首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Objectives

To investigate the clinical utility of VEMPs in patients suffering from unilateral vestibular schwannoma (VS) and to determine the optimal stimulation parameter (air conducted sound, bone conducted vibration) for evaluating the function of the vestibular nerve.

Methods

Data were obtained in 63 patients with non-operated VS, and 20 patients operated on VS. Vestibular function was assessed by caloric, cervical and ocular VEMP testing. 37/63 patients with conclusive ACS ocular VEMPs responses were studied separately.

Results

In the 63 non-operated VS patients, cVEMPs were abnormal in 65.1% of patients in response to AC STB and in 49.2% of patients to AC clicks. In the 37/63 patients with positive responses from the unaffected side, oVEMPs were abnormal in 75.7% of patients with ACS, in 67.6% with AFz and in 56.8% with mastoid BCV stimulation. In 16% of the patients, VEMPs were the only abnormal test (normal caloric and normal hearing). Among the 26 patients who did not show oVEMP responses on either side with ACS, oVEMPs responses could be obtained with AFz (50%) and with mastoid stimulation (89%).

Conclusions

The VEMP test demonstrated significant clinical value as it yielded the only abnormal test results in some patients suffering from a unilateral vestibular schwannoma. For oVEMPs, we suggest that ACS stimulation should be the initial test. In patients who responded to ACS and who had normal responses, BCV was not required. In patients with abnormal responses on the affected side using ACS, BCV at AFz should be used to confirm abnormal function of the superior vestibular nerve. In patients who exhibited no responses on either side to ACS, BCV was the only approach allowing assessment of the function of the superior vestibular nerve. We favor using AFz stimulation first because it is easier to perform in clinical practice than mastoid stimulation.  相似文献   

2.
Measuring the vestibular evoked myogenic potential (VEMP) promises to become a routine method for assessing vestibular function, although the technique is not yet standardized. To overcome the problem that the VEMP amplitude depends not only on the inhibition triggered by the acoustic stimulation of the vestibular end organs in the inner ear, but also on the tone of the muscle from which the potential is recorded, the VEMP is often normalized by dividing through a measure of the electromyogram (EMG) activity. The underlying idea is that VEMP amplitude and EMG activity are proportional. But this would imply that the muscle tone is irrelevant for a successful VEMP recording, contradicting experimental evidence. Here, an analytical model is presented that allows to resolve the contradiction. The EMG is modeled as the sum of motor unit action potentials (MUAPs). A brief inhibition can be characterized by its equivalent rectangular duration (ERD), irrespective of the actual time course of the inhibition. The VEMP resembles a polarity-inverted MUAP under such circumstances. Its amplitude is proportional to both the ERD and the MUAP rate. The EMG activity, by contrast, is proportional to the square root of the MUAP rate. Thus, the normalized VEMP still depends on the muscle tone. To avoid confounding effects of the muscle tone, the standard deviation of the EMG could be considered. But the inhibition effect on the standard deviation is small so that the measuring time would have to be much longer than usual today.  相似文献   

3.
L Ballati  S Evangelista  S Manzini 《Life sciences》1992,51(11):PL119-PL124
The effect of repeated weekly antigen challenges by aerosol on bronchopulmonary responses to ACh, histamine, neurokinin A or atropine-resistant (NANC) component of vagal stimulation, has been studied in guinea pigs. Bronchospastic responses were measured in anaesthetized animals, 7 days after the last challenge with antigen (or vehicle). No difference was observed between control and antigen challenged guinea pigs in their responsiveness to acetylcholine (1-300 mumol kg-1 i.v.) or histamine (1-300 mumol kg-1 i.v.). On the other hand, amplitude of bronchospasm induced by neurokinin A (1-3 mumol kg-1 i.v.) or NANC vagal stimulation (20 Hz, 1 msec, 10 V, trains of 5-20 sec) was significantly increased in guinea pigs previously challenged with antigen, as compared to controls. These results suggest that repetitive antigen exposure in sensitized guinea pigs generates an increase in the responsiveness to exogenously administered or endogenously released tachykinins, at a time when no generalized hyperresponsiveness to other spasmogens could be observed.  相似文献   

