首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, a method was developed to immobilize silver onto polypropylene (PP) membrane surfaces for improved anti-biofouling performance. A commercial PP membrane was first grafted with the thiol functional groups, and then silver ions were immobilized onto the PP membrane surface through coordinating with the thiol groups. The immobilized silver was found to be very stable, with only ~1.1% of the immobilized silver being leached out during a leaching test. The surface of the modified membrane (PPS-Ag) was examined with ATR-FTIR and XPS analysis, which verified the successful grafting of the thiol groups and the coordination of silver ions on the membrane surface. The surface properties of the membrane were also characterized by SEM, AFM and water contact angle measurements. The PPS-Ag membrane was found to have a smoother and more hydrophilic surface than the PP membrane. Both Gram-negative bacteria, Escherichia coli, and Gram-positive bacteria, Staphylococcus aureus, were used to evaluate the antibacterial and anti-biofouling performance of the PPS-Ag membrane. From disk diffusion experiments, the PPS-Ag membrane exhibited the capability of inhibiting the growth of both the Gram-negative and Gram-positive bacteria tested. The anti-biofouling performance of the membrane was assessed by immersion in a mixed suspension of E. coli and S. aureus and filtration tests. The PPS-Ag membrane showed a stable and significantly enhanced anti-biofouling performance as compared with the PP membrane. The results in this study demonstrate that biofouling of a PP membrane can be sufficiently overcome through immobilizing silver onto the membrane surface.  相似文献   

2.
Failure in the prevention of cross-transmission from contaminated gloves has been recognized as an important factor that contributes to the spread of several healthcare-associated infections. Ex situ coating process with silver nanoparticles (AgNPs) using Eucalyptus citriodora ethanolic leaf extract as reducing and capping agents to coat glove surfaces has been developed to prevent this mode of transmission. Elemental analysis of coated gloves showed 24.8 Wt% silver densely adhere on the surface. The coated gloves fully eradicated important hospital-acquired pathogens including Gram-positive bacteria, Gram-negative bacteria, and yeasts within 1 h. The coated gloves showed significant reduction, an average of five logs when tested against all standard strains and most clinical isolates (< 0.01). Following prolonged exposure, the coating significantly reduced the numbers of most adhered pathogenic species, compared with uncoated gloves (p < 0.0001). AgNPs-coated gloves reduced microbial adhesion of mixed-species biofilms. A series of contamination and transmission assays demonstrated no transmission of viable organisms. Biocompatibility analysis confirmed high viability of HaCaT and L929 cells at all concentrations of AgNPs tested. The coated gloves were non-toxic with direct contact with L929 cells. The highly efficacious AgNPs-coated gloves potentially provide additional protection against transmission of healthcare-associated infections.  相似文献   

3.
The influence of the presence of saliva from different salivary glands on the adherence ofStreptococcus gordonii strain HG 222 to saliva-coated polystyrene surfaces was tested. In the presence of undiluted parotid saliva or diluted whole, submandibular and sublingual saliva the adherence of HG 222 was enhanced by the formation of small aggregates on the attachment surface. In the presence of undiluted whole, submandibular and sublingual saliva large aggregates were formed and the adherence to saliva-coated polystyrene surfaces was inhibited.Adherence in the presence of whole saliva compared to adherence in buffer was decreased when lower densities of bacterial suspension were used, although in this case in the presence of whole saliva smaller bacterial aggregates were formed.In conclusion, these results suggest that the presence of saliva in solution may both enhance and decrease the adherence ofS. gordonii HG 222 to saliva-coated polystyrene surfaces, partly depending on the size of bacterial aggregates that are formed in the presence of saliva.Abbreviations CHW saliva clarified human whole saliva - PAR saliva parotid saliva - SM saliva submandibular saliva - SL saliva sublingual saliva  相似文献   

4.
A catheter surface was modified by coating a cellulose acetate polymer. Adhesion of Pseudomonas aeruginosa ATCC 27853 to the surface was investigated by exposing bacterial cultures to three treatments: polymer impregnated with silver ions (Ag+), polymer surfaces coated with lectins and a combination of Ag+ and a lectin coating. The effective concentration of Ag+ providing protection against bacterial biofilm development was 100g/ml and higher. Lectins alone at 10% also showed inhibition of bacterial attachment. However, the best result was achieved against bacterial adhesion and growth on surfaces using a combination of 100 g Ag+/ml and a lectin coating as a surface treatment. This surface treatment was also effective against both fresh culture and a two-week-old culture containing P. aeruginosa producing exopolymers. Our results suggest that Ag+impregnation combined with a lectin coating warrants further investigation as a potential means of protecting catheters.  相似文献   

