首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Thermodynamic and spectroscopic properties of the species formed by dimethyltin(IV) cation with L-cysteine (cys) were studied by potentiometric, calorimetric, UV and NMR investigations in aqueous solution. The resulting speciation model showed the formation of five complex species: (CH(3))(2)Sn(cys)H(+), (CH(3))(2)Sn(cys)(0), (CH(3))(2)Sn(cys)OH(-), (CH(3))(2)Sn(cys)(2)H(-), (CH(3))(2)Sn(cys)(2)(2-). The stability and the formation percentages, for the mononuclear mixed species in particular, are very high, in a wide pH range. Thermodynamic parameters indicate that the enthalpy values are exothermic and the enthalpic contribution to the stability is higher than entropic one. Individual UV spectra of cys and dimethyltin(IV)-cys species were calculated. Spectroscopic results of UV and (1)H NMR investigations fully confirm the speciation model. The structures calculated from NMR investigations show that all the species have an eq-(CH(3))(2)-tbp structure.  相似文献   

3.
The interactions of the unpaired thiol residue (Cys34) of human serum albumin (HSA) with low-molecular-weight thiols and an Au(I)-based antiarthritic drug have been examined using electrospray ionization mass spectrometry. Early measurements of the amount of HSA containing Cys34 as the free thiol suggested that up to 30% of circulating HSA bound cysteine as a mixed disulfide. It has also been suggested that reaction of HSA with cysteine, occurs only on handling and storage of plasma. In our experiments, there were three components of HSA in freshly collected plasma from normal volunteers, HSA, HSA+cysteine, and HSA+glucose in the ratio approximately 50:25:25. We addressed this controversy by using iodoacetamide to block the free thiol of HSA in fresh plasma, preventing its reaction with plasma cysteine. When iodoacetamide was injected into a vacutaner tube as blood was collected, the HSA was modified by iodoacetamide, with 20-30% present as the mixed disulfide with cysteine (HSA+cys). These data provide strong evidence that 20-30% of HSA in normal plasma contains one bound cysteine. Reaction of HSA with [Au(S(2)O(3))(2)](3-) resulted in formation of the adducts HSA+Au(S(2)O(3)) and HSA+Au. Reaction of HSA with iodoacetamide prior to treatment with [Au(S(2)O(3))(2)](3-) blocked the formation of gold adducts.  相似文献   

4.
The Rieske protein of the ubiquinol-cytochrome c oxidoreductase (bc1 complex or b6f complex) contains a [2Fe-2S] cluster which is thought to be bound to the protein via two nitrogen and two sulfur ligands [Britt, R. D., Sauer, K., Klein, M. P., Knaff, D. B., Kriauciunas, A., Yu, C.-A., Yu, L., & Malkin, R. (1991) Biochemistry 30, 1892-1901; Gurbiel, R. J., Ohnishi, T., Robertson, D. E., Daldal, F., & Hoffman, B. M. (1991) Biochemistry 30, 11579-11584]. All available Rieske amino acid sequences have carboxyl termini featuring two conserved regions containing four cysteine (Cys) and two or three histidine (His) residues. Site-directed mutagenesis was applied to the Rieske protein of the photosynthetic bacterium Rhodobacter capsulatus, and the mutants obtained were studied biochemically in order to identify which of these conserved residues are the ligands of the [2Fe-2S] cluster. It was found that His159 (in the R. capsulatus numbering) is not a ligand and that the presence of the Rieske protein in the intracytoplasmic membrane is greatly decreased by alteration of any of the remaining six His or Cys residues. Among these mutations, only the substitution Cys155 to Ser resulted in the synthesis of Rieske protein (in a small amount) which contained a [2Fe-2S] cluster with altered biophysical properties. This finding suggested that Cys155 is not a ligand to the cluster. A comparison of the conserved regions of the Rieske proteins with bacterial aromatic dioxygenases (which contain a spectrally and electrochemically similar [2Fe-2S] cluster) indicated that Cys133, His135, Cys153, and His156 are conserved in both groups of enzymes, possibly as ligands to their [2Fe-2S] clusters. These findings led to the proposal that Cys138 and Cys155, which are not conserved in bacterial dioxygenases, may form an internal disulfide bond which is important for the structure of the Rieske protein and the conformation of the quinol oxidation (Qo) site of the bc1 complex.  相似文献   

