首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Clostridium difficile causes a potentially fatal diarrheal disease through the production of its principal virulence factors, toxin A and toxin B. The tcdC gene is thought to encode a negative regulator of toxin production. Therefore, increased toxin production, and hence increased virulence, is often inferred in strains with an aberrant tcdC genotype. This report describes the first allele exchange system for precise genetic manipulation of C. difficile, using the codA gene of Escherichia coli as a heterologous counterselection marker. It was used to systematically restore the Δ117 frameshift mutation and the 18-nucleotide deletion that occur naturally in the tcdC gene of C. difficile R20291 (PCR ribotype 027). In addition, the naturally intact tcdC gene of C. difficile 630 (PCR ribotype 012) was deleted and then subsequently restored with a silent nucleotide substitution, or "watermark," so the resulting strain was distinguishable from the wild type. Intriguingly, there was no association between the tcdC genotype and toxin production in either C. difficile R20291 or C. difficile 630. Therefore, an aberrant tcdC genotype does not provide a broadly applicable rationale for the perceived notion that PCR ribotype 027 strains are "high-level" toxin producers. This may well explain why several studies have reported that an aberrant tcdC gene does not predict increased toxin production or, indeed, increased virulence.  相似文献   

2.
Clostridium difficile is a major cause of nosocomial diarrhoea. The toxins produced by C. difficile are responsible for the characteristic pathology observed in C. difficile disease, but several surface-associated proteins of C. difficile are also recognized by the immune system and could modulate the immune response in infection. The aim of this study was to assess the induction of cytokines in a macrophage cell line in response to different antigens prepared from five C. difficile strains: the hypervirulent ribotype 027, ribotypes 001 and 106 and reference strains VPI 10463 and 630 (ribotype 012). PMA-activated THP-1 cells were challenged with surface-layer proteins, flagella, heat-shock proteins induced at 42 and 60 °C and culture supernatants of the five C. difficile strains. The production of the pro-inflammatory cytokines such as TNF-α, IL-1β, IL-6, IL-8 and IL-12p70 was observed in response to the surface-associated proteins, and high levels of TNF-α, IL-1β and IL-8 were detected in response to challenge with culture supernatants. The immune response triggered by the surface-associated proteins was independent of the strain from which the antigens were derived, suggesting that these proteins might not be related to the varying virulence of the hypervirulent ribotype 027 or ribotypes 001 and 106. There was no interstrain difference observed in response to the culture supernatants of the tested C. difficile strains, but this was perhaps due to toxicity induced in the macrophages by large amounts of toxin A and toxin B.  相似文献   

3.
The insertion sites of the conjugative transposon Tn916 in the anaerobic pathogen Clostridium difficile were determined using Illumina Solexa high-throughput DNA sequencing of Tn916 insertion libraries in two different clinical isolates: 630ΔE, an erythromycin-sensitive derivative of 630 (ribotype 012), and the ribotype 027 isolate R20291, which was responsible for a severe outbreak of C. difficile disease. A consensus 15-bp Tn916 insertion sequence was identified which was similar in both strains, although an extended consensus sequence was observed in R20291. A search of the C. difficile 630 genome showed that the Tn916 insertion motif was present 100,987 times, with approximately 63,000 of these motifs located in genes and 35,000 in intergenic regions. To test the usefulness of Tn916 as a mutagen, a functional screen allowed the isolation of a mutant. This mutant contained Tn916 inserted into a gene involved in flagellar biosynthesis.  相似文献   

4.
5.
The increased prevalence of hypervirulent ribotype 027 Clostridium difficile requires rapid identification of isolates in order to implement timely infection control strategies. High resolution melt (HRM) analysis of PCR products can identify strain variation amongst genera of bacteria. The intergenic (16S-23S rDNA) spacer region contains sequence regions conserved within genera and other sequence region variables between species within genera. We wished to investigate whether HRM analysis of PCR ribotyping products could identify ribotype 027 C. difficile. Ribotyping was performed on 93 clinical isolates and five control strains and band patterns were analysed using GelCompar II (Applied Maths, USA). Real-time PCR using ribotyping primers was performed and normalised melt curves were generated. The HRM data was then imported into ScreenClust software (QIAGEN) to generate principal component analysis graphs depicting clustered relationships of strains. Ribotyping produced clear PCR bands for 88/98 isolates tested. Dendrograms generated by GelCompar showed a diversity of ribotype patterns amongst these 88 isolates with 18 groups identified with 70% homology. One clinical isolate showed 100% homology with the control 027 strains. ScreenClust analysis of the same 88 HRM results showed clustering of isolates, with 027 strains identifiable as a unique cluster. HRM analysis correctly identified the control 027 stains and the clinical isolate shown to be 027. HRM combined with ScreenClust analysis of real-time PCR products of the 16S-23S rDNA spacer region successfully identified ribotype 027 strains. For infection control purposes this was achieved within 2-3 h of colony isolation.  相似文献   

