共查询到20条相似文献,搜索用时 0 毫秒
1.
Twin-arginine translocation (Tat) is a unique protein transport pathway in bacteria, archaea, and plastids. It mediates the transmembrane transport of fully folded proteins, which harbor a consensus twin-arginine motif in their signal sequences. In Gram-negative bacteria and plant chloroplasts, three membrane proteins, named TatA, TatB, and TatC, are required to enable Tat translocation. Available data suggest that TatA assembles into oligomeric pore-like structures that might function as the protein conduit across the lipid bilayer. Using site-specific photo-cross-linking, we have investigated the molecular environment of TatA under resting and translocating conditions. We find that monomeric TatA is an early interacting partner of functionally targeted Tat substrates. This interaction with TatA likely precedes translocation of Tat substrates and is influenced by the proton-motive force. It strictly depends on the presence of TatB and TatC, the latter of which is shown to make contacts with the transmembrane helix of TatA. 相似文献
2.
Mehner D Osadnik H Lünsdorf H Brüser T 《The Journal of biological chemistry》2012,287(33):27834-27842
Tat systems transport folded proteins across energized membranes of bacteria, archaea, and plant plastids. In Escherichia coli, TatBC complexes recognize the transported proteins, and TatA complexes are recruited to facilitate transport. We achieved an abstraction of TatA from membranes without use of detergents and observed a co-purification of PspA, a membrane-stress response protein. The N-terminal transmembrane domain of TatA was required for the interaction. Electron microscopy displayed TatA complexes in direct contact with PspA. PspB and PspC were important for the TatA-PspA contact. The activator protein PspF was not involved in the PspA-TatA interaction, demonstrating that basal levels of PspA already interact with TatA. Elevated TatA levels caused membrane stress that induced a strictly PspBC- and PspF-dependent up-regulation of PspA. TatA complexes were found to destabilize membranes under these conditions. At native TatA levels, PspA deficiency clearly affected anaerobic TMAO respiratory growth, suggesting that energetic costs for transport of large Tat substrates such as TMAO reductase can become growth limiting in the absence of PspA. The physiological role of PspA recruitment to TatA may therefore be the control of membrane stress at active translocons. 相似文献
3.
Gaye F. White Sonya M. Schermann Justin Bradley Andrew Roberts Nicholas P. Greene Ben C. Berks Andrew J. Thomson 《The Journal of biological chemistry》2010,285(4):2294-2301
The Tat system is used to transport folded proteins across the cytoplasmic membrane in bacteria and archaea and across the thylakoid membrane of plant chloroplasts. Multimers of the integral membrane TatA protein are thought to form the protein-conducting element of the Tat pathway. Nitroxide radicals were introduced at selected positions within the transmembrane helix of Escherichia coli TatA and used to probe the structure of detergent-solubilized TatA complexes by EPR spectroscopy. A comparison of spin label mobilities allowed classification of individual residues as buried within the TatA complex or exposed at the surface and suggested that residues Ile12 and Val14 are involved in interactions between helices. Analysis of inter-spin distances suggested that the transmembrane helices of TatA subunits are arranged as a single-walled ring containing a contact interface between Ile12 on one subunit and Val14 on an adjacent subunit. Experiments in which labeled and unlabeled TatA samples were mixed demonstrate that TatA subunits are exchanged between TatA complexes. This observation is consistent with the TatA dynamic polymerization model for the mechanism of Tat transport. 相似文献
4.
Escherichia coli synthesize over 60 poorly understood small proteins of less than 50 amino acids. A striking feature of these proteins is that 65% contain a predicted α-helical transmembrane (TM) domain. This prompted us to examine the localization, topology, and membrane insertion of the small proteins. Biochemical fractionation showed that, consistent with the predicted TM helix, the small proteins generally are most abundant in the inner membrane fraction. Examples of both N(in)-C(out) and N(out)-C(in) orientations were found in assays of topology-reporter fusions to representative small TM proteins. Interestingly, however, three of nine tested proteins display dual topology. Positive residues close to the transmembrane domains are conserved, and mutational analysis of one small protein, YohP, showed that the positive inside rule applies for single transmembrane domain proteins as has been observed for larger proteins. Finally, fractionation analysis of small protein localization in strains depleted of the Sec or YidC membrane insertion pathways uncovered differential requirements. Some small proteins appear to be affected by both Sec and YidC depletion, others showed more dependence on one or the other insertion pathway, whereas one protein was not affected by depletion of either Sec or YidC. Thus, despite their diminutive size, small proteins display considerable diversity in topology, biochemical features, and insertion pathways. 相似文献
5.
