首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The planar motion of the human knee joint is modeled, involving the relative motion of the geometry of the contacting surface between the tibia and the femur. The pure gliding motion and the pure rolling motion are formulated including the holonomic and nonholonomic constraints that must be satisfied. A control strategy with two classes of inputs: muscle forces that stabilize and bring about the motion and the ligament forces that maintain the constraints is presented. Finally, the effectiveness of this control structure is demonstrated via digital computer simulations in the pure gliding motion and the pure rolling motion of the knee.  相似文献   

2.
A geometric model of the human ankle joint.   总被引:1,自引:0,他引:1  
A two-dimensional four-bar linkage model of the ankle joint is formulated to describe dorsi/plantarflexion in unloaded conditions as observed in passive tests on ankle complex specimens. The experiments demonstrated that the human ankle joint complex behaves as a single-degree-of-freedom system during passive motion, with a moving axis of rotation. The bulk of the movement occurred at the level of the ankle. Fibres within the calcaneofibular and tibiocalcaneal ligaments remained approximately isometric. The experiments showed that passive kinematics of the ankle complex is governed only by the articular surfaces and the ligaments. It was deduced that the ankle is a single-degree-of-freedom mechanism where mobility is allowed by the sliding of the articular surfaces upon each other and the isometric rotation of two ligaments about their origins and insertions, without tissue deformation. The linkage model is formed by the tibia/fibula and talus/calcaneus bone segments and by the calcaneofibular and tibiocalcaneal ligament segments. The model predicts the path of calcaneus motion, ligament orientations, instantaneous axis of rotation, and conjugate talus surface profile as observed in the experiments. Many features of ankle kinematics such as rolling and multiaxial rotation are elucidated. The geometrical model is a necessary preliminary step to the study of ankle joint stability in response to applied loads and can be used to predict the effects of changes to the original geometry of the intact joint. Careful reconstruction of the original geometry of the ligaments is necessary after injury or during total ankle replacement.  相似文献   

3.
A model of knee mobility able to predict the range and pattern of movement in the unloaded joint was proposed by Wilson et al. (J. Biomech. 31 (1998) 1127-1136). The articular surfaces in the lateral and medial compartments and isometric fascicles in three of the knee ligaments were represented as five constraints on motion between the femur and tibia in a single degree-of-freedom parallel spatial mechanism. The path of movement of the bones during passive flexion was found by solving the forward kinematics of the mechanism using an iterative method. The present paper shows that such a mechanism-based solution approach can lead to an underestimation of the flexion range. This is due to the mechanism reaching a 'stationary configuration' and 'locking'. A new, constraint-based approach to the solution of the model joint displacement is proposed. It avoids the representation of ligaments and articular surfaces by kinematically equivalent chains of one degree-of-freedom pairs which are prone to singularities. It relies instead on a numerical solution of five non-linear constraint equations to find the relative positions of the bones at a series of flexion angles. The method is successful both in its ability to predict motion through a physiological range and in its efficiency with a solution rate forty times faster than the original algorithm. The new approach may be extended to include more complex joint surface geometry, allowing a study of the effects of articular surface shape and ligament arrangement on joint kinematics.  相似文献   

4.
A three-dimensional mathematical model of the human knee joint was developed to examine the role of single ligaments, such as an anterior cruciate ligament (ACL) graft in ACL reconstruction, on joint motion and tissue forces. The model is linear and valid for small motions about an equilibrium position. The knee joint is modeled as two rigid bodies (the femur and the tibia) interconnected by deformable structures, including the ACL or ACL graft, the cartilage layer, and the remainder of the knee tissues (modeled as a single element). The model was demonstrated for the equilibrium condition of the knee in extension with an anterior tibial force, causing anterior drawer and hyperextension. The knee stiffness matrix for this condition was measured for a human right knee in vitro. Predicted model response was compared with experimental observations. Qualitative agreement was found between model and experiment, validating the model and its assumptions. The model was then used to predict the change in graft and cartilage forces and joint motion of the knee due to an increment of load in the normal joint both after ACL removal and with various altered states simulating ACL reconstructions. Results illustrate the interdependence between loads in the ACL graft, other knee structures, and contact force. Stiffer grafts and smaller maximum unloaded length of the ligament lead to higher graft and contact forces. Changes in cartilage stiffness alter load sharing between ACL graft and other joint tissues.  相似文献   

