mRNA expression. 相似文献
18.
Following intraventricular (i.v.t.) administration of increasing doses of neuropeptide Y (NPY; 7.5-750 pmol/rat) the catecholamine levels and turnover were quantitatively measured in discrete hypothalamic regions by means of histofluorometry. In the same rats the adenohypophyseal hormones as well as vasopressin, aldosterone (ALDO) and corticosterone (CORTICO) levels in serum were determined. Neuropeptide Y seems to induce a biphasic change in amine utilization in the tuberoinfundibular dopamine (DA) neurons and in the noradrenergic (NA) utilization in various hypothalamic areas. Thus, the lowest doses seem to inhibit the catecholamine utilization while higher doses seem to enhance it. NPY (250-750 pmol) reduced the serum levels of thyreotropine (TSH), prolactin (PRL) and growth hormone (GH) but increased CORTICO, adrenocorticotropin (ACTH) and ALDO serum levels. In conclusion, it is suggested that the NPY induced changes in DA utilization in the tuberoinfundibular DA neurons may contribute to the NPY induced changes in PRL and TSH secretion. The increases in paraventricular NA utilization may contribute to the increases in ACTH, ALDO and CORTICO secretion induced by NPY. These data give further support for NPY as an important neuroendocrine modulator. 相似文献
19.
Minor RK López M Younts CM Jones B Pearson KJ Anson RM Diéguez C de Cabo R 《Aging cell》2011,10(3):483-492
Calorie restriction (CR) is known to have profound effects on tumor incidence. A typical consequence of CR is hunger, and we hypothesized that the neuroendocrine response to CR might in part mediate CR's antitumor effects. We tested CR under appetite suppression using two models: neuropeptide Y (NPY) knockout mice and monosodium glutamate-injected mice. While CR was protective in control mice challenged with a two-stage skin carcinogenesis model, papilloma development was neither delayed nor reduced by CR in the monosodium glutamate-treated and NPY knockout mice. Adiponectin levels were also not increased by CR in the appetite-suppressed mice. We propose that some of CR's beneficial effects cannot be separated from those imposed on appetite, and that NPY neurons in the arcuate nucleus of the hypothalamus are involved in the translation of reduced intake to downstream physiological and functional benefits. 相似文献