首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The purpose of the present study was to compare the influence of adding no or 8% fat of varying sources (coconut oil, fish oil, rapeseed oil and sunflower oil) to diets for sows 1 week prior to farrowing and during lactation on the composition of fatty acids in plasma and tissues of the progeny while sucking and 3 weeks after weaning from the sow. A control diet without supplemental fat and four diets supplemented with 8% of coconut oil, rapeseed oil, fish oil or sunflower oil were provided to lactating sows (n = 15), and during the post-weaning period the same weaner diet was provided to all piglets (n = 15 litters), which were housed litterwise. The dietary ratio of n-6:n-3 fatty acids of the maternal diets largely influenced the progeny, as the ratio varying from 1.2 (fish oil) to 12.2 (sunflower oil) in the sow milk was reflected in plasma and adipose tissues of the sucking progeny. The liver showed similar variations according to dietary treatments, but a lower n-6:n-3 fatty acids ratio. From day 4 to later on during the suckling period, the concentration of C14:0, C16:0 and C18:1 in the liver of the piglets decreased, irrespective of the dietary treatments of sows. In plasma and liver, the total concentration of saturated fatty acids (SAFA), monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA) did not differ markedly in piglets sucking sows fed different dietary fatty acids, whereas the adipose tissue of piglets sucking sows fed sunflower oil and coconut oil showed the highest proportion of PUFA and SAFA, respectively. Weaning lowered the concentration of lipid-soluble extracts in plasma and the concentration of fatty acids in the liver of the piglets. Within the post-weaning period, dietary treatments of sows, rather than age of piglets, influenced the fatty acid composition of plasma and adipose tissue of the piglets, whereas the hepatic fatty acid profile was more affected by the age of the piglets during the post-weaning period. This study shows that the fatty acid profile of plasma and tissues of the progeny is highly dependent on the maternal dietary composition, and that the dietary impact persists for up to 3 weeks after the suckling period.  相似文献   

2.
Five groups of lactating sows were fed diets containing 8% of either added rapeseed oil, fish oil or sunflower oil and 60 mg vitamin E/kg feed, or the diets with sunflower oil and fish oil, respectively, supplemented with 500 mg vitamin E/kg. Supplementation of vitamin E to the sows increased the concentration of alpha-tocopherol of the muscle, and addition of sunflower oil decreased the activity of glutathione peroxidase in liver cytosol compared to fish oil and rapeseed oil. The composition of fatty acids of alveolar macrophages (AM) of piglets was influenced by the dietary fat sources provided the sows, i.e., the ratio of n-6:n-3 fatty acids was highest in AM of piglets suckling sows of the sunflower oil treatments, and lowest in AM of piglets suckling sows fed fish oil with the rapeseed oil treatment in between. The ex vivo synthesis of prostaglandin E(2) and thromboxane B(2) in AM of piglets suckling sows fed sunflower oil was elevated compared to piglets suckling sows fed fish oil. Vitamin E supplementation to sows enhanced the synthesis of these eicosanoids, and also the concentration of alpha-tocopherol in the AM of the piglets.  相似文献   