Bakkes PJ Jenewein S Smits SH Holland IB Schmitt L 《The Journal of biological chemistry》2010,285(52):40573-40580
Secretion of the Escherichia coli toxin hemolysin A (HlyA) is catalyzed by the membrane protein complex HlyB-HlyD-TolC and requires a secretion sequence located within the last 60 amino acids of HlyA. The Hly translocator complex exports a variety of passenger proteins when fused N-terminal to this secretion sequence. However, not all fusions are secreted efficiently. Here, we demonstrate that the maltose binding protein (MalE) lacking its natural export signal and fused to the HlyA secretion signal is poorly secreted by the Hly system. We anticipated that folding kinetics might be limiting secretion, and we therefore introduced the "folding" mutation Y283D. Indeed this mutant fusion protein was secreted at a much higher level. This level was further enhanced by the introduction of a second MalE folding mutation (V8G or A276G). Secretion did not require the molecular chaperone SecB. Folding analysis revealed that all mutations reduced the refolding rate of the substrate, whereas the unfolding rate was unaffected. Thus, the efficiency of secretion by the Hly system is dictated by the folding rate of the substrate. Moreover, we demonstrate that fusion proteins defective in export can be engineered for secretion while still retaining function. 相似文献
6.
Hansj?rg G?tzke Isolde Palombo Claudio Muheim Elsa Perrody Pierre Genevaux Renuka Kudva Matthias Müller Daniel O. Daley 《The Journal of biological chemistry》2014,289(27):19089-19097
Protein secretion in Gram-negative bacteria is essential for both cell viability and pathogenesis. The vast majority of secreted proteins exit the cytoplasm through a transmembrane conduit called the Sec translocon in a process that is facilitated by ancillary modules, such as SecA, SecDF-YajC, YidC, and PpiD. In this study we have characterized YfgM, a protein with no annotated function. We found it to be a novel ancillary subunit of the Sec translocon as it co-purifies with both PpiD and the SecYEG translocon after immunoprecipitation and blue native/SDS-PAGE. Phenotypic analyses of strains lacking yfgM suggest that its physiological role in the cell overlaps with the periplasmic chaperones SurA and Skp. We, therefore, propose a role for YfgM in mediating the trafficking of proteins from the Sec translocon to the periplasmic chaperone network that contains SurA, Skp, DegP, PpiD, and FkpA. 相似文献
7.
Lu Zhu Abdul Wasey Stephen H. White Ross E. Dalbey 《The Journal of biological chemistry》2013,288(11):7704-7716
We have investigated the features of single-span model membrane proteins based upon leader peptidase that determines whether the proteins insert by a YidC/Sec-independent, YidC-only, or YidC/Sec mechanism. We find that a protein with a highly hydrophobic transmembrane segment that inserts into the membrane by a YidC/Sec-independent mechanism becomes YidC-dependent if negatively charged residues are inserted into the translocated periplasmic domain or if the hydrophobicity of the transmembrane segment is reduced by substituting polar residues for nonpolar ones. This suggests that charged residues in the translocated domain and the hydrophobicity within the transmembrane segment are important determinants of the insertion pathway. Strikingly, the addition of a positively charged residue to either the translocated region or the transmembrane region can switch the insertion requirements such that insertion requires both YidC and SecYEG. To test conclusions from the model protein studies, we confirmed that a positively charged residue is a SecYEG determinant for the endogenous proteins ATP synthase subunits a and b and the TatC subunit of the Tat translocase. These findings provide deeper insights into how pathways are selected for the insertion of proteins into the Escherichia coli inner membrane. 相似文献
8.