5.
A three-stage chemostat containing a mixed consortium of microorganisms, includingLegionella pneumophila, was used to determine the suitability of a silver-containing paint to control biofouling in water systems. The paint was efficient in controlling total surface colonisation by heterotrophic microorganisms and growth of the pathogen over a 2-week period. Biodiversity was limited in the presence of the silver paint and this was thought to help controlL. pneumophila numbers. Glass control tiles suspended alongside the silver painted tiles also had reduced colonisation for the 2-week period, suggesting that low levels of silver leached from the paint surface. This loss of silver was confirmed since the inhibition of biofouling and inclusion of the pathogen was not maintained after the 2-week period. Although this paint was unsuitable for controlling biofouling over extended time periods, the data suggest that a reformulated paint or electrochemical method of introducing silver ions may be successful.  相似文献   

6.
The metal‐reducing bacterium Shewanella oneidensis is capable of reducing various metal(loid)s and produces nanoparticles (NPs) extracellularly, in which outer membrane c‐type cytochromes (OMCs) have been suggested to play important roles. The objective of this study was to investigate the influence of the OMCs, that is, MtrC and OmcA, on the size and activity of the extracellular silver NPs (AgNPs) and silver sulfide NPs (Ag2S NPs) produced by S. oneidensis MR‐1. We found that (i) the lack of OMCs on S. oneidensis cell surface decreased the particle size of the extracellular biogenic AgNPs and Ag2S NPs; (ii) the biogenic AgNPs from the mutant lacking OMCs showed higher antibacterial activity; and (iii) the biogenic Ag2S NPs from the mutant lacking OMCs exhibited higher catalytic activity in methylviologen reduction. The results suggest that it may be possible to control particle size and activity of the extracellular biogenic NPs via controlled expression of the genes encoding surface proteins. In addition, we also reveal that in extracellular biosynthesis of NPs the usually neglected non‐cell‐associated NPs could have high catalytic activity, highlighting the need of novel methods that can efficiently retain extracellular NPs in the biosynthesis processes. Biotechnol. Bioeng. 2013; 110: 1831–1837. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
Prevention of biofilm formation by polymer modification   总被引:3,自引:0,他引:3  
Bacterial biofilm formation on synthetic polymers plays an important role in industry and in modern medicine, leading, for example, to difficult-to-treat infections caused by colonized foreign bodies. Prevention of biofilm formation is a necessary step in the successful prophylaxis of such infections. One approach is to inhibit bacterial adherence by polymer surface modification. We have investigated polymer modification by glow discharge treatment in order to study the influence of the modified surface on bacterial adherence. Surface roughness, surface charge density and contact angles of the modified polymers were determined and related to the adherence ofStaphylococcus epidermidis KH6. Although no influence of surface roughness and charge density on bacterial adherence was noticed, a correlation between the free enthalpy of adhesion (estimated from contact angle measurements) and adherence was observed. There seems to exist a certain minimum bacterial adherence, independent of the nature of the polymer surface. Modified polymers with negative surface charge allow for bacterial adherence close to the adherence minimum. These polymers could be improved further by the ionic bonding of silver ions to the surface. Such antimicrobial polymers are able to prevent bacterial colonization, which is a prerequisite for biofilm formation. It is suggested that modification of polymers and subsequent surface coupling of antimicrobials might be an effective approach for the prevention of bacterial biofilm formation.  相似文献   

8.
The role of cell and surface hydrophobicity in the adherence of the waterborne bacterium Mycobacterium smegmatis to nanostructures and biofilm formation was investigated. Carbon nanostructures (CNs) were synthesized using a flame reactor and deposited on stainless steel grids and foils, and on silicon wafers that had different initial surface hydrophobicities. Surface hydrophobicity was measured as the contact angle of water droplets. The surfaces were incubated in suspensions of isogenic hydrophobic and hydrophilic strains of M. smegmatis and temporal measurements of the numbers of adherent cells were made. The hydrophobic, rough mutant of M. smegmatis adhered more readily and formed denser biofilms on all surfaces compared to its hydrophilic, smooth parent. Biofilm formation led to alterations in the hydrophobicity of the substratum surfaces, demonstrating that bacterial cells attached to CNs are capable of modifying the surface characteristics.  相似文献   