3.
The objective of this study was to evaluate the effects of vegetable oil supplementation of ewe diets on the performance and fatty acid (FA) composition of their suckling lambs. Forty-eight pregnant Churra ewes (mean BW 64.3±0.92 kg) with their 72 newborn lambs (prolificacy=1.5) were assigned to one of four experimental diets, supplemented with 3% of hydrogenated palm (PALM), olive (OLI), soya (SOY) or linseed (LIN) oil. Lambs were nourished exclusively by suckling from their respective mothers. Ewes were milked once daily, and milk samples were taken once a week. When lambs reached 11 kg, they were slaughtered and samples were taken from musculus longissimus dorsi (intramuscular fat) and subcutaneous fat tissue. No changes were observed in milk yield, proximal composition or lamb performance (P>0.10). Milk and lamb subcutaneous and intramuscular fat samples from the PALM diet had the highest saturated fatty acid concentration, whereas those of the OLI, SOY and LIN diets had the lowest (P<0.05). The greatest monounsaturated fatty acid concentration was observed in milk from ewes fed OLI, and the least in milk and in lamb subcutaneous and intramuscular fat samples from LIN and PALM diets. Milk and lamb fat from ewes fed PALM displayed the highest 16:0 proportion and the lowest 18:0 (P<0.05). There were higher concentrations of cis-9 18:1 in OLI samples (P<0.05), more 18:2n-6 in SOY lambs and milk fat (P<0.001) and the highest levels of 18:3n-3 and 20:5n-3 in LIN samples (P<0.01). Milk and lamb subcutaneous and intramuscular samples from SOY and LIN diets contained the most cis-9, trans-11 conjugated linoleic acid, whereas PALM samples had the least (P<0.01). Sheep diet supplementation with different oils, constituting up to 3% of their diets, resulted in changes in the FA composition of milk and the subcutaneous and intramuscular fat of suckling lambs, but did not affect either milk production or lamb performance.  相似文献   

4.
The fatty acid composition of chicken’s meat is largely influenced by dietary lipids, which are often used as supplements to increase dietary caloric density. The underlying key metabolites and pathways influenced by dietary oils remain poorly known in chickens. The objective of this study was to explore the underlying metabolic mechanisms of how diets supplemented with mixed or a single oil with distinct fatty acid composition influence the fatty acid profile in breast muscle of Qingyuan chickens. Birds were fed a corn-soybean meal diet supplemented with either soybean oil (control, CON) or equal amounts of mixed edible oils (MEO; soybean oil : lard : fish oil : coconut oil = 1 : 1 : 0.5 : 0.5) from 1 to 120 days of age. Growth performance and fatty acid composition of muscle lipids were analysed. LC-MS was applied to investigate the effects of CON v. MEO diets on lipid-related metabolites in the muscle of chickens at day 120. Compared with the CON diet, chickens fed the MEO diet had a lower feed conversion ratio (P < 0.05), higher proportions of lauric acid (C12:0), myristic acid (C14:0), palmitoleic acid (C16:1n-7), oleic acid (C18:1n-9), EPA (C20:5n-3) and DHA (C22:6n-3), and a lower linoleic acid (C18:2n-6) content in breast muscle (P < 0.05). Muscle metabolome profiling showed that the most differentially abundant metabolites are phospholipids, including phosphatidylcholines (PC) and phosphatidylethanolamines (PE), which enriched the glycerophospholipid metabolism (P < 0.05). These key differentially abundant metabolites – PC (14:0/20:4), PC (18:1/14:1), PC (18:0/14:1), PC (18:0/18:4), PC (20:0/18:4), PE (22:0/P-16:0), PE (24:0/20:5), PE (22:2/P-18:1), PE (24:0/18:4) – were closely associated with the contents of C12:0, C14:0, DHA and C18:2n-6 in muscle lipids (P < 0.05). The content of glutathione metabolite was higher with MEO than CON diet (P < 0.05). Based on these results, it can be concluded that the diet supplemented with MEO reduced the feed conversion ratio, enriched the content of n-3 fatty acids and modified the related metabolites (including PC, PE and glutathione) in breast muscle of chickens.  相似文献   

5.
The aim of this study was to determine any age-related changes in phospholipid polyunsaturated fatty acid composition, in particular C20 and C22 fatty acids in rat liver, brain, kidney and heart, and to assess and compare the effects of dietary supplementation (42.5 mg/kg body weight/day) of the natural antioxidant thyme oil and its major component thymol throughout the rat life span. The fatty acid composition in the various tissues from young (7 months) and aged (28 months) rats was determined and compared. Livers from aged control, thyme oil and thymol treated rats exhibited an increase in 22:6(n-3). In contrast, 22:6(n-3) content of brain, kidney and heart declined in aged rats in all three dietary groups. However, aged rats treated with thyme oil and thymol displayed significantly higher levels of 22:6(n-3) than the respective age-matched controls. Tissue compositions of 20:4(n-6) were found to be significantly lower in the liver and kidney from aged control rats but not those fed either thyme oil or thymol. In aged rats, the composition of 20:4(n-6) in all tissues was highest in rats fed either thyme oil or thymol. These results show that dietary supplementation with thyme oil tended to maintain higher PUFA levels in all tissues studied. The majority of protection provided by thyme oil was by virtue of its thymol component, which comprises 49% of the whole oil. Thymol administered alone did not provide significantly higher protection than the whole oil, suggesting that other components within thyme oil are also contributing antioxidant activity.  相似文献   