Denise Mehner-Breitfeld Michael T. Ringel Daniel Alexander Tichy Laura J. Endter Kai Steffen Stroh Heinrich Lünsdorf Herre Jelger Risselada Thomas Brüser 《The Journal of biological chemistry》2022,298(9)
The twin-arginine translocation (Tat) system serves to translocate folded proteins across energy-transducing membranes in bacteria, archaea, plastids, and some mitochondria. In Escherichia coli, TatA, TatB, and TatC constitute functional translocons. TatA and TatB both possess an N-terminal transmembrane helix (TMH) followed by an amphipathic helix. The TMHs of TatA and TatB generate a hydrophobic mismatch with the membrane, as the helices comprise only 12 consecutive hydrophobic residues; however, the purpose of this mismatch is unclear. Here, we shortened or extended this stretch of hydrophobic residues in either TatA, TatB, or both and analyzed effects on translocon function and assembly. We found the WT length helices functioned best, but some variation was clearly tolerated. Defects in function were exacerbated by simultaneous mutations in TatA and TatB, indicating partial compensation of mutations in each by the other. Furthermore, length variation in TatB destabilized TatBC-containing complexes, revealing that the 12-residue-length is important but not essential for this interaction and translocon assembly. To also address potential effects of helix length on TatA interactions, we characterized these interactions by molecular dynamics simulations, after having characterized the TatA assemblies by metal-tagging transmission electron microscopy. In these simulations, we found that interacting short TMHs of larger TatA assemblies were thinning the membrane and—together with laterally-aligned tilted amphipathic helices—generated a deep V-shaped membrane groove. We propose the 12 consecutive hydrophobic residues may thus serve to destabilize the membrane during Tat transport, and their conservation could represent a delicate compromise between functionality and minimization of proton leakage. 相似文献
9.
Di Bartolo ND Hvorup RN Locher KP Booth PJ 《The Journal of biological chemistry》2011,286(21):18807-18815
Studies on membrane protein folding have focused on monomeric α-helical proteins and a major challenge is to extend this work to larger oligomeric membrane proteins. Here, we study the Escherichia coli (E. coli) ATP-binding cassette (ABC) transporter that imports vitamin B(12) (the BtuCD protein) and use it as a model system for investigating the folding and assembly of a tetrameric membrane protein complex. Our work takes advantage of the modular organization of BtuCD, which consists of two transmembrane protein subunits, BtuC, and two cytoplasmically located nucleotide-binding protein subunits, BtuD. We show that the BtuCD transporter can be re-assembled from both prefolded and partly unfolded, urea denatured BtuC and BtuD subunits. The in vitro re-assembly leads to a BtuCD complex with the correct, native, BtuC and BtuD subunit stoichiometry. The highest rates of ATP hydrolysis were achieved for BtuCD re-assembled from partly unfolded subunits. This supports the idea of cooperative folding and assembly of the constituent protein subunits of the BtuCD transporter. BtuCD folding also provides an opportunity to investigate how a protein that contains both membrane-bound and aqueous subunits coordinates the folding requirements of the hydrophobic and hydrophilic subunits. 相似文献
10.
Erez E Stjepanovic G Zelazny AM Brugger B Sinning I Bibi E 《The Journal of biological chemistry》2010,285(52):40508-40514
The mechanism underlying the interaction of the Escherichia coli signal recognition particle receptor FtsY with the cytoplasmic membrane has been studied in detail. Recently, we proposed that FtsY requires functional interaction with inner membrane lipids at a late stage of the signal recognition particle pathway. In addition, an essential lipid-binding α-helix was identified in FtsY of various origins. Theoretical considerations and in vitro studies have suggested that it interacts with acidic lipids, but this notion is not yet fully supported by in vivo experimental evidence. Here, we present an unbiased genetic clue, obtained by serendipity, supporting the involvement of acidic lipids. Utilizing a dominant negative mutant of FtsY (termed NG), which is defective in its functional interaction with lipids, we screened for E. coli genes that suppress the negative dominant phenotype. In addition to several unrelated phenotype-suppressor genes, we identified pgsA, which encodes the enzyme phosphatidylglycerophosphate synthase (PgsA). PgsA is an integral membrane protein that catalyzes the committed step to acidic phospholipid synthesis, and we show that its overexpression increases the contents of cardiolipin and phosphatidylglycerol. Remarkably, expression of PgsA also stabilizes NG and restores its biological function. Collectively, our results strongly support the notion that FtsY functionally interacts with acidic lipids. 相似文献
11.
