首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A female with a de novo tandem duplication of 9q22.2-q31.1 is presented. Molecular delineation of the breakpoints was made by microarray CGH and fluorescent in situ hybridisation. Involvement of 9q22.2-q31.1 seems to be sufficient to produce the characteristic phenotype of partial trisomy 9q syndrome. A discussion on the recognizable clinical features of the condition is presented.  相似文献   

2.
High resolution oligonucleotide array Comparative Genome Hybridization technology (array-CGH) has greatly assisted the recognition of the 1p36 contiguous gene deletion syndrome. The 1p36 deletion syndrome is considered to be one of the most common subtelomeric microdeletion syndromes and has an incidence of ~1 in 5000 live births, while respectively the "pure" 1p36 microduplication has not been reported so far. We present seven new patients who were referred for genetic evaluation due to Developmental Delay (DD), Mental Retardation (MR), and distinct dysmorphic features. They all had a wide phenotypic spectrum. In all cases previous standard karyotypes were negative. Array-CGH analysis revealed five patients with interstitial 1p36 microdeletion (four de novo and one maternal) and two patients with de novo reciprocal duplication of different sizes. These were the first reported "pure" 1p36 microduplication cases so far. Three of our patients carrying the 1p36 microdeletion syndrome were also found to have additional pathogenetic aberrations. These findings (del 3q27.1; del 4q21.22-q22.1; del 16p13.3; dup 21q21.2-q21.3; del Xp22.12) might contribute to the patients' severe phenotype, acting as additional modifiers of their clinical manifestations. We review and compare the clinical and array-CGH findings of our patients to previously reported cases with the aim of clearly delineating more accurate genotype-phenotype correlations for the 1p36 syndrome that could allow for a more precise prognosis.  相似文献   

3.
A case with de novo interstitial deletion of chromosome 7q21.1-q22: A patient with multiple congenital anomalies was found to have a de novo proximal interstitial deletion of chromosome 7q21.1-q22. The patient was 10.5 years of age, and manifestations include growth retardation (below 3rd percentile), mental retardation, mild microcephaly, hypersensitivity to noise, mild spasticity, short palpebral fissures, alternant exotropia, compensated hypermetropic astigmatism, hypotelorism, hypoplastic labia majora and minora, clinodactyly of fingers 4 and 5. Molecular studies revealed that the deletion had a paternal origin, while chromosomes of both parents cytogenetically were shown to be normal. Molecular, and fluorescence in situ hybridization (FISH) analyses confirmed no deletion at the Williams-Beuren Syndrome region. Some of the heterogeneous clinical findings were consistent with previously reported cases of same chromosomal breakpoints.  相似文献   

4.
5.
Del(1)(q22-q25) syndrome. Cytogenetics and phenotype   总被引:1,自引:0,他引:1  
A male infant is described with dysmorphology of the head and face, neck, extremities and genitalia, as well as growth and mental retardation and with the de novo interstitial deletion of the proximal segment of the long arm of chromosome 1-del (1) (q22-q25). Comparison of the phenotypic characteristics of this patient with those of previously described patients with similar deletion confirms the existence of the proximal 1q deletion syndrome.  相似文献   

6.
Prader-Willi syndrome (PWS) is a neurodevelopmental disorder that arises from lack of expression of paternally inherited genes known to be imprinted and located in the chromosome 15q11-q13 region. PWS is considered the most common syndromal cause of life-threatening obesity and is estimated at 1 in 10,000 to 20,000 individuals. A de novo paternally derived chromosome 15q11-q13 deletion is the cause of PWS in about 70% of cases, and maternal disomy 15 accounts for about 25% of cases. The remaining cases of PWS result either from genomic imprinting defects (microdeletions or epimutations) of the imprinting centre in the 15q11-q13 region or from chromosome 15 translocations. Here, we describe the clinical presentation of PWS, review the current understanding of causative cytogenetic and molecular genetic mechanisms, and discuss future directions for research.  相似文献   