4.
The incidence of constipation increases with age. This has been linked to age-related changes in the structure and function of myenteric neurons regulating intestinal motility; however, the role of submucous neurons is unknown. The aim of this study was to determine the effect of maturation on cholinergic receptor-induced ion secretion in guinea pig colon. Changes in the short-circuit current (Isc) and tissue conductance were monitored in muscle-stripped colonic segments from young (3-4-month-old) and mature (12-15-month-old) male guinea pigs. Thirty-one percent of colonic segments from young guinea pigs exhibited ongoing neural activity, which was absent in mature animals. Baseline Isc was significantly higher only in young guinea pig tissues with ongoing activity. Tissue conductance was similar in all tissues. Electrical field stimulation caused a biphasic increase in the Isc. At 15 V/10 Hz, only Peak 1 was attenuated, whereas both peaks were reduced in mature guinea pigs at 10 V/5Hz. 1,1, dimethyl-4-phenyl-piperazinium(DMPP)-induced ion secretion was blunted in mature guinea pigs. Atropine reduced the 1,1, dimethyl-4-phenyl-piperazinium response only in young guinea pigs. Carbachol-induced ion secretion was similar in tissues from both age groups. In conclusion, nicotinic receptor-induced secretion mediated by both cholinergic and noncholinergic secretomotor neurons was blunted; however, epithelial muscarinic receptor activity was unaltered during maturation.  相似文献   

5.
Streptomycin is the antibiotic of choice to treat tuberculosis and other infectious diseases but it causes vestibular malfunction and hipoacusia. Rodents are usually employed as models of drug action to the inner ear and results are extrapolated to what happens in humans. In rats, streptomycin destroys macular sensory cells and does not affect cochlear ones, whereas in guinea pigs the contrary is true. Action on the vestibular cristae cells involved in vestibulo-ocular reflex integrity is less clear. Thus, we compared this response in both pigmented guinea pigs (Cavia cobaya) and rats (Rattus norvegicus) after parallel streptomycin chronic treatment. In guinea pigs, the reflex was obliterated along treatment time; in rats this behavior was not observed, suggesting that the end organ target was diverse. In recent studies, streptidine, a streptomycin derivative found in the blood of humans and rats treated with streptomycin, was the actual ototoxic agent. The putative streptomycin vestibular organ target observed in humans corresponds with the guinea pig observations. Results observed in rats are controversial: streptidine did not cause any damage either to vestibular cristae nor auditory cells. We hypothesize differential drug metabolism and distribution and conclude that results in laboratory animals may not always be applicable in the human situation.  相似文献   

6.
Electrical field stimulation (70 V, 1 ms, 0.2-500 Hz) of human bronchial strips and guinea pig tracheal chains produced contractile and relaxant responses. Contractions were blocked by atropine, 10(-6) M, and tetrodotoxin (TTX), 0.1-1.0 micrograms/ml, demonstrating a cholinergic excitatory neural component. Frequencies causing half-maximal contractile response to field stimulation (EFc 50) were 10 +/- 2 Hz for guinea pig and 13 +/- 1 Hz for human airways. Relaxations were unmasked by atropine 10(-6) M and slightly diminished by propranolol in guinea pig but not human airways, demonstrating a predominantly nonadrenergic inhibitory pathway in both species. Relaxation of intrinsic tone occurred at stimulation frequencies of 1 Hz or more. Frequencies causing half-maximal relaxation (EFi 50) were 3.5 +/- 0.3 Hz for guinea pig trachealis and 38 +/- 6 Hz for human bronchi. Following 1 microgram/ml TTX, EFi 50 values increased to 104 +/- 12 and 70 +/- 14 Hz, respectively. Frequencies of field stimulation that were inhibitable by TTX (less than or equal to 20 Hz) induced greater relaxation in guinea pig than human airways (70 vs. 10% of the maximal relaxation to 10(-2) M theophylline, respectively). The methods of analysis outlined in this study can be used to compare relative degrees of functional innervation between tissues from the same or different species.  相似文献   

