首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genetic diversity and structure of 12 populations of Megaleranthis saniculifolia, a rare endemic Korean plant, were analyzed using 14 allozyme loci coding 10 enzymes and 78 ISSR loci using seven primers. The genetic diversity of M. saniculifolia at the species level was similar to that observed in out-crossing and long-lived perennials, while at the population level, it was significantly low. The high F IS value of many populations as well as homozygote excess occurred relatively evenly in many populations in relation to the Hardy-Weinberg expectation, suggesting that inbreeding was occurring within the M. saniculifolia populations. The degree of genetic differentiation based on the two markers was high, and there was no correlation between geographic and genetic distance. Bayesian cluster analysis did not reveal any remarkable geographic trends. Positive correlations were observed between genetic diversity (H e and h) and population size. Therefore, low genetic diversity within the population and high population differentiation of M. saniculifolia were closely related to the influence of genetic drift, particularly in highly isolated populations. In addition, the fixation of the main alleles at several loci in the opposite direction provided good evidence for genetic drift. The genetic diversity of M. saniculifolia could be compromised if the distribution area or the size of the population were further reduced. In particular, the isolated populations that are fragmented within an area could be at high risk of extinction due to accelerated inbreeding or genetic drift. Considering this, a close monitoring of the population size and of the changes in the genetic structure must be performed. Some practical measures for genetic conservation are also proposed.  相似文献   

2.
Animal parasitic nematodes can cause serious diseases and their emergence in new areas can be an issue of major concern for biodiversity conservation and human health. Their ability to adapt to new environments and hosts is likely to be affected by their degree of genetic diversity, with gene flow between distinct populations counteracting genetic drift and increasing effective population size. The raccoon roundworm (Baylisascaris procyonis), a gastrointestinal parasite of the raccoon (Procyon lotor), has increased its global geographic range after being translocated with its host. The raccoon has been introduced multiple times to Germany, but not all its populations are infected with the parasite. While fewer introduced individuals may have led to reduced diversity in the parasite, admixture between different founder populations may have counteracted genetic drift and bottlenecks. Here, we analyse the population genetic structure of the roundworm and its raccoon host at the intersection of distinct raccoon populations infected with B. procyonis. We found evidence for two parasite clusters resulting from independent introductions. Both clusters exhibited an extremely low genetic diversity, suggesting small founding populations subjected to inbreeding and genetic drift with no, or very limited, genetic influx from population admixture. Comparison of the population genetic structures of both host and parasite suggested that the parasite spread to an uninfected raccoon founder population. On the other hand, an almost perfect match between cluster boundaries also suggested that the population genetic structure of B. procyonis has remained stable since its introduction, mirroring that of its raccoon host.  相似文献   

3.
《Journal of Asia》2022,25(2):101899
The dung beetle Copris tripartitus (Coleoptera: Scarabaeidae) has long been considered an endangered insect in South Korea; the detection of recent population increases leaves its endangered status uncertain. Population genetic analysis subsequent to development of molecular markers is essential for establishing proper conservation strategies. In this study, we developed ten microsatellite markers specifically for C. tripartitus. Sixty-eight individuals of C. tripartitus collected from six South Korean localities were genotyped to validate these markers and preliminarily assess population genetic characteristics. Per-locus observed number of alleles, observed heterozygosity (HO), and expected heterozygosity (HE) ranged from 5–12, 0.499–0.958, and 0.54–0.743, respectively. All populations showed higher HO than HE, negative values of inbreeding coefficient, and, overall, no sign of recent population bottlenecks (excluding one population, Seosan). This suggests that C. tripartitus did not suffer from genetic drift and inbreeding, which are typically severe in small, isolated populations. Nevertheless, detection of only one of the two gene pools in some populations and resultant genetic subdivision into two population groups may suggest that the population size is not enough to cover both gene pools. Thus, a more extended period of protection may be required to ensure higher genetic diversity of widespread populations and achieve the long-term conservation goal.  相似文献   