5.
Geeganage S  Ling VW  Frey PA 《Biochemistry》2000,39(18):5397-5404
Galactose-1-phosphate uridylyltransferase (GalT) catalyzes the reversible transformation of uridine 5'-diphosphate glucose (UDPGlc) and galactose-1-phosphate into uridine 5'-diphosphate galactose (UDPGal) and glucose-1-phosphate through a double displacement mechanism, with the intermediate formation of a covalent uridylyl-enzyme (UMP-enzyme). The covalent linkage is a phosphoramidate formed between the UMP moiety and the His 166 N(epsilon)(2) of GalT, with His 166 N(delta1) retaining a proton throughout the catalytic cycle. Cys 160 and Ser 161 in Escherichia coli GalT are engaged in hydrogen bonding with the peripheral phosphoryl oxygen atoms of the substrate in the crystalline UMP-enzyme and in the crystalline complex of H166G-GalT with UDPGlc [Wedekind, J. E., Frey, P. A., and Rayment, I. (1996) Biochemistry 35, 11560-11569; Thoden, J. B., Ruzicka, F. J., Frey, P. A., Rayment, I., and Holden, H. M. (1997) Biochemistry 36, 1212-1222]. Site-directed mutagenesis, thermodynamic, transient kinetic, and steady-state kinetic studies have been performed to investigate the roles of Cys 160 and Ser 161 in catalysis. The absence of the thiol group of Cys 160 in the variants C160S and C160A did not seriously alter the enzymatic activity. However, the variant S161A displayed 7000-fold less activity than wild-type GalT. The low activity of S161A was directly related to impaired uridylylation rate constant (3.7 x 10(-)(2) s(-)(1)) and de-uridylylation rate constant (0.5 x 10(-)(2) s(-)(1)) resulting from a higher kinetic barrier for uridylyl-group transfer by the variant S161A as compared with the wild-type GalT. Equilibrium uridylylation studies showed that neither Cys 160 nor Ser 161 was involved in stabilizing the uridylyl-enzyme intermediate. The results lead to the conclusion that the conserved Cys 160 does not play a critical role in catalysis. Ser 161 is most likely involved in donating a hydrogen bond to the beta-phosphoryl group of a substrate, thereby providing proper orientation for nucleophilic catalysis.  相似文献   

6.
Isf (iron-sulfur flavoprotein) from Methanosarcina thermophila has been produced in Escherichia coli as a dimer containing two 4Fe-4S clusters and two FMN (flavin mononucleotide) cofactors. The deduced sequence of Isf contains six cysteines (Cys 16, Cys 47, Cys 50, Cys 53, Cys 59, and Cys 180), four of which (Cys 47, Cys 50, Cys 53, and Cys 59) comprise a motif with high identity to a motif (CX(2)CX(2)CX(4-7)C) present in all homologous Isf sequences available in the databases. The spacing of the motif is highly compact and atypical of motifs coordinating known 4Fe-4S clusters; therefore, all six cysteines in Isf from M. thermophila were altered to either alanine or serine to obtain corroborating biochemical evidence that the motif coordinates the 4Fe-4S cluster and to further characterize properties of the cluster dependent on ligation. All except the C16S variant were produced in inclusion bodies and were void of iron-sulfur clusters and FMN. Reconstitution of the iron-sulfur cluster and FMN was attempted for each variant. The UV-visible spectra of all reconstituted variants indicated the presence of iron-sulfur clusters and FMN. The reduced C16A/S variants showed the same electron paramagnetic resonance (EPR) spectra as wild-type Isf, whereas the reduced C180A/S variants showed EPR spectra identical to those of one of the two 4Fe-4S species present in the wild-type Isf spectrum. Conversely, EPR spectra of the oxidized C50A and C59A variants showed g values characteristic of a 3Fe-4S cluster. The spectra of the C47A and C53A variants indicated a 4Fe-4S cluster with g values and linewidths different from those for the wild type. The combined results of this study support a role for the novel CX(2)CX(2)CX(4-7)C motif in ligating the 4Fe-4S clusters in Isf and Isf homologues.  相似文献   