6.
Eight temperate phages were characterized after mitomycin C induction of six Clostridium difficile isolates corresponding to six distinct PCR ribotypes. The hypervirulent C. difficile strain responsible for a multi-institutional outbreak (NAP1/027 or QCD-32g58) was among these prophage-containing strains. Observation of the crude lysates by transmission electron microscopy (TEM) revealed the presence of three phages with isometric capsids and long contractile tails (Myoviridae family), as well as five phages with long noncontractile tails (Siphoviridae family). TEM analyses also revealed the presence of a significant number of phage tail-like particles in all the lysates. Southern hybridization experiments with restricted prophage DNA showed that C. difficile phages belonging to the family Myoviridae are highly similar and most likely related to previously described prophages phiC2, phiC5, and phiCD119. On the other hand, members of the Siphoviridae phage family are more genetically divergent, suggesting that they originated from distantly related ancestors. Our data thus suggest that there are at least three genetically distinct groups of temperate phages in C. difficile; one group is composed of highly related myophages, and the other two groups are composed of more genetically heterogeneous siphophages. Finally, no gene homologous to genes encoding C. difficile toxins or toxin regulators could be identified in the genomes of these phages using DNA hybridization. Interestingly, each unique phage restriction profile correlated with a specific C. difficile PCR ribotype.  相似文献   

7.
Rupnik M  Grabnar M  Geric B 《Anaerobe》2003,9(6):289-294
Clostridium difficile produces three toxins, TcdA, TcdB and CDT. TcdA and TcdB are single-stranded molecules acting as glucosyltransferases specific for small GTPases. CDT is an actin specific ADP-ribosylating binary toxin characteristically composed of two independent components, enzymatic CDTa (48 kDa) and binding CDTb (99 kDa). The cdtA and cdtB genes were sequenced in two CDT-positive strains of C. difficile (CD 196 and 8864) and at least two CDT-negative strains with truncated form of binary toxin genes are known (VPI 10463 and C. difficile genome strain 630). The prevalence of binary toxin producing strains is estimated to be from 1.6% to 5.5%, although a much higher proportion has been reported in some studies. The role of the binary toxin as an additional virulence factor is discussed.  相似文献   

8.
In diseased piglets from two Dutch pig-breeding farms with neonatal diarrhoea for more than a year, culture and PCR analyses identified the involved microorganism as Clostridium difficile PCR ribotype 078 harbouring toxin A ( tcdA ) and B ( tcdB ), and binary toxin genes. Isolated strains showed a 39 bp deletion in the tcdC gene and they were ermB gene-negative. A number of 11 porcine and 21 human isolated C. difficile PCR ribotype 078 toxinotype V strains were found genetically related by multiple-locus variable-number tandem-repeat analysis (MLVA). Moreover, a clonal complex was identified, containing both porcine and human isolates. The porcine isolates showed an antimicrobial susceptibility profile overlapping that of isolates from Dutch human patients. On the basis of these pheno- and genotypical analyses results, it was concluded that the strains from affected piglets were indistinguishable from increasingly encountered C. difficile PCR ribotype 078 strains of human C. difficile infections in the Dutch population and that a common origin of animal and humans strains should be considered.  相似文献   

9.
Clostridium difficile binary toxin (CDT) is an actin-specific ADP-ribosyltransferase that is produced by various C. difficile isolates, including the "hypervirulent" NAP1/027 epidemic strains. In contrast to the two major toxins from C. difficile, toxin A and toxin B, little is known about the role of CDT in virulence or how C. difficile regulates its production. In this study we have shown that in addition to the cdtA and cdtB toxin structural genes, a functional cdt locus contains a third gene, here designated cdtR, which is predicted to encode a response regulator. By introducing functional binary toxin genes into cdtR(+) and cdtR-negative strains of C. difficile, it was established that the CdtR protein was required for optimal expression of binary toxin. Significantly increased expression of functional binary toxin was observed in the presence of a functional cdtR gene; an internal deletion within cdtR resulted in a reduction in binary toxin production to basal levels. Strains that did not carry intact cdtAB genes or cdtAB pseudogenes also did not have cdtR, with the entire cdt locus, or CdtLoc, being replaced by a conserved 68-bp sequence. These studies have shown for the first time that binary toxin production is subject to strict regulatory control by the response regulator CdtR, which is a member of the LytTR family of response regulators and is related to the AgrA protein from Staphylococcus aureus.  相似文献   