9.
Twin boundary spacing (TBS) plays a significant role in the yield behaviour of twinned nanowires (NWs). However, few studies have shown an overall view of the effects on the mechanical response of twinned silver NWs under tensile loading. In this article, the mechanical properties of 〈111〉-oriented NWs with different TBSs are studied using molecular dynamics simulations. In elastic region, it is found that the addition of twin boundaries (TBs) to crystalline NWs can not only cause strengthening but also softening effect, which depending on the ST/SF (the ratio of the total area of TBs to the area of lateral free surfaces). Furthermore, our simulation results show that the evolution of reduced number of different types of atoms in twinned Ag NWs has a strong dependence on TBS. For twinned NWs with larger TBSs, the dislocation–TB interaction dominates the plastic deformation process. While for twinned NWs with smaller TBSs, shear banding is activated as the incipient plastic deformation, leading to the atoms clustering into disorder near the surfaces. The study will be helpful to the further understanding of TB-related mechanical properties of nanomaterials.  相似文献   

10.
Aims: We undertook a series of experiments to investigate the susceptibility of Legionella pneumophila grown under extracellular and intracellular conditions and other water‐related bacteria to silver ions. Methods and Results: In this study, the antimicrobial effect of silver ions to intra‐ and extra‐cellular grown Legionella bacteria was investigated. The minimal inhibitory concentration (MIC) after 24 h exposure, leading to a 5 log reduction, was c. 64 μg l?1 AgNO3 for extracellular grown Legionella and other tested Gram‐positive and Gram‐negative bacteria. In contrast, the MIC for intracellularly grown Legionella was up to 4096 μg l?1 AgNO3 after 24 h. Furthermore, the heterotrophic bacteria grown within a biofilm model were killed at a concentration of 4–16 μg l?1 AgNO3. In contrast, biofilm‐associated Legionella were less sensitive (MIC 128–512 μg l?1 AgNO3). Conclusion: Intracellularly and biofilm‐grown legionellae are less sensitive against silver compared with agar‐grown bacteria. Significance and Impact of the Study: The reduced sensitivity of Legionella grown in amoebae might explain why the effect of silver decontamination requires an extended exposure in field trials.  相似文献   

11.
The adherence of Candida albicans and C. tropicalis to protein-adsorbed surfaces was investigated with surface-modified glass slides to which serum or salivary proteins were covalently bound. A specific adherence like a ligand-receptor interaction was observed between C. albicans and mucin- or salivary protein-immobilized glass slides. This interaction was eliminated by deglycosylation of the slides, suggesting that the receptor may be an oligosaccharide(s) contained mucin or saliva. A similar specific interaction was also observed between C. tropicalis and fibrinogen-immobilized glass surfaces. When the numbers of adherent cells to deglycosylated protein-immobilized glass glides were plotted against zeta potentials and contact angles of these protein-immobilized glass slides, a significant correaltion was observed between the numbers of adherent cells and zeta potentials in the case of C. albicans (r = –0.87), whereas a significant correlation was observed between cell numbers and contact angles (r = 0.82) in the case of C. tropicalis. These results suggest that the forces governing the adherence of fungi to pellicle in dentures may vary depending upon the surface properties of fungi and substrate.  相似文献   

12.
Silver nanoparticles were synthesized and stabilized by a simple, environment-friendly method in a liposomes structure. Liposomes were prepared by facing lecithin to the aqueous-phase solutions while stirring vigorously. The ratio of lecithin concentration to silver nitrate (KLec/Ag?=?[Lecithin]/[AgNO3]) is the influencing factor in the synthesis of silver nanoparticles. The stability, size distribution, and antibacterial properties of synthesized silver nanoparticles were studied by ultraviolet (UV)-visible, dynamic light scattering, and antibacterial assay. The UV spectra indicated a single symmetric extinction peak at 400?nm, confirming the spherical shape of the synthesized silver nanoparticles. A high KLec/Ag value leads to a reduction in the intensity of extinction spectra and increases the size of Ag-liposomes nanocomposites. The large Ag-liposomes nanocomposites are transformed to the smaller Ag-liposomes nanocomposites (from 342 to 190?nm) due to sonication treatment. The stabilized silver nanoparticles with various lecithin concentrations showed a good antibacterial activity against Staphylococcus aureus, a Gram-positive bacterium, and Escherichia coli, a Gram-negative bacterium.  相似文献   