7.
8.
A simple identification method of L-tyrosine (Tyr) and L-cysteine (Cys) using gemini surfactant coated CdSe quantum dots by using a fluorescent spectroscopic technique is proposed. The gemini surfactant modified QDs show a selective fluorescence response between Tyr and Cys by addition of p-sulfonatocalix[4]arene (pSCA). The CdSe QDs coated with gemini surfactant [C(12)H(25)N(+)(CH(3))(2)(CH(2))(4)(CH(3))(2)N(+)C(12)H(25)].2Br(-) (GS) obviously responds to Tyr. While in the presence of pSCA, it shows selectivity to Cys due to the cooperation of gemini surfactant coated QDs (GS-QDs) and pSCA. Under optimal conditions, it is found that the luminescence of the GS-QDs enhanced by Tyr in a concentration-dependent fashion is described by a Langmuir binding isotherm equation in the range 5 x 10(-8)-10(-5) M. In the presence of pSCA, the luminescence of the GS-QDs enhanced by Cys in a concentration-dependent fashion can also be described by a Langmuir binding isotherm equation in the range 10(-8)-10(-4) M. The possible mechanism is discussed.  相似文献   

9.
The properties of [Fe(3)S(4)](+,0) clusters in wild-type and mutant forms of Pf Fd with Asp, Ser, Cys, Val, His, Asn, and Tyr residues occupying position 14, i.e., proximal to the three micro(2)-S atoms of the cluster, have been investigated by the combination of EPR, variable-temperature magnetic circular dichroism (VTMCD), and resonance Raman (RR) spectroscopies. Two distinct types of [Fe(3)S(4)] clusters are identified on the basis of the breadth of the S = (1)/(2) [Fe(3)S(4)](+) EPR resonances and the marked differences in the VTMCD spectra of the S = 2 [Fe(3)S(4)](0) clusters. On the basis of the available NMR data for [Fe(3)S(4)](+, 0) clusters in ferredoxins, the distinctive properties of these two types of [Fe(3)S(4)] clusters are interpreted in terms of different locations of the more strongly coupled pair of irons in the oxidized clusters and the valence-delocalized pair in the reduced clusters. Near-IR VTMCD measurements indicate the presence of S = (9)/(2) valence-delocalized pairs in both types of [Fe(3)S(4)](0) clusters, and the spin-dependent delocalization energies associated with the Fe-Fe interactions were determined to be approximately 4300 cm(-)(1) in both cases. We conclude that the nature of the residue at position 14 in Pyrococcus furiosus ferredoxin is an important determinant of the location of the reducible pair of irons in a [Fe(3)S(4)](+,0) cluster, and the redox properties of the wild-type and mutant ferredoxins are discussed in light of these new results.  相似文献   

10.
Biotin synthase is an iron-sulfur protein that utilizes AdoMet to catalyze the presumed radical-mediated insertion of a sulfur atom between the saturated C6 and C9 carbons of dethiobiotin. Biotin synthase (BioB) is aerobically purified as a dimer that contains [2Fe-2S](2+) clusters and is inactive in the absence of additional iron and reductants, and anaerobic reduction of BioB with sodium dithionite results in conversion to enzyme containing [4Fe-4S](2+) and/or [4Fe-4S](+) clusters. To establish the predominant cluster forms present in biotin synthase in anaerobic assays, and by inference in Escherichia coli, we have accurately determined the extinction coefficient and cluster content of the enzyme under oxidized and reduced conditions and have examined the equilibrium reduction potentials at which cluster reductions and conversions occur as monitored by UV/visible and EPR spectroscopy. In contrast to previous reports, we find that aerobically purified BioB contains ca. 1.2-1.5 [2Fe-2S](2+) clusters per monomer with epsilon(452) = 8400 M(-)(1) cm(-)(1) per monomer. Upon reduction, the [2Fe-2S](2+) clusters are converted to [4Fe-4S] clusters with two widely separate reduction potentials of -140 and -430 mV. BioB reconstituted with excess iron and sulfide in 60% ethylene glycol was found to contain two [4Fe-4S](2+) clusters per monomer with epsilon(400) = 30 000 M(-)(1) cm(-)(1) per monomer and is reduced with lower midpoint potentials of -440 and -505 mV, respectively. Finally, as predicted by the measured redox potentials, enzyme incubated under typical anaerobic assay conditions is repurified containing one [2Fe-2S](2+) cluster and one [4Fe-4S](2+) cluster per monomer. These results indicate that the dominant stable cluster state for biotin synthase is a dimer containing two [2Fe-2S](2+) and two [4Fe-4S](2+) clusters.  相似文献   