6.
Triplicate groups of European sea bass (Dicentrarchus labrax L.), of initial mass 5 g, were fed one of three practical type diets for 64 weeks. The three diets differed only in the added oil and were 100% fish oil (FO; diet A), 40% FO/60% vegetable oil blend (VO; diet B) where the VO blend was rapeseed oil, linseed oil and palm oil in the ratio 10/35/15 by weight and 40% FO/60% VO blend (diet C) where the ratio was 24/24/12 by weight. After final sample collection the remaining fish were switched to a 100% FO finishing diet for a further 20 weeks. After 64 weeks fish fed 60% VO diet B had significantly lower live mass and liver mass than fish fed diets A and C although SGR, FCR and length were not different between groups. There were no differences in any of the above parameters after either 14 or 20 weeks on the FO finishing diet. Fatty acid compositions of flesh were correlated to dietary fatty acids although there was selective retention of docosahexaenoic acid (22:6n-3; DHA) regardless of dietary input. Inclusion of dietary VO resulted in significantly reduced flesh levels of DHA and eicosapentaenoic acid (20:5n-3; EPA) while 18:1n-9, 18:2n-6 and 18:3n-3 were all significantly increased in fish fed the 60% VO diets. Fatty acid compositions of liver showed broadly similar changes, as a result of dietary fatty acid composition, as was seen in flesh. However, the response of flesh and liver to feeding a FO finishing diet was different. In flesh, DHA and EPA values were not restored after 14 or 20 weeks of feeding a FO finishing diet with the values in fish fed the two 60% VO diets being around 70% of the values seen in fish fed FO throughout. Conversely, and despite liver DHA and EPA levels being reduced to only 40% of the value seen in fish fed 100% FO after 64 weeks, the levels of liver DHA and EPA were not significantly different between treatments after feeding the FO finishing diet for 14 weeks. However, a 200 g portion of sea bass flesh, after feeding the experimental diets for 64 weeks followed by a FO diet for 14 weeks, contained 1.22 and 0.95 g of EPA + DHA for fish fed FO or 60% VO, respectively. Therefore, sea bass grown for most of the production cycle using diets containing 60% VO can still contribute a significant quantity of healthy n-3 HUFA to the human consumer.  相似文献   

7.
Increasing evidence suggests that fetal and neonatal nutrition impacts later health. Aims of the present study were to determine the effect of maternal dietary fat composition on intestinal phospholipid fatty acids and responsiveness to experimental colitis in suckling rat pups. Female rats were fed isocaloric diets varying only in fat composition throughout gestation and lactation. The oils used were high (8%) in n-3 [canola oil (18:3n-3)], n-6 (72%) [safflower oil (18:2n-6)], or n-9 (78%) [high oleic acid safflower oil (18:1n-9)] fatty acids, n = 6/group. Colitis was induced on postnatal day 15 by intrarectal 2,4-dinitrobenzene sulfonic acid (DNBS) administration with vehicle (50% ethanol) and procedure (0.9% saline) controls. Jejunal and colonic phospholipids and milk fatty acids were determined. The distal colon was assessed for macroscopic damage, histology, and MPO activity. The 18:2n-6 maternal diet increased n-6 fatty acids, whereas the 18:3n-3 diet increased n-3 fatty acids in milk and pup jejunal and colonic phospholipids. Maternal diet, milk, and pup intestinal n-6-to-n-3 fatty acid ratios increased significantly in order: high 18:3n-3 < high 18:1n-9 < high 18:2n-6. DNBS administration in pups in the high 18:2n-6 group led to severe colitis with higher colonic damage scores and MPO activity than in the 18:1n-9 and 18:3n-3 groups. High maternal dietary 18:3n-3 intake was associated with colonic damage scores and MPO activity, which were not significantly different from ethanol controls. We demonstrate that maternal dietary fat influences the composition of intestinal lipids and responsiveness to experimental colitis in nursing offspring.  相似文献   