13.
In an effort to mitigate biofouling on thin film composite membranes such as nanofiltration and reverse osmosis, a myriad of different surface modification strategies has been published. The use of silver nanoparticles (Ag-NPs) has emerged as being particularly promising. Nevertheless, the stability of these surface modifications is still poorly understood, particularly under permeate flux conditions. Leaching or elution of Ag-NPs from the membrane surface can not only affect the antimicrobial characteristics of the membrane, but could also potentially present an environmental liability when applied in industrial-scale systems. This study sought to investigate the dynamics of silver elution and the bactericidal effect of an Ag-NP functionalised NF270 membrane. Inductively coupled plasma-atomic emission spectroscopy was used to show that the bulk of leached silver occurred at the start of experimental runs, and was found to be independent of salt or permeate conditions used. Cumulative amounts of leached silver did, however, stabilise following the initial release, and were shown to have maintained the biocidal characteristics of the modified membrane, as observed by a higher fraction of structurally damaged Pseudomonas fluorescens cells. These results highlight the need to comprehensively assess the time-dependent nature of bactericidal membranes.  相似文献   

14.
Previous investigations have proved that diplomonads have primitive cell nuclei and lack a nucleolus. We determined the distribution of ribosomal DNA (rDNA) in diplomonad nuclei that lacked a nucleolus. Giardia lamblia was used as the experimental organism with Euglena gracilis as the control. The distribution of rDNA was demonstrated indirectly by the modified Ag-I silver technique that can indicate specifically the nucleolus organizing region (NOR) by both light and electron microscopy. In ultrathin sections of silver stained Euglena cells, all silver grains were concentrated in the fibrosa of the nucleolus, while no silver grains were found in the cytoplasm, nucleoplasm, condensed chromosomes or pars granulosa of the nucleus. In the silver stained Giardia cells, no nucleolus was found, but a few silver grains were scattered in the nucleus. This suggests that the rDNA of Giardia does not form an NOR-like structure and that its nucleus is in a primitive state.  相似文献   

15.
In the present study the characterization and properties of silver nanoparticles from Prosopis glandulosa leaf extract (AgNPs) were investigated using UV–Vis spectroscopic techniques, energy dispersive X-ray spectrometers (EDS), zeta potential and dynamic light scattering. The UV–Vis spectroscopic analysis showed the absorbance peaked at 487 nm, which indicated the synthesis of silver nanoparticles. The experimental results showed silver nanoparticles had Z-average diameter of 421 nm with higher stability (?200 mV). The EDS analysis also exhibited presentation of silver element. Additionally, the different concentrations of AgNPs (25, 50, 75 and 100 mg/mL) showed antibacterial activity against Acinetobacter calcoaceticus and Bacillus cereus. Finally, AgNPs from leaf extracts of P. glandulosa may be used as an agent of biocontrol of microorganism of importance medical. However, further studies will be needed to fully understand the antimicrobial activity of silver nanoparticles obtain from P. glandulosa.  相似文献   

16.
Many biological surfaces possess unusual micro-nano hierarchical structures that could influence their wettability, which provide new methods for the construction of novel materials. In this work, silver nanoparticles were successfully coated on the surface of stainless steel needle by a simple electroless replacement reaction process between the AgNO3 solution and the activated stainless steel needle. After the replacement reaction, porous micro/nanostructures were formed on the surface of the stainless steel needle. By modifying long chains of thiol molecules, the stainless steel needle exhibited good super-hydrophobic property with a contact angle greater than 150°. Moreover, the silver coated stainless steel needle (bionic needle) showed strong antibacterial activity against the gram-negative bacterium Escherichia coli (E. coli). By calculating the area of the inhibition zone against E. coli formed on agar medium, the antibacterial activity of the bionic needle with the contact angle of 152° is much better than that with the contact angle of 138°. The as-prepared bionic needle with both super-hydrophobic and antibacterial properties has the potential to be applied in modern medical devices.  相似文献   

17.
Recently, various studies have focused on the development of multifunctional non-woven polyethylene terephthalate (PT; polyester) textiles. Herein, we introduce multifunctional non-woven polyester fabrics by pad dry curing silver nitrate (AgNO3) and aniline monomer into plasma-pretreated non-woven PT textile. This creates a nanocomposite layer of silver nanoparticles (AgNPs) and polyaniline (PANi) on the fabric surface. In order to prepare a non-woven fibrous mat, we applied the melt-spinning technique on previously shredded recycled PT plastic waste. On the surface of the cloth, PANi was synthesized by REDOX polymerization of aniline. Due to the oxidative polymerization, the silver ions (Ag+) were converted to Ag0NPs. PANi acted as a conductor while AgNPs inhibited the growth of microorganisms. Microwave-assisted curing with trimethoxyhexadecylsilane (TMHDS) gave PT textiles with superhydrophobic properties. The morphological studies were performed using Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDX). The stiffness and breathability of finished non-woven PT textile materials were analyzed to establish their comfort levels. Both of Escherichia coli and Staphylococcus aureus were used to test the efficacy of the AgNPs-treated textiles as antimicrobial materials. Moreover, the processed polyester textiles showed excellent electrical conductivity and great ultraviolet-ray blocking.  相似文献   