4.
Small or isolated populations are highly susceptible to stochastic events. They are prone and vulnerable to random demographic or environmental fluctuations that could lead to extinction due to the loss of alleles through genetic drift and increased inbreeding. We studied Ambystoma leorae an endemic and critically threatened species. We analyzed the genetic diversity and structure, effective population size, presence of bottlenecks and inbreeding coefficient of 96 individuals based on nine microsatellite loci. We found high levels of genetic diversity expressed as heterozygosity (Ho = 0.804, He = 0.613, He* = 0.626 and HNei = 0.622). The population presents few alleles (4–9 per locus) and genotypes (3–14 per locus) compared with other mole salamanders species. We identified three genetically differentiated subpopulations with a significant level of genetic structure (FST = 0.021, RST = 0.044 y Dest = 0.010, 95 % CI). We also detected a reduction signal in population size and evidence of a genetic bottleneck (M = 0.367). The effective population size is small (Ne = 45.2), but similar to another mole salamanders with restricted distributions or with recently fragmented habitat. The inbreeding coefficient levels detected are low (FIS = ?0.619–0.102) as is gene flow. Despite, high levels of genetic diversity A. leorae is critically endangered because it is a small isolated population.  相似文献   

5.
M A Millar  D J Coates  M Byrne 《Heredity》2013,111(5):437-444
Historically rare plant species with disjunct population distributions and small population sizes might be expected to show significant genetic structure and low levels of genetic diversity because of the effects of inbreeding and genetic drift. Across the globe, terrestrial inselbergs are habitat for rich, often rare and endemic flora and are valuable systems for investigating evolutionary processes that shape patterns of genetic structure and levels of genetic diversity at the landscape scale. We assessed genetic structure and levels of genetic diversity across the range of the historically rare inselberg endemic Acacia woodmaniorum. Phylogeographic and genetic structure indicates that connectivity is not sufficient to produce a panmictic population across the limited geographic range of the species. However, historical levels of gene flow are sufficient to maintain a high degree of adaptive connectivity across the landscape. Genetic diversity indicates gene flow is sufficient to largely counteract any negative genetic effects of inbreeding and random genetic drift in even the most disjunct or smallest populations. Phylogeographic and genetic structure, a signal of isolation by distance and a lack of evidence of recent genetic bottlenecks suggest long-term stability of contemporary population distributions and population sizes. There is some evidence that genetic connectivity among disjunct outcrops may be facilitated by the occasional long distance dispersal of Acacia polyads carried by insect pollinators moved by prevailing winds.  相似文献   

6.
Understanding how the mating system varies with population size in plant populations is critical for understanding their genetic and demographic fates. We examined how the mating system, characterized by outcrossing rate, biparental inbreeding rate, and inbreeding coefficient, and genetic diversity varied with population size in natural populations of the biennial Sabatia angularis. We found a significant, positive relationship between outcrossing and population size. Selfing was as high as 40% in one small population but was only 7% in the largest population. Despite this pattern, observed heterozygosity did not vary with population size, and we suggest that selection against inbred individuals maintains observed heterozygosity in small populations. Consistent with this hypothesis, we found a trend of lower inbreeding coefficients in the maternal than progeny generation in all of the populations, and half of the populations exhibited significant excesses of adult heterozygosity. Moreover, genetic diversity was not related to population size and was similar across all populations examined. Our results suggest that the consequences of increased selfing for population fitness in S. angularis, a species that experiences significant inbreeding depression, will depend on the relative magnitude and consistency of inbreeding depression and the demographic cost of selection for outcrossed progeny in small populations.  相似文献   

7.
In plant populations a positive correlation between population size, genetic variation and fitness components is often found, due to increased pollen limitation or reduced genetic variation and inbreeding depression in smaller populations. However, components of fitness also depend on environmental factors which can vary strongly between years. The dry grassland species Muscari tenuiflorum experiences long term habitat isolation and small population sizes. We analyzed seed production of M. tenuiflorum in four years and its dependence on population size and genetic variation. Genetic diversity within populations was high (AFLP: He = 0.245; allozymes: He = 0.348). An analysis of molecular variance revealed considerable population differentiation (AFLP: 26%; allozyme: 17%). An overall pattern of isolation by distance was found, which, however was not present at distances below 20 km, indicating stronger effects of genetic drift. Genetic diversity was positively correlated to population size. Self pollination reduced seed set by 24%, indicating inbreeding depression. Reproductive fitness was not correlated to genetic diversity and a positive correlation with population size was present in two of four study years. The absence of a general pattern stresses the importance for multi-year studies. Overall, the results show that despite long term habitat isolation M. tenuiflorum maintains seed production in many years independent of population size. The long term persistence of populations is thus expected to depend less on intrinsic genetic or demographic properties affecting seed production but on successful plant establishment and persistence, which latter are based on conservation and protection of suitable habitats.  相似文献   

