共查询到20条相似文献,搜索用时 0 毫秒
1.
Interest has surged recently in removing siblings from population genetic data sets before conducting downstream analyses. However, even if the pedigree is inferred correctly, this has the potential to do more harm than good. We used computer simulations and empirical samples of coho salmon to evaluate strategies for adjusting samples to account for family structure. We compared performance in full samples and sibling‐reduced samples of estimators of allele frequency (), population differentiation () and effective population size (). Results: (i) unless simulated samples included large family groups together with a component of unrelated individuals, removing siblings generally reduced precision of and ; (ii) based on the linkage disequilibrium method was largely unbiased using full random samples but became increasingly upwardly biased under aggressive purging of siblings. Under nonrandom sampling (some families over‐represented), using full samples was downwardly biased; removing just the right ‘Goldilocks’ fraction of siblings could produce an unbiased estimate, but this sweet spot varied widely among scenarios; (iii) weighting individuals based on the inferred pedigree (to produce a best linear unbiased estimator, BLUE) maximized precision of when the inferred pedigree was correct but performed poorly when the pedigree was wrong; (iv) a variant of sibling removal that leaves intact small sibling groups appears to be more robust to errors in inferences about family structure. Our results illustrate the complex challenges posed by presence of family structure, suggest that no single optimal solution exists and argue for caution in adjusting population genetic data sets for the presence of putative siblings without fully understanding the consequences. 相似文献
2.
Historical information suggests the occurrence of an extensive human-caused contraction in the distribution range of wolves (Canis lupus) during the last few centuries in Europe. Wolves disappeared from the Alps in the 1920s, and thereafter continued to decline in peninsular Italy until the 1970s, when approximately 100 individuals survived, isolated in the central Apennines. In this study we performed a coalescent analysis of multilocus DNA markers to infer patterns and timing of historical population changes in wolves surviving in the Apennines. This population showed a unique mitochondrial DNA control-region haplotype, the absence of private alleles and lower heterozygosity at microsatellite loci, as compared to other wolf populations. Multivariate, clustering and Bayesian assignment procedures consistently assigned all the wolf genotypes sampled in Italy to a single group, supporting their genetic distinction. Bottleneck tests showed evidences of population decline in the Italian wolves, but not in other populations. Results of a Bayesian coalescent model indicate that wolves in Italy underwent a 100- to 1000-fold population contraction over the past 2000-10,000 years. The population decline was stronger and longer in peninsular Italy than elsewhere in Europe, suggesting that wolves have apparently been genetically isolated for thousands of generations south of the Alps. Ice caps covering the Alps at the Last Glacial Maximum (c. 18,000 years before present), and the wide expansion of the Po River, which cut the alluvial plains throughout the Holocene, might have provided effective geographical barriers to wolf dispersal. More recently, the admixture of Alpine and Apennine wolf populations could have been prevented by deforestation, which was already widespread in the fifteenth century in northern Italy. This study suggests that, despite the high potential rates of dispersal and gene flow, local wolf populations may not have mixed for long periods of time. 相似文献
3.
Hailer F Helander B Folkestad AO Ganusevich SA Garstad S Hauff P Koren C Nygård T Volke V Vilà C Ellegren H 《Biology letters》2006,2(2):316-319
Most of the white-tailed eagle (Haliaeetus albicilla) populations in Europe experienced dramatic declines during the twentieth century. However, owing to intense conservation actions and the ban of DDT and other persistent pollutants, populations are currently recovering. We show that despite passing through demographic bottlenecks, white-tailed eagle populations have retained significant levels of genetic diversity. Both genetic and ringing data indicate that migration between populations has not been a major factor for the maintenance of genetic variability. We argue that the long generation time of eagles has acted as an intrinsic buffer against loss of genetic diversity, leading to a shorter effective time of the experienced bottleneck. Notably, conservation actions taken in several small sub-populations have ensured the preservation of a larger proportion of the total genetic diversity than if conservation had focused on the population stronghold in Norway. For conservation programmes targeting other endangered, long-lived species, our results highlight the possibility for local retention of high genetic diversity in isolated remnant populations. 相似文献
4.