5.
Knee joint motion and ligament forces before and after ACL reconstruction   总被引:4,自引:0,他引:4  
The goal of this in vitro study was to investigate the initial postoperative mechanical state of the knee with various types of anterior cruciate ligament (ACL) reconstructions. An experimental knee testing system was developed for the in vitro measurement of ligament forces and three-dimensional joint motion as external loads were applied to fresh knee specimens. Two groups of knee specimens were tested. In test series #1, two intraarticular reconstructions were performed in each of five specimens using semifree and free patellar tendon grafts with bone blocks. In test series #2, a more carefully controlled intraarticular reconstruction was performed in five specimens using a semifree composite graft consisting of the semitendinosus and gracilis tendons augmented with the Ligament Augmentation Device. Ligament force and joint motion data were collected as anteriorly directed tibial loads were applied to the normal joint, the joint with a cut ACL and the reconstructed joint. These knee joint states were compared on the basis of ACL or graft forces, joint motion and load sharing by the collateral ligaments. The dominate result of the study was that the forces and motions defining the mechanical state of the knee after the ACL reconstructions in both test series were highly variable and abnormal when compared to the normal knee state. The higher level of surgical control series #2 did not decrease this variability. There was a poor correlation between motion of the reconstructed knee relative to normal, and the ACL graft force. There was little consistent difference in force and motion results between the surgical procedures tested.  相似文献   

6.
A nine-link planar biped model is studied. Its nonlinear differential equations are derived. Constraints due to the connections of the links and the contact between the model and the ground are analyzed, and forces of constraint are specified as functions of the state and inputs. With large external forces acting on the model, connection constraints are maintained by the ligaments and other soft tissue structures. It is shown that ligamentious structures contribute to the stability of the system and help maintain the integrity of the joint. By using linear feedback control, the nine-link model is stabilized around the vertical stance. The stable motion of the system in the vicinity of the vertical is studied by computer simulation of walking and tiptoe gaits.  相似文献   

7.
Accurate in vivo measurement of tibiofemoral forces is important in total knee arthroplasty. These forces determine polyethylene stresses and cold-flow, stress distribution in the implant, and stress transfer to the underlying implant bone interface. Theoretic estimates of tibiofemoral forces have varied widely depending on the mathematical models used. The six degrees of freedom of motion, complex articular surface topography, changing joint-contact position, intra- and extra-articular ligaments, number of muscles crossing the knee joint, and the presence of the patellofemoral joint contribute to the difficulty in developing reliable models of the knee. A prototype instrumented total knee replacement tibial prosthesis was designed, manufactured, and tested. This prosthesis accurately measured all six components of tibial forces (R2>0.997). The prosthesis was also instrumented with an internal microtransmitter for wireless data transmission. Remote powering of the sealed implanted electronics was achieved using magnetic coil induction. This device can be used to validate existing models of the knee that estimate these forces or to develop more accurate models. In conjunction with kinematic data, accurate tibiofemoral force data may be used to design more effective knee-testing rigs and wear simulators. Additional uses are intraoperative measurement of forces to determine soft-tissue balancing and to evaluate the effects of rehabilitation, external bracing, and athletic activities, and activities of daily living.  相似文献   

8.
In the knee joint, interactions between instantaneous kinetics and kinematics associated with ligamentous and articular tissues are not fully understood. These structures may be represented by the instantaneous screw axis ($) (ISA) and static force vectors ($′). Geometric changes to the joint structure affecting motion have not been fully explained, especially after surgical reconstruction and replacement procedures. The ISA offers a joint-characterisation approach, which is dependent on the combined forces of ligaments, articular contacts and muscles. The standard four-bar linkage model in the sagittal plane demonstrates that the normal contact force and the lines of action of the cruciate ligaments always intersect at the centre of rotation of the joint. A kinematic knee model in which the articular surfaces in the lateral and medial compartments as well as the isometric fascicles in the engaged ligaments may be represented as five constraints in a one-degree-of-freedom parallel spatial mechanism. This study provides a theoretical foundation to elucidate the role of each of these elements in the control of the ISA. A recourse to the principle of virtual work explained through d'Alembert's principle for reducing a dynamics problem to an instantaneous static scenario allows screws to be applied to the biomechanics of human motion. The principle of reciprocity links these approaches together to explain the transmitting load between the tibia and the femur as well as the relative motion within the knee joint. A principal clinical implication of this study is the introduction of the reciprocal connection factor to evaluate knee kinematics and kinetics in one simple term, allowing the quantitative assessment of the outcome of knee-joint treatment and rehabilitation methods.  相似文献   