11.
W R Bernhard  M Vasák  J H K?gi 《Biochemistry》1986,25(8):1975-1980
Mammalian metallothioneins (MT) contain 20 Cys in a total of 61 amino acid residues and bind 7 Cd and/or Zn ions. The metal is localized in two clusters made up of three and four metal-thiolate complexes in the NH2- and COOH-terminal half of the chain, respectively [Otvos, J.D., & Armitage, I. M. (1980) Proc. Natl. Acad. Sci. U.S.A. 77, 7094-7098]. The formation of these oligonuclear complexes designated as Cd4 and Cd3 clusters has now been monitored in MT reconstituted with varying amounts of Cd by using differential chemical modification of Cys with [14C]iodoacetamide. At ratios below 2-3 mol of Cd/mol of MT bound, no differential protection of Cys by the metal, and hence no preferred binding, is detectable. At Cd-to-protein ratios between 3 and 5 mol of Cd/mol of MT, the modification profiles reveal preferred and cooperative binding in the COOH-terminal half of the chain, indicating formation of the Cd4 cluster. At still higher ratios, formation of the Cd3 cluster is initiated in the NH2-terminal section of the polypeptide chain. Comparison of the differential modification data of Cd6-MT and Cd7-MT suggests that the last Cd to be bound is coordinated to Cys ligands located mainly between positions 20 and 30 of the sequence. The extent of labeling of the different Cys in Cd7-MT indicates that the ligands of the Cd3 cluster are 3 times as accessible to iodoacetamide than those of the Cd4 cluster, suggesting a greater thermodynamic or kinetic stability of the latter.  相似文献   

12.
The ABC protein ABCE1, formerly named RNase L inhibitor RLI1, is one of the most conserved proteins in evolution and is expressed in all organisms except eubacteria. Because of its fundamental role in translation initiation and/or ribosome biosynthesis, ABCE1 is essential for life. Its molecular mechanism has, however, not been elucidated. In addition to two ABC ATPase domains, ABCE1 contains a unique N-terminal region with eight conserved cysteines, predicted to coordinate iron-sulfur clusters. Here we present detailed information on the type and on the structural organization of the Fe-S clusters in ABCE1. Based on biophysical, biochemical, and yeast genetic analyses, ABCE1 harbors two essential diamagnetic [4Fe-4S](2+) clusters with different electronic environments, one ferredoxin-like (CPX(n)CX(2)CX(2)C; Cys at positions 4-7) and one unique ABCE1-type cluster (CXPX(2)CX(3)CX(n)CP; Cys at positions 1, 2, 3, and 8). Strikingly, only seven of the eight conserved cysteines coordinating the Fe-S clusters are essential for cell viability. Mutagenesis of the cysteine at position 6 yielded a functional ABCE1 with the ferredoxin-like Fe-S cluster in a paramagnetic [3Fe-4S](+) state. Notably, a lethal mutation of the cysteine at position 4 can be rescued by ligand swapping with an adjacent, extra cysteine conserved among all eukaryotes.  相似文献   

13.
Kumar K  Walz FG 《Biochemistry》2001,40(12):3748-3757
Combinatorial random mutageneses involving either Asn43 with Asn44 (set 1) or Glu46 with an adjacent insertion (set 2) were undertaken to explore the functional perfection of the guanine recognition loop of ribonuclease T(1) (RNase T(1)). Four hundred unique recombinants were screened in each set for their ability to enhance enzyme catalysis of RNA cleavage. After a thorough selection procedure, only six variants were found that were either as active or more active than wild type which included substitutions of Asn43 by Gly, His, Leu, or Thr, an unplanned Tyr45Ser substitution and Glu46Pro with an adjacent Glu47 insertion. Asn43His-RNase T(1) has the same loop sequence as that for RNases Pb(1) and Fl(2). None of the most active mutants were single substitutions at Asn44 or double substitutions at Asn43 and Asn44. A total of 13 variants were purified, and these were subjected to kinetic analysis using RNA, GpC, and ApC as substrates. Modestly enhanced activities with GpC and RNA involved both k(cat) and K(M) effects. Mutants having low activity with GpC had proportionately even lower relative activity with RNA. Asn43Gly-RNase T(1) and all five of the purified mutants in set 2 exhibited similar values of k(cat)/K(M) for ApC which were the highest observed and about 10-fold that for wild type. The specificity ratio [(k(cat)/K(M))(GpC)/(k(cat)/K(M))(ApC)] varied over 30 000-fold including a 10-fold increase [Asn43His variant; mainly due to a low (k(cat)/K(M))(ApC)] and a 3000-fold decrease (Glu46Ser/(insert)Gly47 variant; mainly due to a low (k(cat)/K(M))(GpC)) as compared with wild type. It is interesting that k(cat) (GpC) for the Tyr45Ser variant was almost 4-fold greater than for wild type and that Pro46/(insert)Glu47 RNase T(1) is 70-fold more active than the permuted variant (insert)Pro47-RNase T(1) which has a conserved Glu46. In any event, the observation that only 6 out of 800 variants surveyed had wild-type activity supports the view that functional perfection of the guanine recognition loop of RNase T(1) has been achieved.  相似文献   