The grey wolves (Canis lupus) of Finland have had a varied history, with a period of rapid population expansion after the mid‐1990s followed by a decline with a current census size of about 140 wolves. Here, we investigate the impact of unstable population size and connectivity on genetic diversity and structure in a long‐term genetic study of 298 Finnish wolves born in 1995–2009 and genotyped for 17 microsatellite loci. During the initial recovery and prior to population expansion, genetic diversity was high (1995–1997: LD‐Ne = 67.2; Ho = 0.749; He = 0.709) despite a small census size and low number of breeders (Nc < 100; Nb < 10) likely reflecting the status of the Russian source population. Surprisingly, observed heterozygosity decreased significantly during the study period (t = ?2.643, P = 0.021) despite population expansion, likely a result of an increase in inbreeding (FIS = 0.108 in 2007–2009) owing to a low degree of connectivity with adjacent Russian wolf population (m = 0.016–0.090; FST = 0.086, P < 0.001) and population crash after 2006. However, population growth had a temporary positive impact on Ne and number of family lines. This study shows that even strong population growth alone might not be adequate to retain genetic diversity, especially when accompanied with low amount of subsequent gene flow and population decline. 相似文献
5.
6.
L. Mark Elbroch Jake M. Ferguson Howard Quigley Derek Craighead Daniel J. Thompson Heiko U. Wittmer 《Proceedings. Biological sciences / The Royal Society》2020,287(1938)
Top-down effects of apex predators are modulated by human impacts on community composition and species abundances. Consequently, research supporting top-down effects of apex predators occurs almost entirely within protected areas rather than the multi-use landscapes dominating modern ecosystems. Here, we developed an integrated population model to disentangle the concurrent contributions of a reintroduced apex predator, the grey wolf, human hunting and prey abundances on vital rates and abundance of a subordinate apex predator, the puma. Increasing wolf numbers had strong negative effects on puma fecundity, and subadult and adult survival. Puma survival was also influenced by density dependence. Overall, puma dynamics in our multi-use landscape were more strongly influenced by top-down forces exhibited by a reintroduced apex predator, than by human hunting or bottom-up forces (prey abundance) subsidized by humans. Quantitatively, the average annual impact of human hunting on equilibrium puma abundance was equivalent to the effects of 20 wolves. Historically, wolves may have limited pumas across North America and dictated puma scarcity in systems lacking sufficient refugia to mitigate the effects of competition. 相似文献
7.
In the Alps, the capercaillie is distributed in a metapopulation pattern with local populations on mountain ranges separated by farmland valleys. Habitat deterioration, primarily related to human land use, resulted in population declines and range contractions became obvious. At the edge of a species' range, lower connectivity and less gene flow may render populations more susceptible to decline and extinction than in the core of the range. If this were true for the capercaillie in the Alps, edge populations should be subject to limited gene flow and should show genetic signs of a more severe population decline than core populations. To test this hypothesis, we used microsatellite DNA typing techniques. We assessed genetic variation within and among 18 local capercaillie populations across the Alps in relation to geographical distribution within the metapopulation system. All populations showed high levels of genetic variation in terms of average number of alleles, allelic richness and heterozygosity. Excess heterozygosity suggested a recent population decline, that was more pronounced in edge than core populations. We found high gene flow, but also significant differentiation among populations. Differentiation among edge populations was related to geographical distance, and appeared to be a recent process, most probably caused by reduced gene flow after population decline. In the core group, the high mountains of the central Alps seem to limit dispersal, and genetic drift was the most likely explanation for the observed differentiation among populations. We conclude that maintaining connectivity within the metapopulation system is vital for capercaillie conservation in the Alps. 相似文献
8.
Attitudes toward genetic testing among the general population and relatives of patients with a severe genetic disease: a survey from Finland. 总被引:4,自引:0,他引:4
M Hietala A Hakonen A R Aro P Niemel L Peltonen P Aula 《American journal of human genetics》1995,56(6):1493-1500
In the present study we explore the attitudes of the Finnish population toward genetic testing by conducting a questionnaire study of a stratified sample of the population as well as of family members of patients with a severe hereditary disease, aspartylglucosaminuria (AGU). The questionnaire evaluated attitudes toward gene tests in general and also respondents' preparedness to undergo gene tests for predictive testing, carrier detection, prenatal diagnosis, and selective abortion, in theoretical situations. The results of the study indicate that both the Finnish population in general and family members of AGU patients have a favorable attitude toward genetic testing. However, a commonly expressed reason against testing was that test results might lead to discrimination in employment or insurance policies. Based on the responses, we predict that future genetic testing programs will most probably be met with a high acceptance rate by the Finnish population. 相似文献
9.
10.