7.
We describe a foetus with an interstitial deletion of 1q detected in amniotic fluid cells and we review the literature of similar pre- and postnatal cases, in order to identify prognostic factors useful for prenatal counselling. Foetal/parents karyotyping and FISH with whole chromosome 1 paint and BAC clone specific for 1q23-32 region were performed. Further 100 Kb resolution array-CGH analysis was executed after pregnancy termination on DNA extracted from foetal skin fibroblasts. Cytogenetic analyses revealed a de novo interstitial deletion involving the long arm of chromosome 1. FISH analysis confirmed that the deletion involves the intermediate 1q31.2 region. Foetal ultrasound (US), performed at 21 weeks of gestation, showed intrauterine growth restriction, shortening of the long bones, echogenic intracardiac focus and mild cerebral ventriculomegaly. Array-CGH localized the deletion in a DNA sequence of about 21 Mb in the 1q24.3-q31.3 region. Our findings, together with available data on patients with 1q deletion, suggest that the most severe phenotypes are not simply associated with larger deletion, and that the results of prenatal US assessment, rather than a fine molecular characterization of the deletion, should be taken into account for prognostic evaluation.  相似文献   

8.
Thirty-seven patients presenting features of the Prader-Willi syndrome (PWS) have been examined using cytogenetic and molecular techniques. Clinical evaluation showed that 29 of these patients fulfilled diagnostic criteria for PWS. A deletion of the 15q11.2-q12 region could be identified molecularly in 21 of these cases, including several cases where the cytogenetics results were inconclusive. One clinically typical patient is deleted at only two of five loci normally included in a PWS deletion. A patient carrying a de novo 13;X translocation was not deleted for the molecular markers tested but was clinically considered to be "atypical" PWS. In addition, five cases of maternal heterodisomy and two of isodisomy for 15q11-q13 were observed. All of the eight patients who did not fulfill clinical diagnosis of PWS showed normal maternal and paternal inheritance of chromosome 15 markers; however, one of these carried a ring-15 chromosome. A comparison of clinical features between deletion patients and disomy patients shows no significant differences between the two groups. The parental ages at birth of disomic patients were significantly higher than those for deletion patients. As all typical PWS cases showed either a deletion or disomy of 15q11.2-q12, molecular examination should provide a reliable diagnostic tool. As the disomy patients do not show either any additional or more severe features than typical deletion patients do, it is likely that there is only one imprinted region on chromosome 15 (within 15q11.2-q12).  相似文献   

9.
11q- syndrome: three cases and a review of the literature.   总被引:1,自引:0,他引:1  
We report on three children with de novo terminal deletions of the long arm of chromosome 11 (11q-) and breakpoints in 11q23-q24. Eighty-nine other patients with partial monosomy 11q have been reported and were reviewed by us. Salient features of 11q- syndrome are psychomotor retardation, trigonocephaly, telecanthus/hypertelorism, broad depressed nasal bridge, micrognathia, low set abnormal ears, cardiac anomalies and hand/foot anomalies. Renal agenesis and anal atresia are reported first here. Supratentorial white matter abnormality on CT and MRI present in our second patient was reported in three patients. Increased mortality is caused by cardiac anomalies. A third of all patients with partial monosomy 11q had thrombocytopenia or pancytopenia and this seems to be related to the absence of band 11q23-q24. Seventy-six percent of patients have de novo deletions with breakpoints in 11q21-q25. There is no obvious correlation between the length of the deleted segment and the severity of the symptoms. In unbalanced chromosomal patterns with deletions of 11q involving bands 11q23-q24 the typical phenotype of 11q- syndrome remains recognizable. Deletions distal to 11q24.1 do not produce the typical 11q- syndrome.  相似文献   

10.
Previously, we have described the clinical and molecular characterization of a de novo 14q13.1-q21.1 microdeletion, less than 3.5 Mb in size, in a patient with severe microcephaly, psychomotor retardation, and other clinical anomalies. Here we report the characterization of the genomic structure of the human tuberin-like protein gene 1 (TULIP1; approved gene symbol GARNL1), a CpGisland-associated, brain-expressed candidate gene for the neurological findings in our patient, and its murine homologue. The human TULIP1 gene was mapped to chromosome band 14q13.2 by fluorescence in situ hybridization of BAC clone RP11-355C3 (GenBank Accession No. AL160231), containing the 3' region of the gene. TULIP1 spans about 271 kb of human genomic DNA and is divided into 41 exons. An untranscribed, processed pseudogene of TULIP1 was found on human chromosome band 9q31.1. The active locus TULIP1, encoding a predicted protein of 2036 amino acids, is expressed ubiquitously in pre- and postnatal human tissues. The murine homologue Tulip1 spans about 220 kb of mouse genomic DNA and is also divided into 41 exons, encoding a predicted protein of 2035 amino acids. No pseudogene could be found in the available mouse sequence data. Several splicing variants were found. Considering the location, expression profile, and predicted function, TULIP1 is a strong candidate for several neurological features seen in 14q deletion patients. Additionally we searched for mutations in the coding region of TULIP1 in subjects from a family with idiopathic basal ganglia calcification (IBGC; Fahr disease), previously linked to chromosome 14q. We identified two novel SNPs in the intron-exon boundaries; however, they did not segregate only with affected subjects in the predicted model of an autosomal dominant disease such as IBGC.  相似文献   