10.
Clostridium difficile has emerged rapidly as the leading cause of antibiotic-associated diarrheal disease, with the temporal and geographical appearance of dominant PCR ribotypes such as 017, 027 and 078. Despite this continued threat, we have a poor understanding of how or why particular variants emerge and the sources of strains that dominate different human populations. We have undertaken a breadth genotyping study using multilocus sequence typing (MLST) analysis of 385 C. difficile strains from diverse sources by host (human, animal and food), geographical locations (North America, Europe and Australia) and PCR ribotypes. Results identified 18 novel sequence types (STs) and 3 new allele sequences and confirmed the presence of five distinct clonal lineages generally associated with outbreaks of C. difficile infection in humans. Strains of animal and food origin were found of both ST-1 and ST-11 that are frequently associated with human disease. An in depth MLST analysis of the evolutionary distant ST-11/PCR ribotype 078 clonal lineage revealed that ST-11 can be found in alternative but closely related PCR ribotypes and PCR ribotype 078 alleles contain mutations generating novel STs. PCR ribotype 027 and 017 lineages may consist of two divergent subclades. Furthermore evidence of microdiversity was present within the heterogeneous clade 1. This study helps to define the evolutionary origin of dominant C. difficile lineages and demonstrates that C. difficile is continuing to evolve in concert with human activity.  相似文献   

11.
Clostridium difficile is an important pathogen of humans and animals, representing a significant global healthcare problem. The last decade has seen the emergence of epidemic BI/NAP1/027 and ribotype 078 isolates, associated with the onset of more severe disease and higher rates of morbidity and mortality. However, little is known about these isolates at the molecular level, partly due to difficulties in the genetic manipulation of these strains. Here we report the development of an optimised Tn916-mediated plasmid transfer system, and the use of this system to construct and complement spo0A mutants in a number of different C. difficile strain backgrounds. Spo0A is a global regulator known to control sporulation, but may also be involved in the regulation of potential virulence factors and other phenotypes. Recent studies have failed to elucidate the role of Spo0A in toxin A and toxin B production by C. difficile, with conflicting data published to date. In this study, we aimed to clarify the role of Spo0A in production of the major toxins by C. difficile. Through the construction and complementation of spo0A mutants in two ribotype 027 isolates, we demonstrate that Spo0A acts as a negative regulator of toxin A and toxin B production in this strain background. In addition, spo0A was disrupted and subsequently complemented in strain 630Δerm and, for the first time, in a ribotype 078 isolate, JGS6133. In contrast to the ribotype 027 strains, Spo0A does not appear to regulate toxin production in strain 630Δerm. In strain JGS6133, Spo0A appears to negatively regulate toxin production during early stationary phase, but has little effect on toxin expression during late stationary phase. These data suggest that Spo0A may differentially regulate toxin production in phylogenetically distinct C. difficile strain types. In addition, Spo0A may be involved in regulating some aspects of C. difficile motility.  相似文献   

12.
Clostridium difficile is the most frequent cause of nosocomial diarrhea worldwide, and recent reports suggested the emergence of a hypervirulent strain in North America and Europe. In this study, we applied comparative phylogenomics (whole-genome comparisons using DNA microarrays combined with Bayesian phylogenies) to model the phylogeny of C. difficile, including 75 diverse isolates comprising hypervirulent, toxin-variable, and animal strains. The analysis identified four distinct statistically supported clusters comprising a hypervirulent clade, a toxin A(-) B(+) clade, and two clades with human and animal isolates. Genetic differences among clades revealed several genetic islands relating to virulence and niche adaptation, including antibiotic resistance, motility, adhesion, and enteric metabolism. Only 19.7% of genes were shared by all strains, confirming that this enteric species readily undergoes genetic exchange. This study has provided insight into the possible origins of C. difficile and its evolution that may have implications in disease control strategies.  相似文献   

13.