Capsule: Changes in sward height, driven by changes in management, were associated with a large decline in a population of farmland breeding waders.Aims: To examine the relationship between changes in habitat and numbers of breeding wader on an area of Scottish farmland over the last 25 years.Methods: Nesting waders in a core survey area of 7.5?km2 were monitored annually from 1990 to 2015. An additional 10.3?km2 were monitored less frequently. Habitat characteristics of each field were recorded and breeding success by Lapwing determined in a sample of fields.Results: All species showed large declines over the study period, Oystercatcher Haematopus ostralegus by 95%, Lapwing Vanellus vanellus by 88%, Curlew Numenius arquata by 67% and Redshank Tringa totanus by 87% from peaks of 125, 365, 57 and 53 pairs, respectively. Changes in spring sward height, considered to be due to changes in crop type, were associated with changes in the numbers of breeding waders over time. Productivity by a sample of Lapwings was unchanged through the study period.Conclusion: Short swards, especially bare till, in spring appear to have been important in contributing to the maintenance of an assemblage of breeding waders in mixed arable-pasture farmland. The decline appeared greater than could be accounted for by losses of preferred habitats alone. 相似文献
11.
Despite recent technological advances in DNA sequencing, incomplete coverage remains to be an issue in population genomics, in particular for studies that include ancient samples. Here, we describe an approach to estimate population divergence times for non-overlapping sequence data that is based on probabilities of different genealogical topologies under a structured coalescent model. We show that the approach can be adapted to accommodate common problems such as sequencing errors and postmortem nucleotide misincorporations, and we use simulations to investigate biases involved with estimating genealogical topologies from empirical data. The approach relies on three reference genomes and should be particularly useful for future analysis of genomic data that comprise of nonoverlapping sets of sequences, potentially from different points in time. We applied the method to shotgun sequence data from an ancient wolf together with extant dogs and wolves and found striking resemblance to previously described fine-scale population structure among dog breeds. When comparing modern dogs to four geographically distinct wolves, we find that the divergence time between dogs and an Indian wolf is smallest, followed by the divergence times to a Chinese wolf and a Spanish wolf, and a relatively long divergence time to an Alaskan wolf, suggesting that the origin of modern dogs is somewhere in Eurasia, potentially southern Asia. We find that less than two-thirds of all loci in the boxer and poodle genomes are more similar to each other than to a modern gray wolf and that--assuming complete isolation without gene flow--the divergence time between gray wolves and modern European dogs extends to 3,500 generations before the present, corresponding to approximately 10,000 years ago (95% confidence interval [CI]: 9,000-13,000). We explicitly study the effect of gene flow between dogs and wolves on our estimates and show that a low rate of gene flow is compatible with an even earlier domestication date ~30,000 years ago (95% CI: 15,000-90,000). This observation is in agreement with recent archaeological findings and indicates that human behavior necessary for domestication of wild animals could have appeared much earlier than the development of agriculture. 相似文献
12.
Legacy lost: genetic variability and population size of extirpated US grey wolves (Canis lupus) 总被引:3,自引:0,他引:3
By the mid 20th century, the grey wolf (Canis lupus) was exterminated from most of the conterminous United States (cUS) and Mexico. However, because wolves disperse over long distances, extant populations in Canada and Alaska might have retained a substantial proportion of the genetic diversity once found in the cUS. We analysed mitochondrial DNA sequences of 34 pre-extermination wolves and found that they had more than twice the diversity of their modern conspecifics, implying a historic population size of several hundred thousand wolves in the western cUS and Mexico. Further, two-thirds of the haplotypes found in the historic sample are unique. Sequences from Mexican grey wolves (C. l. baileyi) and some historic grey wolves defined a unique southern clade supporting a much wider geographical mandate for the reintroduction of Mexican wolves than currently planned. Our results highlight the genetic consequences of population extinction within Ice Age refugia and imply that restoration goals for grey wolves in the western cUS include far less area and target vastly lower population sizes than existed historically. 相似文献
13.
14.
《Fly》2013,7(1):24-29
Gain of function screens have being frequently used to search for genes affecting a particular adult character or developmental process. These experiments are made possible by the adoption of the Gal4/UAS system to flies, and by the design of P elements bearing UAS sequences. We recently published two screens in which a large number of newly generated P-UAS insertions were crossed with Gal4 drivers expressed in the pupal veins and in the central region of the wing disc. From the data obtained in these and other screens, it seems that a gain-of-function phenotype is a rare occurrence observed only for about 5–8% of insertion sites. Insertions affecting the expression of signaling molecules were particularly enriched in the screens. In contrast, gain-of-function phenotypes due to insertions not belonging to this class appear to be caused by multiple protein-specific mechanisms that could only be unraveled after extensive analysis. We present some data concerning the overexpression of LamB1, a gene encoding the B subunit of Laminin trimers in Drosophila, and show that Notch protein subcellular localization and signaling is compromised in cells overexpressing LanB1. 相似文献
15.