8.
The effects of different dietary fat intake on the lipid composition and enzyme behaviour of sarcolemmal (Na+ + K+)ATPase and sarcoplasmic reticulum Ca2+-ATPase from rat heart were investigated. Rat diets were supplemented with either sunflower seed oil (unsatd./satd. 5.6) or sheep kidney fat (unsatd./satd. 0.8). Significant changes in the phospholipid fatty acid composition were observed in both membranes after 9 weeks dietary lipid treatment. For both membranes, the total saturated/unsaturated fatty acid levels were unaffected by the dietary lipid treatment, however the proportions of the major unsaturated fatty acids were altered. Animals fed the sunflower seed oil diet exhibited an increase in n-6 fatty acids, including linoleic (18:2(n-6] and arachidonic (20:4(n-6] while the sheep kidney fat dietary rats were higher in n-3 fatty acids, principally docosahexaenoic (22:6), with the net result being a higher n-6/n-3 ratio in the sunflower seed oil group compared to sheep kidney fat dietary animals. Fluorescence polarization indicated that the fluidity of sarcoplasmic reticular membrane was greater than that of sarcolemmal membrane, with a dietary lipid-induced decrease in fluidity being observed in the sarcoplasmic reticular membrane from sheep kidney fat dietary animals. Despite these significant changes in membrane composition and physical properties, neither the specific activity nor the temperature-activity relationship (Arrhenius profile) of the associated ATPases were altered. These results suggest that with regard to the parameters measured in this study, the two ion-transporting ATPases are not modulated by changes which occur in the membrane lipid composition as a result of the diet.  相似文献   

9.
Interest in health benefits of conjugated fatty acids is growing. The present study compared the incorporation pattern of dietary conjugated linolenic acids (CLnA) into milk with that of conjugated linoleic acids (CLA). Lactating Sprague-Dawley rats (Day 1) were divided into five groups fed the control diet (n=4) or one of four experimental diets supplemented with 1–2% CLA or CLnA mixture (n=8 each). Supplementation of 1% and 2% CLA led to enrichment of 4.17% and 8.57% CLA, respectively, while supplementation of 1% and 2% CLnA resulted in enrichment of only 0.98% and 1.71% CLnA in the milk lipids, demonstrating the transfer of CLnA from maternal diet to milk was discriminated. When the lactating rats were given a diet containing a CLnA mixture of 9t,11t,13t-, 9c,11t,13t- and 9c,11t,13c-CLnA isomers, two CLA isomers, namely, 9t,11t (0.59–0.90%) and 9c,11t (1.21–1.96%), were found in the milk, suggesting that three CLnA isomers were Δ-13 saturated. Dietary CLnA at 1–2% had no effect on liver phospholipid (PL) fatty acid composition of both maternal and suckling rats, whereas dietary CLA increased docosahexaenoic acid (4c,7c,10c,13c,16c,19c-22:6) and palmitic acid (16:0) proportionally in the PL of maternal rats, but it suppressed 16:0 in the PL of suckling rats. It is concluded that maternal rats incorporate CLnA isomers into milk differently from that of CLA isomers. Most interesting is that maternal rats can metabolically convert CLnA to CLA.  相似文献   