Blaudeck N Kreutzenbeck P Müller M Sprenger GA Freudl R 《The Journal of biological chemistry》2005,280(5):3426-3432
In Escherichia coli, the Tat system promotes the membrane translocation of a subset of exported proteins across the cytoplasmic membrane. Four genes (tatA, tatB, tatC, and tatE) have been identified that encode the components of the E. coli Tat translocation apparatus. Whereas TatA and TatE can functionally substitute for each other, the TatB and the TatC proteins have been shown to perform distinct functions. In contrast to Tat systems of the ABC(E) type found in E. coli and many other bacteria, some microorganisms possess a TatAC-type translocase that consists of TatA and TatC only, suggesting that, in these systems, TatB is not required or that one of the remaining components (TatA or TatC) additionally takes over the TatB function. We have addressed the molecular basis for the difference in subunit composition between TatABC(E) and TatAC-type systems by using a genetic approach. A plasmid-encoded E. coli minimal Tat translocase consisting solely of TatA and TatC was shown to mediate a low level translocation of a sensitive Tat-dependent reporter protein. Suppressor mutations in the minimal Tat translocase were isolated that compensate for the absence of TatB and that showed substantial increases in translocation activities. All of the mutations mapped to the extreme amino-terminal domain of TatA. No mutations affecting TatC were identified. These results suggest that in TatAC-type systems, the TatA protein represents a bifunctional component fulfilling both the TatA and TatB functions. Furthermore, our results indicate that the structure of the amino-terminal domain of TatA is decisive for whether or not TatB is required. 相似文献
12.
David A. Phoenix 《FEMS immunology and medical microbiology》1996,16(2):77-82
Abstract Within gram-negative bacteria such as Escherichia coli , the outer membrane porins provide a relatively non-specific uptake route which is utilised by a wide range of solutes including many antibiotics. Understanding the targeting and membrane assembly of these proteins is therefore of importance and this mini review aims to discuss this process in light of present knowledge. 相似文献
13.
Wickström D Wagner S Baars L Ytterberg AJ Klepsch M van Wijk KJ Luirink J de Gier JW 《The Journal of biological chemistry》2011,286(6):4598-4609
Thus far, the role of the Escherichia coli signal recognition particle (SRP) has only been studied using targeted approaches. It has been shown for a handful of cytoplasmic membrane proteins that their insertion into the cytoplasmic membrane is at least partially SRP-dependent. Furthermore, it has been proposed that the SRP plays a role in preventing toxic accumulation of mistargeted cytoplasmic membrane proteins in the cytoplasm. To complement the targeted studies on SRP, we have studied the consequences of the depletion of the SRP component Fifty-four homologue (Ffh) in E. coli using a global approach. The steady-state proteomes and the proteome dynamics were evaluated using one- and two-dimensional gel analysis, followed by mass spectrometry-based protein identification and immunoblotting. Our analysis showed that depletion of Ffh led to the following: (i) impaired kinetics of the biogenesis of the cytoplasmic membrane proteome; (ii) lowered steady-state levels of the respiratory complexes NADH dehydrogenase, succinate dehydrogenase, and cytochrome bo(3) oxidase and lowered oxygen consumption rates; (iii) increased levels of the chaperones DnaK and GroEL at the cytoplasmic membrane; (iv) a σ(32) stress response and protein aggregation in the cytoplasm; and (v) impaired protein synthesis. Our study shows that in E. coli SRP-mediated protein targeting is directly linked to maintaining protein homeostasis and the general fitness of the cell. 相似文献
14.
Bacterial genomes encode a collection of small peptides that are deleterious to their hosts when overexpressed. The physiological relevance of the majority of these peptides is unknown at present, although many of them have been implicated in regulatory processes important for cell survival and adaptability. One peptide that is of particular interest to us is a 19-amino acid proteic toxin, coined IbsC, whose production is repressed by SibC, an RNA antitoxin. Together, IbsC and SibC constitute a type I toxin-antitoxin (TA) pair. To better understand the function of IbsC and to decipher the sequence determinants for its toxic phenotype, we carried out extensive sequence analyses of the peptide. We generated a series of truncation and single amino acid deletion mutants to determine the minimal sequence required for toxicity. We further probed into functionally relevant amino acids with a comprehensive set of IbsC mutants produced using a systematic sequence randomization strategy. We found that IbsC remained toxic in the presence of multiple deletions and single amino acid substitutions, despite being well-conserved in Escherichia coli and across other Gram-negative bacteria. The toxicity of this peptide was determined to be dependent on a stretch of highly hydrophobic residues near its center. Our results defined sequence-function relationship of IbsC and offered additional insights into properties common to membrane-targeting type I toxins in E. coli and related species. 相似文献
15.