Stéphanie Jenouvrier Christophe Barbraud Henri Weimerskirch Hal Caswell 《Oikos》2009,118(9):1292-1298
Major population crashes due to natural or human‐induced environmental changes may be followed by recoveries. There is a growing interest in the factors governing recovery, in hopes that they might guide population conservation and management, as well as population recovery following a re‐introduction program. The emperor penguin Aptenodytes forsteri population in Terre Adélie, Antarctica, declined by 50% during a regime shift in the mid‐1970s, when abrupt changes in climate and ocean environment regimes affected the entire Southern Ocean ecosystem. Since then the population has remained stable and has not recovered. To determine the factors limiting recovery, we examined the consequences of changes in survival and breeding success after the regime shift. Adult survival recovered to its pre‐regime shift level, but the mean breeding success declined and the variance in breeding success increased after the regime shift. Using stochastic matrix population models, we found that if the distribution of breeding success observed prior to the regime shift had been retained, the emperor penguin population would have recovered, with a median time to recovery of 36 years. The observed distribution of breeding success after the regime shift makes recovery very unlikely. This indicates that the pattern of breeding success is sufficient to have prevented emperor penguin population recovery. The population trajectory predicted on the basis of breeding success agrees with the observed trajectory. This suggests that the net effect of any facors other than breeding success must be small. We found that the probability of recovery and the time to recovery depend on both the mean and variance of breeding success. Increased variance in breeding success increases the probability of recovery when mean success is low, but has the opposite effect when the mean is high. This study shows the important role of breeding success in determining population recovery for a long‐lived species and demonstrates that demographic mechanisms causing population crash can be different from those preventing population recovery. 相似文献
16.
The hunting of 20 species of migratory birds in Europe and countries bordering the Mediterranean Sea was investigated using ringing recovery data. The intensity of the hunting of birds in each country was measured by the calculation of an index which controls for ringing effort and reporting rates. The hunting of birds was shown to be consistently high in western Mediterranean countries, particularly in southern France, northern and southwestern Iberia, northern Italy and in northwest Africa. Geographical patterns in the relative magnitude of hunting indices for different breeding populations were species-specific. In Europe most birds are taken during autumn and winter but in North Africa hunting is almost equally prevalent in spring. All species investigated, other than those that remain legitimate quarry species, showed a general reduction in index values after 1980. Analysis of long-term trends in index values since 1950 indicated a statistically significant overall decrease in the hunting of the majority of species. These changes are thought to be at least partly attributable to a real decline in the taking of birds but they may also reflect changed attitudes to reporting the hunting of species which are now protected. This analysis provides the first quantitative Europe-wide assessment of geographical and temporal trends in the hunting of migratory birds. 相似文献
17.
Denise Araujo Alves Vera Lucia Imperatriz-Fonseca Tiago Maur??cio Francoy P??rsio Souza Santos-Filho Johan Billen Tom Wenseleers 《Conservation Genetics》2011,12(3):647-658
Stingless bees play an important ecological role as pollinators of many wild plant species in the tropics and have significant potential for the pollination of agricultural crops. Nevertheless, conservation efforts as well as commercial breeding programmes require better guidelines on the amount of genetic variation that is needed to maintain viable populations. In this context, we carried out a long-term genetic study on the stingless bee Melipona scutellaris to evaluate the population viability consequences of prolonged breeding from a small number of founder colonies. In particular, it was artificially imposed a genetic bottleneck by setting up a population starting from only two founder colonies, and continued breeding from it for a period of over 10?years in a location outside its natural area of occurrence. We show that despite a great reduction in the number of alleles present at both neutral microsatellite loci and the sex-determining locus relative to its natural source population, and an increased frequency in the production of sterile diploid males, the genetically impoverished population could be successfully bred and maintained for at least 10?years. This shows that in stingless bees, breeding from a small stock of colonies may have less severe consequences than previously suspected. In addition, we provide a simulation model to determine the number of colonies that are needed to maintain a certain number of sex alleles in a population, thereby providing useful guidelines for stingless bee breeding and conservation efforts. 相似文献
18.