10.
The ratio of fatty acids namely linoleic acid (LA, 18:2, n-6) and alpha linolenic acid (ALA, 18:3, n-3) in the diet plays an important role in enrichment of ALA in tissues and further conversion to long-chain polyunsaturated fatty acids (LC-PUFA) like eicosapentaenoic acid (EPA, 20:5, n-3) and docosahexaenoic acid (DHA, 22:6, n-3). Garden cress seed oil (GCO) is one of the richest sources of omega-3 fatty acid and contains 29-34.5% of ALA. In this study, dietary supplementation of GCO on bio-availability and metabolism of alpha-linolenic acid was investigated in growing rats. Male wistar rats were fed with semi-purified diets supplemented with 10.0% sunflower oil (SFO 10%); 2.5% GCO and 7.5% SFO (GCO 2.5%); 5% GCO and 5% SFO (GCO 5.0%); 10% GCO (GCO 10%) for a period of 8 weeks. There was no significant difference with regard to the food intake, body weight gain and organ weights of rats in different dietary groups. Rats fed with GCO showed significant increase in ALA levels in serum and tissues compared to SFO fed rats. Feeding rats with 10% GCO lowered hepatic cholesterol by 12.3% and serum triglycerides by 40.4% compared to SFO fed group. Very low density lipoprotein cholesterol (VLDL-C) and low density lipoprotein cholesterol (LDL-C) levels decreased by 9.45% in serum of 10% GCO fed rats, while HDL remained unchanged among GCO fed rats. Adipose tissue showed incorporation of 3.3-17.4% of ALA and correlated with incremental intake of ALA. Except in adipose tissue, the EPA, DHA levels increased significantly in serum, liver, heart and brain tissues in GCO fed rats. A maximum level of DHA was registered in brain (11.6%) and to lesser extent in serum and liver tissues. A significant decrease in LA and its metabolite arachidonic acid (AA) was observed in serum and liver tissue of rats fed on GCO. Significant improvement in n-6/n-3 fatty acid ratio was observed in GCO based diets compared to diet containing SFO. This is the first study to demonstrate that supplementation of GCO increases serum and liver ALA, EPA, DHA and decreases LA and AA in rats. Therefore, the GCO can be considered as a potential, alternate dietary source of ALA.  相似文献   

11.
The replacement of the finite and costly resource fish oil is an important task for aquaculture nutrition. A promising approach could be the use of plant bioactives that may have the potential to influence the metabolism and the synthesis of n-3 long chain polyunsaturated fatty acids, especially EPA (20:5n-3) and DHA (22:6n-3). In this study, the two phytochemicals resveratrol (RV) and genistein (G) were investigated for their effects on fish growth, nutrient utilization and body nutrient composition alongside their effects on whole body fatty acid (FA) composition. In a feeding trial lasting 8 weeks, rainbow trout (initial BW: 81.4±0.5 g) were held in a recirculating aquaculture system and fed six experimental diets with varying fish oil levels as plain variants or supplemented with 0.3% of dry matter (DM) of either RV or G. The six diets were as follows: diet F4 had 4% DM fish oil, diet F0 had 0% DM fish oil, diets F4+RV, F4+G, F0+RV and F0+G were equal to the diets F4 and F0, respectively, and supplemented with the phytochemicals RV and G. The feeding of the F0+RV diet resulted in reduced feed intake, growth rate and slightly reduced whole body lipid levels. At the same time, the amount of polyunsaturated FA and the n-3/n-6 ratio were significantly increased in whole body homogenates of rainbow trout fed diet F0+RV in comparison to the F0 control. The feeding of the F0+G diet led to reduced feed intake, slightly increased protein utilization but did not significantly affect the whole body FA composition. Overall, feeding the fish oil-free diet supplemented with the phytochemicals resulted in more pronounced effects on fish performance and FA composition than the single factors per se (dietary fish oil level or phytochemical). Present data indicate that G might not be of profitable use for trout nutrition. In terms of FA composition, RV could be a potentially useful complement for fish oil. However, the impairment of growth and performance parameters as observed in the present study discourages its use in trout diets.  相似文献   