8.
Since high levels of genetic diversity may ensure long-term survival of a plant species, it is essential to preserve the genetic diversity of the species. Tipularia japonica and Epipactis papillosa are rare terrestrial orchids in southern Korea with fewer than 50 mature individuals in a population and southern Japan and considered to be threatened (endangered or vulunerable). To obtain knowledge of how the genetic variation of these species is partitioned within and among populations in Korea, I used enzyme electrophoresis to examine the genetic diversity of each eight known populations of the two species from South Korea. Twenty-three (E. papillosa) and 24 putative loci (T. japonica) resolved from 15 enzyme systems revealed no variation either within or among populations of each species (0.0% of the percentage of polymorphic loci, %P). Previous studies, in contrast, showed that their more widely distributed disjunct congeners T. discolor and E. helleborine harbored high allozyme-based genetic diversity within populations in eastern United States (%P = 75%) and in Denmark (%P = 73.6%), respectively. In theory, small population size leads to allelic fixation at many loci over generations within a population, resulting in population genetic divergence or differentiation. In this regard, the complete lack of genetic differences between conspecific populations of T. japonica and E. papillosa cannot be explained by genetic drift. Instead, the present allozyme data suggest that recent origin from the same genetically depauperate ancestral or source population could result in this observation. The current status of T. japonica and E. papillosa (rarity and lack of genetic variation) significantly threatens the long-term survival of the species in Korea.  相似文献   

9.
Monitoring temporal changes in population genetic diversity and effective population size can provide vital information on future viability. The dusky gopher frog, Lithobates sevosus, is a critically endangered species found only in coastal Mississippi, with low genetic variability as a consequence of isolation and population size reduction. Conservation management practices have been implemented, but their efficacy has not been addressed. We genotyped individuals collected 1997–2014 to determine temporal trends in population genetic variation, structure, and effective size. Observed and expected heterozygosity and allelic richness revealed temporally stable, but low, levels of genetic variation. Positive levels of inbreeding were found in each year. There was weak genetic structure among years, which can be attributed to increased effects of genetic drift and inbreeding in small populations. L. sevosus exhibited an increase in effective population size, and currently has an estimated effective size of 33.0–58.6 individuals, which is approximately half the census size. This large ratio could possibly be explained by genetic compensation. We found that management practices have been effective at maintaining and improving effective size and genetic diversity, but that additional strategies need to be implemented to enhance viability of the species.  相似文献   

10.
Fragmentation is generally considered to have negative impacts on widespread outbreeders but impacts on gene flow and diversity in patchy, naturally rare, self-compatible plant species remain unclear. We investigated diversity, gene flow and contemporary pollen-mediated gene immigration in the rare, narrowly distributed endemic shrub Calothamnus quadrifidus ssp. teretifolius. This taxon occurs in an internationally recognized biodiversity hotspot subjected to recent human-induced fragmentation and the condition of the remnants ranges from intact to highly degraded. Using microsatellites, we found that inbreeding, historically low gene flow and significant population differentiation have characterized the genetic system of C. quadrifidus ssp. teretifolius. Inbreeding arises from self-pollination, a small amount of biparental inbreeding and significant correlation of outcross paternity but fecundity was high suggesting populations might have purged their lethals. Paternity analyses show that pollinators can move pollen over degraded and intact habitat but populations in both intact and degraded remnants had few pollen parents per seed parent and low pollen immigration. Genetic diversity did not differ significantly between intact and degraded remnants but there were signs of genetic bottlenecks and reduced diversity in some degraded remnants. Overall, our study suggests human-induced fragmentation has not significantly changed the mating system, or pollen immigration to, remnant populations and therefore genetic connectivity need not be the highest conservation priority. Rather, for rare species adapted to higher levels of inbreeding, conservation efforts may be best directed to managing intact habitats and ecosystem processes.  相似文献   