9.
In the knee joint, interactions between instantaneous kinetics and kinematics associated with ligamentous and articular tissues are not fully understood. These structures may be represented by the instantaneous screw axis ($) (ISA) and static force vectors ($'). Geometric changes to the joint structure affecting motion have not been fully explained, especially after surgical reconstruction and replacement procedures. The ISA offers a joint-characterisation approach, which is dependent on the combined forces of ligaments, articular contacts and muscles. The standard four-bar linkage model in the sagittal plane demonstrates that the normal contact force and the lines of action of the cruciate ligaments always intersect at the centre of rotation of the joint. A kinematic knee model in which the articular surfaces in the lateral and medial compartments as well as the isometric fascicles in the engaged ligaments may be represented as five constraints in a one-degree-of-freedom parallel spatial mechanism. This study provides a theoretical foundation to elucidate the role of each of these elements in the control of the ISA. A recourse to the principle of virtual work explained through d'Alembert's principle for reducing a dynamics problem to an instantaneous static scenario allows screws to be applied to the biomechanics of human motion. The principle of reciprocity links these approaches together to explain the transmitting load between the tibia and the femur as well as the relative motion within the knee joint. A principal clinical implication of this study is the introduction of the reciprocal connection factor to evaluate knee kinematics and kinetics in one simple term, allowing the quantitative assessment of the outcome of knee-joint treatment and rehabilitation methods.  相似文献   

10.
Two-dimensional dynamic modelling of human knee joint   总被引:1,自引:0,他引:1  
A mathematical dynamic model of the two-dimensional representation of the knee joint is presented. The profiles of the joint surfaces are determined from X-ray films and they are represented by polynomials. The joint ligaments are modelled as nonlinear elastic springs of realistic stiffness properties. Nonlinear equations of motion coupled with nonlinear constraint conditions are solved numerically. Time derivatives are approximated by Newmark difference formulae and the resulting nonlinear algebraic equations are solved employing the Newton-Raphson iteration scheme. Several dynamic loads are applied to the center of mass of the tibia and the ensuing motion is investigated. Numerical results on ligament forces, contact point locations between femur and tibia, and the orientation of tibia relative to femur are presented. The results are shown to be consistent with the anatomy of the knee joint.  相似文献   

11.
Obtaining tibio-femoral (TF) contact forces, ligament deformations and loads during daily life motor tasks would be useful to better understand the aetiopathogenesis of knee joint diseases or the effects of ligament reconstruction and knee arthroplasty. However, methods to obtain this information are either too simplified or too computationally demanding to be used for clinical application. A multibody dynamic model of the lower limb reproducing knee joint contact surfaces and ligaments was developed on the basis of magnetic resonance imaging. Several clinically relevant conditions were simulated, including resistance to hyperextension, varus–valgus stability, anterior–posterior drawer, loaded squat movement. Quadriceps force, ligament deformations and loads, and TF contact forces were computed. During anterior drawer test the anterior cruciate ligament (ACL) was maximally loaded when the knee was extended (392 N) while the posterior cruciate ligament (PCL) was much more stressed during posterior drawer when the knee was flexed (319 N). The simulated loaded squat revealed that the anterior fibres of ACL become inactive after 60° of flexion in conjunction with PCL anterior bundle activation, while most components of the collateral ligaments exhibit limited length changes. Maximum quadriceps and TF forces achieved 3.2 and 4.2 body weight, respectively. The possibility to easily manage model parameters and the low computational cost of each simulation represent key points of the present project. The obtained results are consistent with in vivo measurements, suggesting that the model can be used to simulate complex and clinically relevant exercises.  相似文献   

12.
A validated three-dimensional computational model of a human knee joint   总被引:7,自引:0,他引:7  
This paper presents a three-dimensional finite element tibio-femoral joint model of a human knee that was validated using experimental data. The geometry of the joint model was obtained from magnetic resonance (MR) images of a cadaveric knee specimen. The same specimen was biomechanically tested using a robotic/universal force-moment sensor (UFS) system and knee kinematic data under anterior-posterior tibial loads (up to 100 N) were obtained. In the finite element model (FEM), cartilage was modeled as an elastic material, ligaments were represented as nonlinear elastic springs, and menisci were simulated by equivalent-resistance springs. Reference lengths (zero-load lengths) of the ligaments and stiffness of the meniscus springs were estimated using an optimization procedure that involved the minimization of the differences between the kinematics predicted by the model and those obtained experimentally. The joint kinematics and in-situ forces in the ligaments in response to axial tibial moments of up to 10 Nm were calculated using the model and were compared with published experimental data on knee specimens. It was also demonstrated that the equivalent-resistance springs representing the menisci are important for accurate calculation of knee kinematics. Thus, the methodology developed in this study can be a valuable tool for further analysis of knee joint function and could serve as a step toward the development of more advanced computational knee models.  相似文献   