14.
Mammalian metallothionein-4 (MT-4) was found to be specifically expressed in stratified squamous epithelia where it plays an essential but poorly defined role in regulating zinc or copper metabolism. Here we report on the organization, stability, and the pathway of metal-thiolate cluster assembly in MT-4 reconstituted with Cd(2+) and Co(2+) ions. Both the (113)Cd NMR studies of (113)Cd(7)MT-4 and the spectroscopic characterization of Co(7)MT-4 showed that, similar to the classical MT-1 and MT-2 proteins, metal ions are organized in two independent Cd(4)Cys(11) and Cd(3)Cys(9) clusters with each metal ion tetrahedrally coordinated by terminal and bridging cysteine ligands. Moreover, we have demonstrated that the cluster formation in Cd(7)MT-4 is cooperative and sequential, with the Cd(4)Cys(11) cluster being formed first, and that a distinct single-metal nucleation intermediate Cd(1)MT-4 is required in the cluster formation process. Conversely, the absorption and circular dichroism features of metal-thiolate clusters in Cd(7)MT-4 indicate that marked differences in the cluster geometry exist when compared with those in Cd(7)MT-1/2. The biological implication of our studies as to the role of MT-4 in zinc metabolism of stratified epithelia is discussed.  相似文献   

15.
The three-dimensional structure of [(113)Cd7]-metallothionein-A (MTA) of the sea urchin Strongylocentrotus purpuratus was determined by homonuclear(1)H NMR experiments and heteronuclear [(1)H, (113)Cd]-correlation spectroscopy. MTA is composed of two globular domains, an N-terminal four-metal domain of the amino acid residues 1 to 36 and a Cd4Cys11cluster, and a C-terminal three-metal domain including the amino acid residues 37 to 65 and a Cd3Cys9cluster. The structure resembles the known mammalian and crustacean metallothioneins, but has a significantly different connectivity pattern of the Cys-metal co-ordination bonds and concomitantly contains novel local folds of some polypeptide backbone segments. These differences can be related to variations of the Cys sequence positions and thus emphasize the special role of the cysteine residues in defining the structure of metallothioneins, both on the level of the domain architecture and the topology of the metal-thiolate clusters.  相似文献   

16.
Human GLRX5 (glutaredoxin 5) is an evolutionarily conserved thiol-disulfide oxidoreductase that has a direct role in the maintenance of normal cytosolic and mitochondrial iron homoeostasis, and its expression affects haem biosynthesis and erythropoiesis. We have crystallized the human GLRX5 bound to two [2Fe-2S] clusters and four GSH molecules. The crystal structure revealed a tetrameric organization with the [2Fe-2S] clusters buried in the interior and shielded from the solvent by the conserved β1-α2 loop, Phe?? and the GSH molecules. Each [2Fe-2S] cluster is ligated by the N-terminal activesite cysteine (Cys??) thiols contributed by two protomers and two cysteine thiols from two GSH. The two subunits co-ordinating the cluster are in a more extended conformation compared with iron-sulfur-bound human GLRX2, and the intersubunit interactions are more extensive and involve conserved residues among monothiol GLRXs. Gel-filtration chromatography and analytical ultracentrifugation support a tetrameric organization of holo-GLRX5, whereas the apoprotein is monomeric. MS analyses revealed glutathionylation of the cysteine residues in the absence of the [2Fe-2S] cluster, which would protect them from further oxidation and possibly facilitate cluster transfer/acceptance. Apo-GLRX5 reduced glutathione mixed disulfides with a rate 100 times lower than did GLRX2 and was active as a glutathione-dependent electron donor for mammalian ribonucleotide reductase.  相似文献   