11.
Melampyrum sylvaticum is an endangered annual hemiparasitic plant that is found in only 19 small and isolated populations in the United Kingdom (UK). To evaluate the genetic consequences of this patchy distribution we compared levels of diversity, inbreeding and differentiation from ten populations from the UK with eight relatively large populations from Sweden and Norway where the species is more continuously distributed. We demonstrate that in both the UK and Scandinavia, the species is highly inbreeding (global F IS = 0.899). Levels of population differentiation were high (FST = 0.892) and significantly higher amongst UK populations (FST = 0.949) than Scandinavian populations (FST = 0.762; P < 0.01). The isolated populations in the UK have, on average, lower genetic diversity (allelic richness, proportion of loci that are polymorphic, gene diversity) than Scandinavian populations, and this diversity difference is associated with the smaller census size and population area of UK populations. From a conservation perspective, the naturally inbreeding nature of the species may buffer the species against immediate effects of inbreeding depression, but the markedly lower levels of genetic diversity in UK populations may represent a genetic constraint to evolutionary change. In addition, the high levels of population differentiation suggest that gene flow among populations will not be effective at replenishing lost variation. We thus recommend supporting in situ conservation management with ex situ populations and human-mediated seed dispersal among selected populations in the UK.  相似文献   

12.
Ligularia sibirica (L.) Cass. (Asteraceae) is a EU Habitats Directive Annex II plant species that has suffered a lot from human-caused major changes in quality and availability of habitats in Estonia. The aim of this study was to find out if the observed decline in population size is reflected in the amount of genetic variation and fertility in remnant populations of this species. AFLP technique was used for that purpose. Genetic diversity within populations was assessed as the percentage of polymorphic loci in a given population and average gene diversity over loci. The degree of genetic differentiation among populations and genetic differentiation between pairs of populations was estimated. The amount of viable seeds per flower stem was compared among populations and between years (2007 and 2008). Average genetic diversity over loci and proportion of polymorphic loci in L. sibirica populations were significantly correlated with population size, suggesting the action of genetic drift and/or inbreeding. No correlation was found between genetic and geographic distances. Natural barriers like forests may have been efficiently preventing seed migration even between geographically closer populations. Results of this study suggest that genetic erosion could be partially responsible for the lower fitness in smaller populations of this species.  相似文献   

13.
Loss of genetic diversity due to drift and inbreeding reduces a population’s ability to respond to environmental change and may result in inbreeding depression. The Asiatic wild ass (Equus hemionus), regionally also known as Gobi khulan, Turkmen kulan, or Persian onager, has become confined to less than 3% of its historic distribution range. Remaining populations in Central Asia outside of the Mongolian Gobi are small and fragmented. Questions concerning subpopulation status remain disputed and concerns over the viability of these populations have been raised because of small size, past bottlenecks, or recent founder events. We used non-invasive faecal samples to assess the genetic diversity and divergence among Turkmen kulan and Persian onager from five free-ranging and one captive population from Turkmenistan, Kazakhstan and Iran and compared their genetic constitution to the large autochthonous population in the Mongolian Gobi. We observed loss of genetic diversity (drift and inbreeding) in the captive and reintroduced populations as well as in one rapidly declining autochthonous population. Population differentiation and structure using microsatellites and mtDNA based phylogenetic analysis do not support the current separation of the autochthonous populations of Turkmen kulan and Persian onager into different subspecies, but rather suggest a cline with the Iranian population in Bahram-e-Goor at the southern end and the Turkmen population in Badhyz at the northern end falling into two distinct clusters, and the northern Iranian population in Touran being intermediate. We compare our findings to other population genetics studies of equids and discuss the implications of our findings for the future conservation of the Asiatic wild ass in the region.  相似文献   

14.
The potential of long-distance pollen dispersal and the effects of small population size and population isolation on persistence of Fagus crenata populations were investigated in a small, severely isolated population (the Gofuku-ji population) and two other populations located within 7 km of this population (including 87 adult trees in total). Parentage analysis using 13 microsatellite loci showed that 94 of 100 seedlings derived from seeds collected from the Gofuku-ji population had parent pairs within this population, six had one parent within the population, and four of the six seedlings had alleles that were not detected in any of the three populations, indicating that some pollen is dispersed over distances exceeding 7 km. The estimated expected heterozygosity and effective population size were lower in the Gofuku-ji population than in previously examined large continuous populations. Therefore, levels of genetic diversity within the population may have been reduced by strong genetic drift and limitations of pollen- and seed-mediated gene flow associated with the small size and severe isolation. The contemporary mating pattern estimated at the seedling stage was biased toward outbreeding, which may be explained by possible processes: the level of inbreeding in the adult trees is increased; then, inbreeding frequently occurs but is rarely successful, while outbreeding successfully produces offspring. Additionally, high levels of significant linkage disequilibrium and higher numbers of alleles than expected under mutation–drift equilibrium from analyses of the populations’ evolutionary history suggest that the Gofuku-ji population may have experienced admixture before its severe isolation. Therefore, the persistence of the Gofuku-ji population is being adversely affected by the decrease in population size and severe isolation. Further studies of gene flow via pollen in other populations with various degrees of isolation could enhance our understanding of the effects of population isolation and long-distance pollen dispersal in F. crenata and similar species.  相似文献   