Reconstructing the demographic history of populations is a central issue in evolutionary biology. Using likelihood-based methods coupled with Monte Carlo simulations, it is now possible to reconstruct past changes in population size from genetic data. Using simulated data sets under various demographic scenarios, we evaluate the statistical performance of Msvar, a full-likelihood Bayesian method that infers past demographic change from microsatellite data. Our simulation tests show that Msvar is very efficient at detecting population declines and expansions, provided the event is neither too weak nor too recent. We further show that Msvar outperforms two moment-based methods (the M-ratio test and Bottleneck) for detecting population size changes, whatever the time and the severity of the event. The same trend emerges from a compilation of empirical studies. The latest version of Msvar provides estimates of the current and the ancestral population size and the time since the population started changing in size. We show that, in the absence of prior knowledge, Msvar provides little information on the mutation rate, which results in biased estimates and/or wide credibility intervals for each of the demographic parameters. However, scaling the population size parameters with the mutation rate and scaling the time with current population size, as coalescent theory requires, significantly improves the quality of the estimates for contraction but not for expansion scenarios. Finally, our results suggest that Msvar is robust to moderate departures from a strict stepwise mutation model. 相似文献
19.
Antibodies that specifically recognize signaling proteins (or individual phosphorylation events at specific residues in proteins of interest) have become important tools in the study of signaling pathways. However, the recognition properties of many commercially available antibodies have not been fully characterized. In the course of studies exploring PKC- phosphorylation mechanisms in cardiomyocytes, we have demonstrated that a BD Transduction Laboratories anti-PKC- MAb (generally viewed as an anti-PKC- protein antibody) recognizes PKC- in resting, but not in PMA-treated, cardiomyocytes. The observations that PKC- immunoreactivity is preserved when cultures are treated with PMA in the presence of a the PKC inhibitor GF-109203X and that PKC- immunoreactivity is restored by in vitro acid phosphatase treatment indicate that the epitope recognized by the BD Transduction Laboratories anti-PKC- MAb is masked by phosphorylation. The BD Transduction Laboratories MAb is poorly suited for studies that compare PKC- expression in resting and agonist-activated samples (or in studies of the relationship between PKC- phosphorylation and PKC- downregulation) because it artifactually displays PKC- phosphorylation as a decline in total PKC- protein. Other studies have shown that two anti-PKC--pY311 antibodies (manufactured by Cell Signaling Technology, Beverly, MA, and BioSource International, Camarillo, CA, respectively) specifically recognize stimulus-induced changes in PKC--Y311 phosphorylation on the endogenous PKC- enzyme, but the Cell Signaling Technology anti-PKC--pY311 antibody provides a better measure of Y311 phosphorylation in overexpressed PKC-. Collectively, these studies have identified features of anti-PKC- antibodies that affect the interpretation of immunoblot analysis experiments. These findings related to PKC- may be symptomatic of a more pervasive feature of immunoblot analysis studies of phosphoproteins in general. protein phosphorylation; signal transduction pathways; cardiomyocytes 相似文献
20.
Juan P. Torres‐Florez Rodrigo Hucke‐Gaete Howard Rosenbaum Christian C. Figueroa 《Ecology and evolution》2014,4(8):1398-1412
It is generally assumed that species with low population sizes have lower genetic diversities than larger populations and vice versa. However, this would not be the case for long‐lived species with long generation times, and which populations have declined due to anthropogenic effects, such as the blue whale (Balaenoptera musculus). This species was intensively decimated globally to near extinction during the 20th century. Along the Chilean coast, it is estimated that at least 4288 blue whales were hunted from an apparently pre‐exploitation population size (k) of a maximum of 6200 individuals (Southeastern Pacific). Thus, here, we describe the mtDNA (control region) and nDNA (microsatellites) diversities of the Chilean blue whale aggregation site in order to verify the expectation of low genetic diversity in small populations. We then compare our findings with other blue whale aggregations in the Southern Hemisphere. Interestingly, although the estimated population size is small compared with the pre‐whaling era, there is still considerable genetic diversity, even after the population crash, both in mitochondrial (N = 46) and nuclear (N = 52) markers (Hd = 0.890 and Ho = 0.692, respectively). Our results suggest that this diversity could be a consequence of the long generation times and the relatively short period of time elapsed since the end of whaling, which has been observed in other heavily‐exploited whale populations. The genetic variability of blue whales on their southern Chile feeding grounds was similar to that found in other Southern Hemisphere blue whale feeding grounds. Our phylogenetic analysis of mtDNA haplotypes does not show extensive differentiation of populations among Southern Hemisphere blue whale feeding grounds. The present study suggests that although levels of genetic diversity are frequently used as estimators of population health, these parameters depend on the biology of the species and should be taken into account in a monitoring framework study to obtain a more complete picture of the conservation status of a population. 相似文献