13.
Ligament balancing in total knee arthroplasty may have an important influence on joint stability and prosthesis lifetime. In order to provide quantitative information and assistance during ligament balancing, a device that intraoperatively measures knee joint forces and moments was developed. Its performance and surgical advantages were evaluated on six cadaver specimens mounted on a knee joint loading apparatus allowing unconstrained knee motion as well as compression and varus-valgus loading. Four different experiments were performed on each specimen. (1) Knee joints were axially loaded. Comparison between applied and measured compressive forces demonstrated the accuracy and reliability of in situ measurements (1.8N). (2) Assessment of knee stability based on condyle contact forces or varus-valgus moments were compared to the current surgical method (difference of varus-valgus loads causing condyle lift-off). The force-based approach was equivalent to the surgical method while the moment-based, which is considered optimal, showed a tendency of lateral imbalance. (3) To estimate the importance of keeping the patella in its anatomical position during imbalance assessment, the effect of patellar eversion on the mediolateral distribution of tibiofemoral contact forces was measured. One fourth of the contact force induced by the patellar load was shifted to the lateral compartment. (4) The effect of minor and major medial collateral ligament releases was biomechanically quantified. On average, the medial contact force was reduced by 20% and 46%, respectively. Large variation among specimens reflected the difficulty of ligament release and the need for intraoperative force monitoring. This series of experiments thus demonstrated the device's potential to improve ligament balancing and survivorship of total knee arthroplasty.  相似文献   

14.
The screw-home mechanism and coupling between forces in cruciate ligaments during passive knee joint flexion were investigated for various boundary conditions, flexion axis alignments and posterior cruciate ligaments (PCL)/anterior cruciate ligament (ACL) conditions. A developed non-linear 3D finite element model was used to perform detailed elasto-static response analyses of the human tibiofemoral joint as a function of flexion angle varying from 10 degrees hyper-extension to 90 degrees flexion. The tibia rotated internally as the femur flexed and externally as the femur extended. The re-alignment of the flexion axis by +/-5 degrees rotation about the axial (distal-proximal) axis, transection of the ACL and changes in cruciate ligament initial strains substantially influenced the 'screw-home' motion. On the other hand, restraint on this coupled rotation diminished ACL forces in flexion. A remarkable coupling was predicted between ACL and PCL forces in flexion; forces in both cruciate ligaments increased as the initial strain or pretension in one of them increased whereas they both diminished as one of them was cut or became slack. This has important consequences in joint functional biomechanics following a ligament injury or replacement surgery and, hence, in the proper management of joint disorders.  相似文献   

15.
Knee ligament injuries are common, particularly in sports and sports related activities. Rupture of these ligaments upsets the balance between knee mobility and stability, resulting in abnormal knee kinematics and damage to other tissues in and around the joint that lead to morbidity and pain. During the past three decades, significant advances have been made in characterizing the biomechanical and biochemical properties of knee ligaments as an individual component as well as their contribution to joint function. Further, significant knowledge on the healing process and replacement of ligaments after rupture have helped to evaluate the effectiveness of various treatment procedures. This review paper provides an overview of the current biological and biomechanical knowledge on normal knee ligaments, as well as ligament healing and reconstruction following injury. Further, it deals with new and exciting functional tissue engineering approaches (ex. growth factors, gene transfer and gene therapy, cell therapy, mechanical factors, and the use of scaffolding materials) aimed at improving the healing of ligaments as well as the interface between a replacement graft and bone. In addition, it explores the anatomical, biological and functional perspectives of current reconstruction procedures. Through the utilization of robotics technology and computational modeling, there is a better understanding of the kinematics of the knee and the in situ forces in knee ligaments and replacement grafts. The research summarized here is multidisciplinary and cutting edge that will ultimately help improve the treatment of ligament injuries. The material presented should serve as an inspiration to future investigators.  相似文献   