15.
Invasive species that successfully establish, persist, and expand within an area of introduction, in spite of demographic bottlenecks that reduce their genetic diversity, represent a paradox. Bottlenecks should inhibit population growth and invasive expansion, as a decrease in genetic diversity should result in inbreeding depression, increased fixation of deleterious mutations by genetic drift (drift load), and reduced evolutionary potential to respond to novel selection pressures. Here, we focus on the problems of inbreeding depression and drift load in introduced populations as key components of the Genetic Paradox of Invasions (GPI). We briefly review published explanations for the GPI, which are based on various mechanisms (invasion history events, reproductive traits, genetic characteristics) that mediate the avoidance of inbreeding depression and drift load. We find that there is still a substantial lack of explanation and empirical evidence for explaining the GPI for strongly bottlenecked invasions, or for during critical invasion phases (e.g. initial colonization, leading edges of range expansion) where strong genetic depletion, inbreeding depression and drift load occurs. Accordingly, we suggest that discussion of the GPI should be revived to find additional mechanisms applicable to explaining invasion success for such species and invasion phases. Based on a synthesis of the literature on the population genetics of invaders and the ecology of invaded habitats, we propose that inbreeding × environment (I × E) interactions are one such mechanism that may have strong explanatory power to address the GPI. Specifically, we suggest that a temporary or permanent release from stress in invaded habitats may alleviate the negative effects of genetic depletion on fitness via I × E interactions, and present published empirical evidence supporting this hypothesis. We additionally discuss that I × E interactions can result in rapid evolutionary changes, and may even contribute to adaptation of invaders in the absence of high genetic variation. With a view to encouraging further empirical research, we propose an experimental approach to investigate the occurrence of I × E interactions in ongoing invasions. Revived research on the GPI should provide new fundamental insights into eco‐evolutionary invasion biology, and more generally into the evolutionary consequences of the interactions between inbreeding and environment.  相似文献   

16.
Ecological restoration programmes aiming at population recovery of imperilled plant species increasingly involve plant translocations. Evaluating the genetic status of seed source and target populations is essential for designing plant translocation protocols and optimizing recovery success. We developed nine polymorphic microsatellite markers and used three plastid markers to investigate genetic variation and structure of the two last large and six small remaining populations of the self-incompatible, clonally-propagating Arnica montana in southern Belgium and bordering France. The aim of the study was to determine the genetic status of these remaining populations and whether the large populations can be used as seed source for translocations. Most small populations maintained high genetic diversity and showed no inbreeding or a heterozygote excess, which may be explained by high genet longevity thanks to clonal propagation, heterosis, inbreeding depression at early development stages and/or no recruitment. Genotypic diversity was low in small populations, with clonal propagation mainly contributing to rosette production. The number of genets, and therefore effective population size, was often very small, restricting compatible mate availability. The situation is therefore more critical than it seems on the field, and bringing new genetic variation is necessary. Although no polymorphism was found in plastid DNA markers, between-population differentiation based on microsatellite markers was moderate, except for very small populations, where it was greater (FST?>?0.200). These patterns of differentiation were likely due to genetic drift effects and demographic stochasticity. We recommend using mixed seed material from the two large populations for translocations, and before conducting reinforcements, to first implement crossing experiments and reintroductions of mixed and crossed material in ecologically restored sites to understand the long-term effects of combining genotypes from different locations.  相似文献   