12.
Shiitake mushrooms (Lentinus edodes) are a hypocholesterolemic and affect phospholipid and fatty acid metabolism in rats. In this study, the effects of 2% shiitake in the diet on fatty acid and molecular species profiles of liver microsomal and plasma phosphatidylcholine (PC) were investigated in rats fed diets containing different levels (1-20%) of corn oil, a linoleic-acid-rich fat. The proportion of 18:2n-6 in PC increased depending on the parcent corn oil, and L. edodes further increased the proportion at all corn oil levels. The proportion of 20:4n-6 was lower in rats fed L. edodes than in rats fed control diets irrespective of the parcent corn oil. L. edodes selectively increased the proportion of 16:0-18:2 molecular species and decreased the proportion of 18:0-20:4 molecular species in PC. These results indicate that the effects of L. edodes on fatty acid and molecular species profiles of PC are stronger than that of the dietary corn oil level.  相似文献   

13.
Standard feeds are imbalanced in term of n-6/n-3 polyunsaturated fatty acids (PUFA) ratio, with a low proportion of the latter. The reproductive system appears to be strongly affected by administration of n-3 PUFA, and ingredients rich in α-linolenic acid (ALA; i.e. vegetable sources) or EPA and DHA acids (i.e. fish oil) can be included in animal diets to balance PUFA intake. The aim of this study was to evaluate the effect of dietary supplementation with flaxseed (ALA) or fish oil (EPA and DHA) on PUFA metabolism in rabbit does. A total of 60 New Zealand White female rabbits were assigned to three experimental groups: control group, FLAX group fed 10% extruded flaxseed and FISH group fed 3% fish oil. Blood, milk, liver and ovaries were collected from the does to assess the lipid composition; furthermore, FADS2 gene expression was assessed in liver and ovary tissues. Reproductive performance of does was also recorded. The fertility rate and number of weaned rabbits improved with n-3 dietary supplementation: does at first parity showed the lowest reproductive results, but the administration of n-3 reduced the gap between primiparous and multiparous does. Feed consumption and milk production were not affected by the feeding regime. The fatty acid composition of milk, plasma, liver and ovaries were widely influenced by diet, showing higher concentrations of n-3 long-chain PUFA (LCP) in does fed with n-3 enriched diets. FISH diet resulted in the highest n-3 LCP enrichment, whereas in the FLAX group, this increase was lower. Blood and milk showed low levels of LCP, whereas liver and ovaries were the main sites of n-3 LCP synthesis and accumulation. Accordingly, although the liver is the main metabolic centre for LCP synthesis, ovaries also have a prominent role in LCP generation. FADS2 expression in liver and ovary tissue was downregulated by FISH administration. In conclusion, the enrichment of diets with n-3 PUFA could be an effective strategy for improving the reproductive performance of does.  相似文献   

14.
Effects of dietary eritadenine on liver microsomal delta6-desaturase activity and the fatty acid profile of phosphatidylcholine, cholesteryl esters, and triglycerides of liver microsomes or plasma were investigated in rats fed different fats (palm oil, olive oil, and safflower oil). The activity of delta6-desaturase was influenced by both dietary fat types and eritadenine. In rats fed control diets, delta6-desaturase activity was higher in the order of the palm oil, olive oil, and safflower oil groups. In rats fed eritadenine-supplemented diets, the enzyme activity was markedly decreased to a constant level irrespective of dietary fat type. The 20:4n-6/18:2n-6 ratio of phosphatidylcholine and cholesteryl esters, as compared with triglycerides, was highly sensitive to eritadenine. The results suggest that the activity of delta6-desaturase is regulated by dietary fats and eritadenine independently, and that the effect of eritadenine is stronger than that of dietary fats.  相似文献   