Johannes H. Reithinger Ji Eun Hani Kim Hyun Kim 《The Journal of biological chemistry》2013,288(25):18058-18067
Nascent chains are known to be targeted to the endoplasmic reticulum membrane either by a signal recognition particle (SRP)-dependent co-translational or by an SRP-independent post-translational translocation route depending on signal sequences. Using a set of model and cellular proteins carrying an N-terminal signal anchor sequence of controlled hydrophobicity and yeast mutant strains defective in SRP or Sec62 function, the hydrophobicity-dependent targeting efficiency and targeting pathway preference were systematically evaluated. Our results suggest that an SRP-dependent co-translational and an SRP-independent post-translational translocation are not mutually exclusive for signal anchor proteins and that moderately hydrophobic ones require both SRP and Sec62 for proper targeting and translocation to the endoplasmic reticulum. Further, defect in Sec62 selectively reduced signal sequences inserted in an Nin-Cout (type II) membrane topology, implying an undiscovered role of Sec62 in regulating the orientation of the signal sequence in an early stage of translocation. 相似文献
16.
Members of the ATP-binding cassette superfamily couple the energy from ATP hydrolysis to the active transport of substrates across the membrane. The maltose transporter, a well characterized model system, consists of a periplasmic maltose-binding protein (MBP) and a multisubunit membrane transporter, MalFGK(2). On the basis of the structure of the MBP-MalFGK(2) complex in an outward-facing conformation (Oldham, M. L., Khare, D., Quiocho, F. A., Davidson, A. L., and Chen, J. (2007) Nature 450, 515-521), we identified two mutants in transmembrane domains MalF and MalG that generated futile cycling; although interaction with MBP stimulated the ATPase activity of the transporter, maltose was not transported. Both mutants appeared to disrupt the normal transfer of maltose from MBP to MalFGK(2). In the first case, substitution of aspartate for glycine in the maltose-binding site of MalF likely generated a futile cycle by preventing maltose from binding to MalFGK(2) during the catalytic cycle. In the second case, a four-residue deletion of a periplasmic loop of MalG limited its reach into the maltose-binding pocket of MBP, allowing maltose to remain associated with MBP during the catalytic cycle. Retention of maltose in the MBP binding site in the deletion mutant, as well as insertion of this loop into the binding site in the wild type, was detected by EPR as a change in mobility of a nitroxide spin label positioned near the maltose-binding pocket of MBP. 相似文献
17.
Milena Opa?i? Erwin P. P. Vos Ben H. Hesp Jaap Broos 《The Journal of biological chemistry》2010,285(33):25324-25331
The mannitol transporter from Escherichia coli, EIImtl, belongs to a class of membrane proteins coupling the transport of substrates with their chemical modification. EIImtl is functional as a homodimer, and it harbors one high affinity mannitol-binding site in the membrane-embedded C domain (IICmtl). To localize this binding site, 19 single Trp-containing mutants of EIImtl were biosynthetically labeled with 5-fluorotryptophan (5-FTrp) and mixed with azi-mannitol, a substrate analog acting as a Förster resonance energy transfer (FRET) acceptor. Typically, for mutants showing FRET, only one 5-FTrp was involved, whereas the 5-FTrp from the other monomer was too distant. This proves that the mannitol-binding site is asymmetrically positioned in dimeric IICmtl. Combined with the available two-dimensional projection maps of IICmtl, it is concluded that a second resting binding site is present in this transporter. Active transport of mannitol only takes place when EIImtl becomes phosphorylated at Cys384 in the cytoplasmic B domain. Stably phosphorylated EIImtl mutants were constructed, and FRET experiments showed that the position of mannitol in IICmtl remains the same. We conclude that during the transport cycle, the phosphorylated B domain has to move to the mannitol-binding site, located in the middle of the membrane, to phosphorylate mannitol. 相似文献
18.