16.
In the natural knee, the femoral tibial contacts move posteriorly as the knee is flexed, guided primarily by the cruciate ligaments. This kinematic behaviour is important regarding muscle lever arms and in achieving a high flexion range. Most contemporary total knee designs use either posterior cruciate preservation or a cam system to produce posterior displacement with flexion, but there is no specific provision for anterior displacement. In this study, a method for the design of cams is described where the cams would guide the motion in both posterior and anterior directions, without requiring cruciate ligaments. The cams consist of a femoral Guide Surface interacting with a tibial Guide Surface while the main lateral and medial bearing surfaces carry the forces across the knee. It is shown that Guide Surfaces can be designed which provide the required motion, but with some laxity at different flexion ranges. It is then demonstrated that the Guide Surfaces can be applied to a range of possible knee designs including mobile-bearing types, rotating-platform types, and fixed-bearing types. The relative advantages of the different possibilities are discussed.  相似文献   

17.
18.
In the commonly used SIMM software, which includes a complete musculoskeletal model of the lower limbs, the reaction forces at the knee are computed. These reaction forces represent the bone-on-bone contact forces and the soft tissue forces (e.g. ligaments) other than muscles acting at the joint. In the knee model integrated into this software, a patellotibial joint rather than a patellofemoral joint is defined, and a force acting along the direction of the patellar ligament is not included. Although this knee model results in valid kinematics and muscle moment arms, the reaction forces at the knee calculated do not represent physiologic knee joint reaction forces. Hence our objectives were to develop a method of calculating physiologic knee joint reaction forces using the knee model incorporated into the SIMM software and to demonstrate the differences in the forces returned by SIMM and the physiologic forces in an example. Our method converts the anatomically fictional patellotibial joint into a patellofemoral joint and computes the force in an inextensible patellar ligament. In our example, the rectus femoris was fully excited isometrically, with the knee and hip flexed to 90 degrees . The resulting SIMM tibiofemoral joint reaction force was primarily shear, because the quadriceps force was applied to the tibia via the fictional patellotibial joint. In contrast the physiologic tibiofemoral joint reaction force was primarily compression, because the quadriceps force was applied through the patellar ligament. This result illustrates that the physiologic knee joint reaction forces are profoundly different than the forces returned by SIMM. However physiologic knee joint reaction forces can be computed with postprocessing of SIMM results.  相似文献   

19.
Large knee adduction moments during gait have been implicated as a mechanical factor related to the progression and severity of tibiofemoral osteoarthritis and it has been proposed that these moments increase the load on the medial compartment of the knee joint. However, this mechanism cannot be validated without taking into account the internal forces and moments generated by the muscles and ligaments, which cannot be easily measured. Previous musculoskeletal models suggest that the medial compartment of the tibiofemoral joint bears the majority of the tibiofemoral load, with the lateral compartment unloaded at times during stance. Yet these models did not utilise explicitly measured muscle activation patterns and measurements from an instrumented prosthesis which do not portray lateral compartment unloading. This paper utilised an EMG-driven model to estimate muscle forces and knee joint contact forces during healthy gait. Results indicate that while the medial compartment does bear the majority of the load during stance, muscles provide sufficient stability to counter the tendency of the external adduction moment to unload the lateral compartment. This stability was predominantly provided by the quadriceps, hamstrings, and gastrocnemii muscles, although the contribution from the tensor fascia latae was also significant. Lateral compartment unloading was not predicted by the EMG-driven model, suggesting that muscle activity patterns provide useful input to estimate muscle and joint contact forces.  相似文献   

20.
The purpose of this study was to describe kinematic and kinetic differences between a group of ACL deficient subjects who were grouped according to functional ability. Sixteen patients with complete ACL rupture were studied; eight subjects had instability with activities of daily living (non-copers) and eight subjects had returned to all pre-injury activity without limitation (copers). Three-dimensional joint kinematics and kinetics were collected from the knee and ankle during walking, jogging and going up and over a step. Results showed that both groups mitigated the force with which they contacted the floor but non-copers consistently demonstrated less knee flexion in the involved limb. The copers used joint kinematics similar to those of their uninvolved knees and similar to knee motions reported in uninjured subjects. The reduced knee motion in the involved knee of the non-copers did not correlate directly with quadriceps femoris muscle weakness.

The data suggest that the non-copers utilize a stabilization strategy which stiffens the knee joint which not only is unsuccessful but may lead to excessive joint contact forces which have the potential to damage articular structures. The copers use a strategy which permits normal knee kinematics and bodes well for joint integrity.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号