Background

Clostridium difficile is the leading cause of hospital-associated diarrhoea in the US and Europe. Recently the incidence of C. difficile-associated disease has risen dramatically and concomitantly with the emergence of ‘hypervirulent’ strains associated with more severe disease and increased mortality. C. difficile contains numerous mobile genetic elements, resulting in the potential for a highly plastic genome. In the first sequenced strain, 630, there is one proven conjugative transposon (CTn), Tn5397, and six putative CTns (CTn1, CTn2 and CTn4-7), of which, CTn4 and CTn5 were capable of excision. In the second sequenced strain, R20291, two further CTns were described.

Results

CTn1, CTn2 CTn4, CTn5 and CTn7 were shown to excise from the genome of strain 630 and transfer to strain CD37. A putative CTn from R20291, misleadingly termed a phage island previously, was shown to excise and to contain three putative mobilisable transposons, one of which was capable of excision. In silico probing of C. difficile genome sequences with recombinase gene fragments identified new putative conjugative and mobilisable transposons related to the elements in strains 630 and R20291. CTn5-like elements were described occupying different insertion sites in different strains, CTn1-like elements that have lost the ability to excise in some ribotype 027 strains were described and one strain was shown to contain CTn5-like and CTn7-like elements arranged in tandem. Additionally, using bioinformatics, we updated previous gene annotations and predicted novel functions for the accessory gene products on these new elements.

Conclusions

The genomes of the C. difficile strains examined contain highly related CTns suggesting recent horizontal gene transfer. Several elements were capable of excision and conjugative transfer. The presence of antibiotic resistance genes and genes predicted to promote adaptation to the intestinal environment suggests that CTns play a role in the interaction of C. difficile with its human host.  相似文献   

14.
15.
Clostridium difficile infection is increasing in both frequency and severity, with the emergence of new highly virulent strains highlighting the need for more rapid and effective methods of control. Here, we show that bacteriophage endolysin can be used to inhibit and kill C. difficile. The genome sequence of a novel bacteriophage that is active against C. difficile was determined, and the bacteriophage endolysin gene was subcloned and expressed in Escherichia coli. The partially purified endolysin was active against 30 diverse strains of C. difficile, and importantly, this group included strains of the major epidemic ribotype 027 (B1/NAP1). In contrast, a range of commensal species that inhabit the gastrointestinal tract, including several representatives of the clostridium-like Firmicutes, were insensitive to the endolysin. This endolysin provides a platform for the generation of both therapeutic and detection systems to combat the C. difficile problem. To investigate a method for the protected delivery and production of the lysin in the gastrointestinal tract, we demonstrated the expression of active CD27L endolysin in the lactic acid bacterium Lactococcus lactis MG1363.  相似文献   

16.
Clostridium difficile is a major cause of infectious diarrhea worldwide. Although the cell surface proteins are recognized to be important in clostridial pathogenesis, biological functions of only a few are known. Also, apart from the toxins, proteins exported by C. difficile into the extracellular milieu have been poorly studied. In order to identify novel extracellular factors of C. difficile, we analyzed bacterial culture supernatants prepared from clinical isolates, 630 and R20291, using liquid chromatography-tandem mass spectrometry. The majority of the proteins identified were non-canonical extracellular proteins. These could be largely classified into proteins associated to the cell wall (including CWPs and extracellular hydrolases), transporters and flagellar proteins. Seven unknown hypothetical proteins were also identified. One of these proteins, CD630_28300, shared sequence similarity with the anthrax lethal factor, a known zinc metallopeptidase. We demonstrated that CD630_28300 (named Zmp1) binds zinc and is able to cleave fibronectin and fibrinogen in vitro in a zinc-dependent manner. Using site-directed mutagenesis, we identified residues important in zinc binding and enzymatic activity. Furthermore, we demonstrated that Zmp1 destabilizes the fibronectin network produced by human fibroblasts. Thus, by analyzing the exoproteome of C. difficile, we identified a novel extracellular metalloprotease that may be important in key steps of clostridial pathogenesis.  相似文献   