11.
Angelman syndrome (AS) most frequently results from large (> or = 5 Mb) de novo deletions of chromosome 15q11-q13. The deletions are exclusively of maternal origin, and a few cases of paternal uniparental disomy of chromosome 15 have been reported. The latter finding indicates that AS is caused by the absence of a maternal contribution to the imprinted 15q11-q13 region. Failure to inherit a paternal 15q11-q13 contribution results in the clinically distinct disorder of Prader-Willi syndrome. Cases of AS resulting from translocations or pericentric inversions have been observed to be associated with deletions, and there have been no confirmed reports of balanced rearrangements in AS. We report the first such case involving a paracentric inversion with a breakpoint located approximately 25 kb proximal to the reference marker D15S10. This inversion has been inherited from a phenotypically normal mother. No deletion is evident by molecular analysis in this case, by use of cloned fragments mapped to within approximately 1 kb of the inversion breakpoint. Several hypotheses are discussed to explain the relationship between the inversion and the AS phenotype.  相似文献   

12.
13.
Patients with 13q deletion syndrome are characterized with different phenotypical features depending on the size and location of the deleted region on chromosome 13. These patients fall into three groups: In Group 1, deleted region is in the proximal and does not extend into q32; in Group 2, deleted region involves proximal to the q32 and in Group 3 q33-q34 is deleted. We present two cases with 13q syndrome with two different deleted region and different severity on clinical features: One case with interstitial deletion belongs to the Group 1 with mild mental retardation and minor malformations and the other case with terminal deletion belongs to Group 3 with moderate to severe mental retardation and major malformations.  相似文献   

14.
We report here a case of a newborn with hypotrophy and somatic stigmatization: microcephaly, facial dysmorphism, heart defect and immunodeficiency syndrome. The proband's karyotype was 46,XY,dup(4)(q28q35.2) de novo with chromosomal breaks in 4% of metaphases. We demonstrate the usefulness of a combination of physical examination, classical cytogenetics, FISH and PCR techniques in order to establish correct diagnosis because of overlap of some clinical and cytogenetic features of Nijmegen breakage syndrome (NBS) and duplication 4q in our patient. Although FISH technique detected translocation t(14q;21q) in 4 metaphases, deletion 657del5 in exon 6 of the NBS1 gene associated with NBS in Slavic population was not confirmed. We compare in this report similarity of the clinical picture of our patient, NBS cases and other patients carrying a duplication of the distal part of 4q as described in the literature.  相似文献   

15.
16.
The 15q11-q13 region is characterized by high instability, caused by the presence of several paralogous segmental duplications. Although most mechanisms dealing with cryptic deletions and amplifications have been at least partly characterized, little is known about the rare translocations involving this region. We characterized at the molecular level five unbalanced translocations, including a jumping one, having most of 15q transposed to the end of another chromosome, whereas the der(15)(pter->q11-q13) was missing. Imbalances were associated either with Prader-Willi or Angelman syndrome. Array-CGH demonstrated the absence of any copy number changes in the recipient chromosome in three cases, while one carried a cryptic terminal deletion and another a large terminal deletion, already diagnosed by classical cytogenetics. We cloned the breakpoint junctions in two cases, whereas cloning was impaired by complex regional genomic architecture and mosaicism in the others. Our results strongly indicate that some of our translocations originated through a prezygotic/postzygotic two-hit mechanism starting with the formation of an acentric 15qter->q1::q1->qter representing the reciprocal product of the inv dup(15) supernumerary marker chromosome. An embryo with such an acentric chromosome plus a normal chromosome 15 inherited from the other parent could survive only if partial trisomy 15 rescue would occur through elimination of part of the acentric chromosome, stabilization of the remaining portion with telomere capture, and formation of a derivative chromosome. All these events likely do not happen concurrently in a single cell but are rather the result of successive stabilization attempts occurring in different cells of which only the fittest will finally survive. Accordingly, jumping translocations might represent successful rescue attempts in different cells rather than transfer of the same 15q portion to different chromosomes. We also hypothesize that neocentromerization of the original acentric chromosome during early embryogenesis may be required to avoid its loss before cell survival is finally assured.  相似文献   