17.
Lewney S  Smith LJ 《Proteins》2012,80(3):913-919
Bovine α-lactalbumin (αLA) forms a misfolded disulfide bond shuffled isomer, X-αLA. This X-αLA isomer contains two native disulfide bridges (Cys 6-Cys 120 and Cys 28-Cys 111) and two non-native disulfide bridges (Cys 61-Cys 73 and Cys 77-Cys 91). MD simulations have been used to characterize the X-αLA isomer and its formation via disulfide bond shuffling and to compare it with the native fold of αLA. In the simulations of the X-αLA isomer the structure of the α-domain of native αLA is largely retained in agreement with experimental data. However, there are significant rearrangements in the β-domain, including the loss of the native β-sheet and calcium binding site. Interestingly, the energies of X-αLA and native αLA in simulations in the absence of calcium are closely similar. Thus, the X-αLA isomer represents a different low energy fold for the protein. Calcium binding to native αLA is shown to help preserve the structure of the β-domain of the protein limiting possibilities for disulfide bond shuffling. Hence, binding calcium plays an important role in both maintaining the native structure of αLA and providing a mechanism for distinguishing between folded and misfolded species.  相似文献   

18.
Iron-sulfur cluster biosynthesis depends on protein machineries, such as the ISC and SUF systems. The reaction is proposed to imply binding of sulfur and iron atoms and assembly of the cluster within a scaffold protein followed by transfer of the cluster to recipient apoproteins. The SufA protein from Escherichia coli, used here as a model scaffold protein is competent for binding sulfur atoms provided by the SufS-SufE cysteine desulfurase system covalently as shown by mass spectrometry. Investigation of site-directed mutants and peptide mapping experiments performed on digested sulfurated SufA demonstrate that binding exclusively occurs at the three conserved cysteines (cys50, cys114, cys116). In contrast, it binds iron only weakly (K(a)=5 x 10(5)M(-1)) and not specifically to the conserved cysteines as shown by M?ssbauer spectroscopy. [Fe-S] clusters, characterized by M?ssbauer spectroscopy, can be assembled during reaction of sulfurated SufA with ferrous iron in the presence of a source of electrons.  相似文献   

19.
Chemical, spectroscopic, and structural studies have established the metallothioneins (MTs) to be a widely occurring family of polypeptidic bioinorganic structures. They are distinguished by an extremely high metal (Zn, Cd, Cu) and Cys content and by the arrangement of these components in metal-thiolate clusters. By structural criteria the MTs have recently been subdivided into three classes (Fowler et al.,Experientia Suppl. 52, 19–22, 1987). Class I MTs include mammalian MTs and related forms. Class II MTs display no such relationships, and Class III MTs are atypical polypeptides made up of repetitive γ-glutamylcysteinyl units. Amino acid sequences of over 50 MTs are now known. In mammals, over 55% of the residues, including the 20 Cys, are conserved. Mammalian MTs are genetically polymorphous. Thus, in human tissues and cell lines closely related structures of ten functional isoMTs have been determined either by amino acid or nucleotide sequencing. A comparable degree of polymorphism also exists in the rabbit. Mammalian MTs have been inferred to bind a total of seven bivalent metal ions (Me) through thiolate coordination in two separate clusters, i.e., Me(II)3(Cys)9 and Me(II)4(Cys)11. This two-cluster model has now fully been confirmed by the spatial structures of rat MT-2 and rabbit MT-2a determined by 2D NMR spectroscopy in aqueous solution.  相似文献   

20.
The differences in metal-thiolate coordination and reactivity of mammalian metallothionein (MT) domains are closely related to their distinct, highly conservative cysteine number and position. Monkey metallothionein-1, containing a beta-domain with Cd(3)S(9) cluster and an alpha-domain with Cd(4)S(11) cluster, was used to evaluate the role of cysteine residues in the formation of MT's metal-thiolate clusters. The possible influence of cysteine residues on the binding and stability of MT domains has been examined with the metallothionein mutants: N4C, T27C and N4C/T27C, which possess ten or eleven cysteine residues in the re-constructed beta-domain, respectively. Assisted by study of UV, CD and electrospray ionization mass spectroscopy (ESI-MS) and their reactivity with DTNB (5,5'-dithiobis (2-nitrobenzoic acid)), we found that besides the original alpha-domain, some kinds of new domain containing 4-cadmium-thiolate clusters were formed in the N4C and N4C/T27C mutants of mkMT1. These new domains displayed metal binding and kinetic reactivity with DTNB similar to the alpha-domain. However, the thermal stability of the mutants was less stable than that of WT mkMT1. This might result from the disturbance of the inter-domains hydrogen bonds and of the non-cysteine amino acid residue arrangement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号