18.
The physicochemical and bactericidal properties of thin silver films have been analysed. Silver films of 3 and 150 nm thicknesses were fabricated using a magnetron sputtering thin-film deposition system. X-ray photoelectron and energy dispersive X-ray spectroscopy and atomic force microscopy analyses confirmed that the resulting surfaces were homogeneous, and that silver was the most abundant element present on both surfaces, being 45 and 53 at.% on the 3- and 150-nm films, respectively. Inductively coupled plasma time of flight mass spectroscopy (ICP-TOF-MS) was used to measure the concentration of silver ions released from these films. Concentrations of 0.9 and 5.2 ppb were detected for the 3- and 150-nm films, respectively. The surface wettability of the films remained nearly identical for both film thicknesses, displaying a static water contact angle of 95°, while the surface free energy of the 150-nm film was found to be slightly greater than that of the 3-nm film, being 28.8 and 23.9 mN m−1, respectively. The two silver film thicknesses exhibited statistically significant differences in surface topographic profiles on the nanoscopic scale, with R a, R q and R max values of 1.4, 1.8 and 15.4 nm for the 3-nm film and 0.8, 1.2 and 10.7 nm for the 150-nm film over a 5 × 5 μm scanning area. Confocal scanning laser microscopy and scanning electron microscopy revealed that the bactericidal activity of the 3-nm silver film was not significant, whereas the nanoscopically smoother 150-nm silver film exhibited appreciable bactericidal activity towards Pseudomonas aeruginosa ATCC 9027 cells and Staphylococcus aureus CIP 65.8 cells, obtaining up to 75% and 27% sterilisation effect, respectively.  相似文献   

19.
Earlier studies described the linkage of silver to antibodies using SH groups generated by the reduction of the SS groups using ascorbic acid (1) analogous to the Thakur and DeFulvio technique for linking technetium to antibodies. This work describes the linkage of silver to IgG after introducing SH groups by coupling the IgG to 2-imino thiolane. The protein was dissolved in sodium acetate buffer pH 4.5 containing 1 mM EDTA by dialysis/gel chromatography in a concentration of 20 mg/mL. 2-Imino thiolane dissolved in Tris-HCl acetate buffer, pH 8.2, 0.2M was added to give a final dilution of 0.2 mM 2-imino thiolane. The excess of 2-imino thiolane was removed by dialysis or G-25 Sephadex gel chromatography and then the protein was reacted with silver nitrate 0.1 mM. The unreacted SH groups were blocked by adding iodoacetamide to a concentration of 5 mM. The nonprotein reagents again were removed by dialysis or gel chromatography. The thiol groups were titrated using 1.5 mM 2 2-Py-SS-Py prior to and after addition of silver. It was observed that depending on the concentration of silver, 50–80% of the SH groups were coupled to silver. Higher concentrations of silver led to insoluble precipitates and should be avoided.  相似文献   

20.
Dental implant abutments that emerge through the mucosa are rapidly covered with a salivary protein pellicle to which bacteria bind, initiating biofilm formation. In this study, adherence of early colonizing streptococci, Streptococcus gordonii, Streptococcus oralis, Streptococcus mitis and Streptococcus sanguinis to two saliva-coated anodically oxidized surfaces was compared with that on commercially pure titanium (CpTi). Near edge X-ray absorption (NEXAFS) showed crystalline anatase was more pronounced on the anodically oxidized surfaces than on the CpTi. As revealed by fluorescence microscopy, a four-species mixture, as well as individual bacterial species, exhibited lower adherence after 2?h to the saliva-coated, anatase-rich surfaces than to CpTi. Since wettability did not differ between the saliva-coated surfaces, differences in the concentration and/or configuration of salivary proteins on the anatase-rich surfaces may explain the reduced bacterial binding effect. Anatase-rich surfaces could thus contribute to reduced overall biofilm formation on dental implant abutments through diminished adherence of early colonizers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号