15.
Following the suckling period, stroke-prone spontaneously hypertensive rats (SHR-SP) were fed semi-purified diets supplemented either with safflower seed oil (rich in linoleic acid) or with perilla seed oil (rich in alpha-linolenic acid). The mean survival time of male SHR-SP fed the perilla diet was longer than that fed the safflower diet by 17% (p less than 0.001) while the difference was 15% in female SHR-SP (p less than 0.05). The mean survival times of female SHR-SP were more than 40% longer than those of male SHR-SP in both dietary groups. Post-mortem examinations of brains revealed apoplexy-related symptoms as the major cause of the death in both dietary groups. The systolic blood pressure was lower by ca. 10% (21 mmHg) in the perilla group than in both the safflower group and conventional diet group. The eicosapentaenoate (20:5 n-3)/arachidonate (20:4 n-6) ratio of platelet phospholipids in spontaneously hypertensive rat (SHR), a measure of platelet aggregability, was much higher in the perilla group than in the safflower group. Thus, increasing the dietary alpha-linolenate/linoleate ratio resulted in an increased mean survival time of SHR-SP rats, possibly by lowering blood pressure and platelet aggregability.  相似文献   

16.
The supply of polyunsaturated fatty acids (PUFA) is important for optimal fetal and postnatal development. We have previously shown that leptin levels in suckling rats are reduced by maternal PUFA deficiency. In the present study, we evaluated the effect of maternal dietary intake of (n-3) and (n-6) PUFA on the leptin content in rat milk and serum leptin levels in suckling pups. For the last 10 days of gestation and throughout lactation, the rats were fed an isocaloric diet containing 7% linseed oil (n-3 diet), sunflower oil (n-6 diet), or soybean oil (n-6/n-3 diet). Body weight, body length, inguinal fat pad weight, and adipocyte size of the pups receiving the n-3 diet were significantly lower during the whole suckling period compared with n-6/n-3 fed pups. Body and fat pad weights of the n-6 fed pups were in between the other two groups at week one, but not different from the n-6/n-3 group at week 3. Feeding dams the n-3 diet resulted in decreased serum leptin levels in the suckling pups compared with pups in the n-6/n-3 group. The mean serum leptin levels of the n-6 pups were between the other two groups but not different from either group. There were no differences in the milk leptin content between the groups. These results show that the balance between the n-6 and n-3 PUFA in the maternal diet rather than amount of n-6 or n-3 PUFA per se could be important for adipose tissue growth and for maintaining adequate serum leptin levels in the offspring.  相似文献   

17.
The effect of dietary fatty acids on uterine fatty acid composition was studied in rats fed control diet or semi-synthetic diet supplemented with 1.5 microliter/g/day evening primrose oil (EPO) or fish oil (FO). Diet-related changes in uterine lipid were detected within 21 days. Changes of 2- to 20-fold were detected in the uterine n-6 and n-3 essential fatty acids (EFA) and in certain saturated and monounsaturated fatty acids. The FO diet was associated with higher uterine C20 and C22 n-3, and the EPO diet, with higher uterine n-6 fatty acid. High uterine C18:2 n-6 was detected in neutral lipid (NL) of rats fed high concentrations of this fatty acid, but there was little evidence of selective incorporation or retention of C18:2 n-6 by uterine NL. The incorporation of EFA into uterine phospholipids (PL) was greater than NL EFA incorporation, and uterine PL n-3/n-6 ratios showed greater diet dependence. Tissue/diet fatty acid ratios in NL and PL also indicated preferential incorporation/synthesis of C16:1 n-9, and C16:0, and there was greater incorporation of C12:0 and C14:0 into uteri of rats fed EPO and FO. Replacement of 50-60% of arachidonate with n-3 EFA in uterine PL may inhibit n-6 EFA metabolism necessary for uterine function at parturition.  相似文献   