Jansen EJ van Bakel NH Loohuis NF Hafmans TG Arentsen T Coenen AJ Scheenen WJ Martens GJ 《The Journal of biological chemistry》2012,287(33):27537-27546
The vacuolar (H(+))-ATPase (V-ATPase) is crucial for maintenance of the acidic microenvironment in intracellular organelles, whereas its membrane-bound V(0)-sector is involved in Ca(2+)-dependent membrane fusion. In the secretory pathway, the V-ATPase is regulated by its type I transmembrane and V(0)-associated accessory subunit Ac45. To execute its function, the intact-Ac45 protein is proteolytically processed to cleaved-Ac45 thereby releasing its N-terminal domain. Here, we searched for the functional domains within Ac45 by analyzing a set of deletion mutants close to the in vivo situation, namely in transgenic Xenopus intermediate pituitary melanotrope cells. Intact-Ac45 was poorly processed and accumulated in the endoplasmic reticulum of the transgenic melanotrope cells. In contrast, cleaved-Ac45 was efficiently transported through the secretory pathway, caused an accumulation of the V-ATPase at the plasma membrane and reduced dopaminergic inhibition of Ca(2+)-dependent peptide secretion. Surprisingly, removal of the C-tail from intact-Ac45 caused cellular phenotypes also found for cleaved-Ac45, whereas C-tail removal from cleaved-Ac45 still allowed its transport to the plasma membrane, but abolished V-ATPase recruitment into the secretory pathway and left dopaminergic inhibition of the cells unaffected. We conclude that domains located in the N- and C-terminal portions of the Ac45 protein direct its trafficking, V-ATPase recruitment and Ca(2+)-dependent-regulated exocytosis. 相似文献
19.
Lars Bullmann Raimund Haarmann Oliver Mirus Rolf Bredemeier Franziska Hempel Uwe G. Maier Enrico Schleiff 《The Journal of biological chemistry》2010,285(9):6848-6856
Chromalveolates are a diverse group of protists that include many ecologically and medically relevant organisms such as diatoms and apicomplexan parasites. They possess plastids generally surrounded by four membranes, which evolved by engulfment of a red alga. Today, most plastid proteins must be imported, but many aspects of protein import into complex plastids are still cryptic. In particular, how proteins cross the third outermost membrane has remained unexplained. We identified a protein in the third outermost membrane of the diatom Phaeodactylum tricornutum with properties comparable to those of the Omp85 family. We demonstrate that the targeting route of P. tricornutum Omp85 parallels that of the translocation channel of the outer envelope membrane of chloroplasts, Toc75. In addition, the electrophysiological properties are similar to those of the Omp85 proteins involved in protein translocation. This supports the hypothesis that P. tricornutum Omp85 is involved in precursor protein translocation, which would close a gap in the fundamental understanding of the evolutionary origin and function of protein import in secondary plastids. 相似文献
20.
An X. Tran Changjiang Dong Chris Whitfield 《The Journal of biological chemistry》2010,285(43):33529-33539
LptC is a conserved bitopic inner membrane protein from Escherichia coli involved in the export of lipopolysaccharide from its site of synthesis in the cytoplasmic membrane to the outer membrane. LptC forms a complex with the ATP-binding cassette transporter, LptBFG, which is thought to facilitate the extraction of lipopolysaccharide from the inner membrane and release it into a translocation pathway that includes the putative periplasmic chaperone LptA. Cysteine modification experiments established that the catalytic domain of LptC is oriented toward the periplasm. The structure of the periplasmic domain is described at a resolution of 2.2-Å from x-ray crystallographic data. The periplasmic domain of LptC consists of a twisted boat structure with two β-sheets in apposition to each other. The β-sheets contain seven and eight antiparallel β-strands, respectively. This structure bears a high degree of resemblance to the crystal structure of LptA. Like LptA, LptC binds lipopolysaccharide in vitro. In vitro, LptA can displace lipopolysaccharide from LptC (but not vice versa), consistent with their locations and their proposed placement in a unidirectional export pathway. 相似文献