17.
18.
ABSTRACT: BACKGROUND: Clostridium difficile is the main cause of antibiotic associated diarrhea. In the past decade, the number of C. difficile patients has increased dramatically, coinciding with the emergence of two PCR ribotypes, 027 and 078. PCR ribotype 078 is also frequently found during C. difficile outbreaks in pigfarms. Previously, the genome of the PCR ribotype 078 strain M120, a human isolate, was described to contain a unique insert of 100 kilobases. RESULTS: Analysis of this insert revealed over 90 open reading frames, encoding proteins originating from transposons, phages and plasmids. The insert was shown to be a transposon (Tn6164), as evidenced by the presence of an excised and circularised molecule, containing the ligated 5'and 3'ends of the insert. Transfer of the element could not be shown through filter-mating experiments. Whole genome sequencing of PCR ribotype 078 strain 31618, isolated from a diarrheic piglet, showed that Tn6164 was not present in this strain. To test the prevalence of Tn6164, a collection of 231 Clostridium difficile PCR ribotype 078 isolates from human (n = 173) and porcine (n = 58) origin was tested for the presence of this element by PCR. The transposon was present in 9 human, tetracycline resistant isolates, originating from various countries in Europe, and none of the pig strains. Nine other strains, also tetracycline resistant human isolates, contained half of the transposon, suggesting multiple insertion steps yielding the full Tn6164. Other PCR ribotypes (n = 66) were all negative for the presence of the transposon. Multi locus variable tandem repeat analysis revealed genetic relatedness among transposon containing isolates. Although the element contained several potential antibiotic resistance genes, it did not yield a readily distinguishable phenotype. CONCLUSIONS: Tn6164 is a newly described transposon, occurring sporadically in C. difficile PCR ribotype 078 strains. Although no transfer of the element could be shown, we hypothesize that the element could serve as a reservoir of antibiotic resistance genes for other bacteria. Further research is needed to investigate the transfer capabilities of the element and to substantiate the possible role of Tn6164 as a source of antibiotic resistance genes for other gut pathogens.  相似文献   

19.
Clostridium difficile is the etiological agent of diarrhoea and colitis, especially in elderly patients. The incidence of these diseases has increased during the last 10 years. Emergence of so-called hypervirulent strains is considered as one of the main factors responsible for the more severe disease and changed profile of sensitivity to antimicrobial agents. The aim of this work was to determine the sensitivity profile of toxigenic strains of C. difficile in the Czech Republic in 2011–2012 to selected antibiotics. The antibiotics clindamycin, metronidazole, vancomycin and amoxicillin with clavulanic acid were used for this purpose. Isolates cultured on Brazier's C. difficile selective agar were analysed for the presence of toxin genes using Xpert detection system. Xpert analysis revealed that 33 strains carried the genes for toxins tcdB, cdt and tcdCΔ117, thus showing characteristics typical for the hypervirulent ribotype 027/PFGE type NAP1/REA type B1. The remaining 29 strains carried only the gene for toxin B (tcdB) and not cdt and tcdCΔ117. Our results indicate the higher susceptibility of C. difficile hypertoxigenic strains to three out of four tested antibiotics (except vancomycin) than it is for the other toxigenic strains. We found that only 10.34 % of other toxigenic strains were resistant to clindamycin, and no resistance was found in all other cases. All the isolates were sensitive to amoxicillin/clavulanic acid in vitro. However, its use is not recommended for therapy of infections caused by C. difficile.  相似文献   

20.
The occurrence of Clostridium difficile in nine wastewater treatment plants in the Ticino Canton (southern Switzerland) was investigated. The samples were collected from raw sewage influents and from treated effluents. Forty-seven out of 55 characterized C. difficile strains belonged to 13 different reference PCR ribotypes (009, 010, 014, 015, 039, 052, 053, 066, 070, 078, 101, 106, and 117), whereas 8 strains did not match any of those available in our libraries. The most frequently isolated ribotype (40%) was 078, isolated from six wastewater treatment plants, whereas ribotype 066, a toxigenic emerging ribotype isolated from patients admitted to hospitals in Europe and Switzerland, was isolated from the outgoing effluent of one plant. The majority of the isolates (85%) were toxigenic. Forty-nine percent of them produced toxin A, toxin B, and the binary toxin (toxigenic profile A(+) B(+) CDT(+)), whereas 51% showed the profile A(+) B(+) CDT(-). Interestingly, eight ribotypes (010, 014, 015, 039, 066, 078, 101, and 106) were among the riboprofiles isolated from symptomatic patients admitted to the hospitals of the Ticino Canton in 2010. Despite the limitation of sampling, this study highlights that toxigenic ribotypes of C. difficile involved in human infections may occur in both incoming and outgoing biological wastewater treatment plants. Such a finding raises concern about the possible contamination of water bodies that receive wastewater treatment plant effluents and about the safe reuse of treated wastewater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号