17.
Acacia sciophanes is an extremely rare and Critically Endangered species known from two small populations separated by less than 7 km. Specifically we aimed to investigate whether rarity in A. sciophanes is associated with decreased levels of genetic variation and increased levels of selfing by comparing patterns of genetic variation and mating system parameters with its widespread and common sister species A. anfractuosa. Fourteen polymorphic allozyme loci were used to assess genetic diversity with four of these used in the estimation of mating system parameters. At the species level A. sciophanes has lower allelic richness, polymorphism, observed heterozygosity and gene diversity than A. anfractuosa and significantly lower levels of gene diversity at the population level. Both species have a mixed mating system but the largest population of A. sciophanes has lower levels of outcrossing, higher correlated paternity and increased bi-parental inbreeding compared with two A. anfractuosa populations. However, both correlated paternity and bi-parental inbreeding appear to be at least partly influenced by population size regardless of the species. We suggest that A. sciophanes is likely to be an intrinsically rare species and that in particular the lower levels of genetic diversity and increased selfing are a feature of a species that has the ability to persist in a few localised small populations. Despite recent extensive habitat destruction our comparative study provided no clear evidence that such events have contributed to the lower genetic diversity and increased selfing in A. sciophanes and we believe its ability to exist in small populations may not only be an important factor in its survival as a rare species but also indicates that it may be less susceptible to the impacts of habitat loss and fragmentation. The key to this species conservation will be the maintenance of suitable habitat, particularly through improved fire regimes and control of invasive weeds, that will allow the two small populations to continue to persist in extremely restricted areas of remnant vegetation.  相似文献   

18.
Geographic isolation interrupted gene flow between populations leading to population differentiation during the long evolutionary period. In this paper, 33 colonies from Damen Island and 100 colonies from adjacent mainland populations, Juxi and Chixi, were analyzed with both mitochondrial tRNAleu-COII sequences and five microsatellite loci. The results showed that Apis cerana cerana population from Damen Island significantly differentiated from its adjacent mainland populations. In addition, Damen Island population showed a lower level of genetic diversity in terms of the number of mitochondrial haplotypes while both island and mainland populations showed a low level of genetic diversity with mutilocus analysis. The divergent small island population A.c. cerana might probably have suffered inbreeding and genetic drift as well as limited gene flow across the strait. Our data provides useful information for management and preservation for the Damen Island population.  相似文献   

19.
The purging of deleterious alleles has been hypothesized to mitigate inbreeding depression, but its effectiveness in endangered species remains debatable. To understand how deleterious alleles are purged during population contractions, we analyzed genomes of the endangered Chinese crocodile lizard (Shinisaurus crocodilurus), which is the only surviving species of its family and currently isolated into small populations. Population genomic analyses revealed four genetically distinct conservation units and sharp declines in both effective population size and genetic diversity. By comparing the relative genetic load across populations and conducting genomic simulations, we discovered that seriously deleterious alleles were effectively purged during population contractions in this relict species, although inbreeding generally enhanced the genetic burden. However, despite with the initial purging, our simulations also predicted that seriously deleterious alleles will gradually accumulate under prolonged bottlenecking. Therefore, we emphasize the importance of maintaining a minimum population capacity and increasing the functional genetic diversity in conservation efforts to preserve populations of the crocodile lizard and other endangered species.  相似文献   

20.
Genetic diversity is essential for persistence of animal populations over both the short- and long-term. Previous studies suggest that genetic diversity may decrease with population decline due to genetic drift or inbreeding of small populations. For oscillating populations, there are some studies on the relationship between population density and genetic diversity, but these studies were based on short-term observation or in low-density phases. Evidence from rapidly expanding populations is lacking. In this study, genetic diversity of a rapidly expanding population of the Greater long-tailed hamsters during 1984–1990, in the Raoyang County of the North China Plain was studied using DNA microsatellite markers. Results show that genetic diversity was positively correlated with population density (as measured by % trap success), and the increase in population density was correlated with a decrease of genetic differentiation between the sub-population A and B. The genetic diversity tended to be higher in spring than in autumn. Variation in population density and genetic diversity are consistent between sub-population A and B. Such results suggest that dispersal is density- and season-dependent in a rapidly expanding population of the Greater long-tailed hamster. For typically solitary species, increasing population density can increase intra-specific attack, which is a driving force for dispersal. This situation is counterbalanced by decreasing population density caused by genetic drift or inbreeding as the result of small population size. Season is a major factor influencing population density and genetic diversity. Meanwhile, roads, used to be considered as geographical isolation, have less effect on genetic differentiation in a rapidly expanding population. Evidences suggest that gene flow (Nm) is positively correlated with population density, and it is significant higher in spring than that in autumn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号