17.
We analyzed nine multigenerational families with ascertained affective spectrum disorders in northern Sweden's geographically isolated population of Vasterbotten. This northern Swedish population, which originated from a limited number of early settlers approximately 8,000 years ago, is genetically more homogeneous than outbred populations. In a genomewide linkage analysis, we identified three chromosomal loci with multipoint LOD scores (MPLOD) >/=2 at 9q31.1-q34.1 (MPLOD 3.24), 6q22.2-q24.2 (MPLOD 2.48), and 2q33-q36 (MPLOD 2.26) under a recessive affected-only model. Follow-up genotyping with application of a 2-cM density simple-tandem-repeat (STR) map confirmed linkage at 9q31.1-q34.1 (MPLOD 3.22), 6q23-q24 (MPLOD 3.25), and 2q33-q36 (MPLOD 2.2). In an initial analysis aimed at identification of the underlying susceptibility genes, we focused our attention on the 9q locus. We fine mapped this region at a 200-kb STR density, with the result of an MPLOD of 3.70. Genealogical studies showed that three families linked to chromosome 9q descended from common founder couples approximately 10 generations ago. In this approximately 10-generation pedigree, a common ancestral haplotype was inherited by the patients, which reduced the 9q candidate region to 1.6 Mb. Further, the shared haplotype was observed in 4.2% of patients with bipolar disorder with alternating episodes of depression and mania, but it was not observed in control individuals in a patient-control sample from the Vasterbotten isolate. These results suggest a susceptibility locus on 9q31-q33 for affective disorder in this common ancestral region.  相似文献   

18.
Intercalary de novo deletion of chromosome 1: del(1) (q24 to q32)   总被引:1,自引:0,他引:1  
We present one unrelated girl with a de novo interstitial deletion of a segment in the long arm of chromosome 1 (q24----q32). Comparison of the phenotypic characteristics of this proband with those of six previously described patients with similar deletion, does not suggest the existence of a 1q interstitial deletion syndrome. Clinical manifestations of these patients are variable and non specific: intrauterine growth retardation, low set ears, height and weight failure and mental retardation, clinodactyly of the fifth fingers. Other well detailed cases will be necessary to prove the existence of a 1 q interstitial deletion syndrome (q24----q32).  相似文献   

19.
Genomic aberrations of rectal carcinoma, especially DNA copy number changes associated with metastasis were largely unclear. We aim to identify the metastasis associated biomarkers in stage II rectal cancer. Formalin-fixed, paraffin-embedded primary tumor tissues of stage II rectal carcinoma were analyzed by array-based comparative genomic hybridization, and genomic aberrations were identified by Genomic Workbench and SAM software. Copy number changes and mRNA expressions were validated by Real-time PCR in an independent rectal cancer samples. The results showed that the most frequent gains in stage II rectal cancer were at 1q21.2-q23.1, 3p21.31, 11q12.2-q23.3, 12q24.11-q24.31, 12q13.11-q14.1 and losses in 18q11.2-q23, 17q21.33-q22, 13q31.1-q31.3, 21q21.1-q21.3, 8p23.3-p23.1 and 4q22.1-q23. Twenty-two amplifications and five homozygous deletions were also identified. We further found that S100A1 (1q21.3-q23.1), MCM7 (7q22.1) and JUND (19p13.11) were amplified and overexpressed in stage II rectal cancer. Interestingly, the genomic aberrations affected 14 signaling pathways including VEGF signaling pathway and fatty acid metabolism. Most importantly, loss of 13q31.1-q34 and gain of 1q44 were associated with distant metastasis. Our results indicated that these metastasis associated genomic changes may be useful to reveal the pathogenesis of rectal cancer metastasis and identify candidate biomarkers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号