18.
Spontaneously hypertensive rats (SHR) and normotensive control, Wistar/Kyoto (WKY) rats through two generations were fed a semipurified diet supplemented either with safflower oil (rich in linoleate) or with perilla oil (rich in alpha-linolenate). The cerebral lipid contents and phospholipid compositions did not differ between the two dietary groups of SHR rats. There were also no differences in the unsaturated/saturated ratios of individual phospholipids or the proportions of plasma-logens. However, the proportions of (n-3) and (n-6) fatty acids were significantly different. Decreases in the proportions of docosahexaenoate [22:6 (n-3)] in phosphatidylethanolamine and phosphatidylserine in the safflower oil group were compensated for with increases in the proportions of docosatetraenoic [22:4 (n-6)] and docosapentaenoic [22:5 (n-6)] acids as compared with the perilla oil group. These differences in phospholipid acyl chains were much smaller than the difference in the proportions of linoleate and alpha-linolenate of the diets. In a brightness-discrimination learning test, the total number of responses to the positive and negative stimuli were less in the groups fed perilla oil. However, the alpha-linolenate-deficient group took longer to decrease the frequency of R- responses and therefore longer to learn the discrimination. Consequently, the correct response ratios were higher in the perilla oil groups than in the safflower oil groups. Thus, the dietary alpha-linolenate/linoleate balance influenced the (n-3)/(n-6) balance of polyenoic fatty acids differently among brain phospholipids.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Dietary effects of bitter gourd oil on blood and liver lipids of rats.   总被引:3,自引:0,他引:3  
Bitter gourd is widely used as an edible plant in Asia. In this study, we evaluated the effects of bitter gourd oil (BGO) on the blood and liver lipids of rats. Three groups of rats were given a basal diet (AIN-93G) containing 7% fat by weight. The dietary fat consisted of soybean oil (control), soybean oil + BGO (6.5:0.5, w/w; 0.5% BGO), or soybean oil + BGO (5:2, w/w; 2.0% BGO). This fat treatment gave 3.4 and 15.4% of cis(c)9,trans(t)11,t13-18:3 in the dietary fat of 0.5 and 2.0% BGO, respectively. Fatty acid analysis showed the occurrence of c9,t11-18:2 in the liver of rats fed BGO diets, whereas this conjugated linoleic acid (CLA) isomer was not detected in the liver of rats fed the control diet. Furthermore, dietary BGO decreased the concentration of 18:2n-6 and increased the concentration of 22:6n-3. The formation of the CLA isomer in the liver lipids of rats fed BGO diets could be explained by either of the following two metabolic pathways, namely, enzymatic biohydrogenation of c9,t11,t13-18:3 or enzymatic isomerization of c9,c12-18:2. The BGO diets had significantly reduced free cholesterol levels with a trend toward an increase in HDL cholesterol, but there was no significant change in the total cholesterol. The dietary BGO also affected the level of plasma hydroperoxides. A slight but significant increase in hydroperoxides was found in the rats fed 2.0% BGO. This may be attributed to the lower oxidative stability of c9,t11,t13-18:3 in BGO.  相似文献   

20.
Levels of n-6, n-3, and medium-chain fatty acids (MCFA) in milk are highly variable. Higher carbohydrate intakes are associated with increased mammary gland MCFA synthesis, but the role of unsaturated fatty acids for milk MCFA secretion is unclear. This study addressed whether n-6 and n-3 fatty acids, which are known to inhibit hepatic fatty acid synthesis, influence MCFA in rat and human milk and the implications of varying MCFA, n-6, and n-3 fatty acids in rat milk for metabolic regulation in the neonatal liver. Rats were fed a low-fat diet or one of six higher-fat diets, varying in 16:0, 18:1n-9, 18:2n-6, 18:3n-3, and long-chain (LC) n-3 fatty acids. Higher maternal dietary 18:2n-6 or 18:3n-3 did not influence milk MCFA, but lower maternal plasma triglycerides, due to either a low-fat or a high-fat high-LC n-3 diet led to higher milk MCFA. MCFA levels were inversely associated with 18:1n-9, 18:2n-6, and 18:3n-3 in human milk, likely reflecting the association between dietary total fat and unsaturated fatty acids. High LC n-3 fatty acid in rat milk was associated with lower hepatic Pklr, Acly, Fasn, and Scd1 and higher Hmgcs2 in the milk-fed rat neonate, with no effect of milk 18:1n-9, 18:2n-6, or MCFA. These studies show that the dietary fatty acid composition does not impact MCFA secretion in milk, but the fatty acid composition of milk, particularly the LC n-3 fatty acid, is relevant to hepatic metabolic regulation in the milk-fed neonate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号