7.
The experiments have been performed on 24 guinea pigs (48 labyrinthes), 6 of them--control and 18 have been subjected to noise (one octava) with the average geometrical in diaposone of 2,000 Hz, at intensity level 100 dB. Six animals are subjected to a single effect for 6 h and 12--to repeated effect during 6 days running, 4-6 h daily. Isolation of both the vestibular and the cochlear parts of the membranous labyrinth is performed simultaneously. This gives a possibility to study all the receptors of the internal ear as a whole. Certain ultrastructural changes in all the vestibular receptors both at a single and repeated effects are revealed. Dilatation of the granular endoplasmic reticulum is observed, situating mainly in the basal part of the cell; swelling of mitochondria is accompanied with a sharp clearance of their matrix. In some mitochondria there is a local destruction of their external and internal membranes. Moreover, in cytoplasm of the receptory cells sharply osmiophilic fibrillar structures are revealed, they resemble crists and are arranged in bundles. In some cells they are not numerous and localize mainly in mitochondria, in others--their number is greater, and they localize not only in mitochondria, but in the surrounding cytoplasm, too. Similar structures are observed in some preganglionic myelin fibers. These phenomena can be considered as development of calcification processes. The changes described, evidently, form the basis of the vestibular disorders under the noise effect.  相似文献   

8.
本文对豚鼠噪声暴露后的耳蜗电图功率谱进行了分析,实验表明:噪声组豚鼠耳蜗电图功率谱150~300Hz频段能量较正常组有明显增长;500~850Hz和850~1400Hz频段能量不集中(表2).另外,噪声组耳蜗电图功率谱与标准型的相关度比正常组与标准型的相关度差(P<0.01).  相似文献   

9.
1. The effects of the post-brachial section of the spinal cord on the field potentials recorded from the vestibular nuclei during stimulation of the right vestibular receptors have been studied in left hemilabyrinthectomized and then compensated guinea pigs. 2. Facilitation of the field potentials in the right vestibular nuclear complex and inhibition in the left nuclei have been observed. 3. These results confirm that the spinal cord is involved in the compensation of the release syndrome brought about by the lesion of one labyrinth. 4. The possible mechanisms underlying such a compensation are discussed.  相似文献   

10.
To determine whether neutral endopeptidase (NEP), also called enkephalinase (EC 3.4.24.11), modulates the effects of exogenous and endogenous tachykinins in vivo, we studied the effects of aerosolized phosphoramidon, a specific NEP inhibitor, on the responses to aerosolized substance P (SP) and on the atropine-resistant response to vagus nerve stimulation (10 V, 5 ms for 20 s) in guinea pigs. SP alone (10(-7) to 10(-4) M; each concentration, 7 breaths) caused no change in total pulmonary resistance (RL, P greater than 0.5). Phosphoramidon (10(-4) M, 90 breaths) caused no change either in base-line RL (P greater than 0.5) or in the response to aerosolized acetylcholine (P greater than 0.5). However, in the presence of phosphoramidon, SP (7 breaths) produced a concentration-dependent increase in RL at concentrations greater than or equal to 10(-5) M (P less than 0.001). Phosphoramidon (10(-7) to 10(-4) M; each concentration, 90 breaths) induced a concentration-dependent potentiation of SP-induced bronchoconstriction (10(-4) M, 7 breaths; P less than 0.01). Vagus nerve stimulation (0.5-3 Hz), in the presence of atropine, induced a frequency-dependent increase in RL (P less than 0.001). Phosphoramidon potentiated the atropine-resistant responses to vagus nerve stimulation (P less than 0.001) at frequencies greater than 0.5 Hz. The tachykinin antagonist [D-Arg1,D-Pro2,D-Trp7,9,Leu11]-substance P abolished the effects of phosphoramidon on the atropine-resistant response to vagus nerve stimulation (2 Hz, P less than 0.005). NEP-like activity in tracheal homogenates of guinea pig was inhibited by phosphoramidon with a concentration producing 50% inhibition of 5.3 +/- 0.8 nM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Neuropeptide Y (NPY) is a cotransmitter with noradrenaline in guinea pig inferior mesenteric vein. Tyrosine hydroxylase-like immunoreactivity and NPY-like immunoreactivity were colocalized in a dense network of fibers within the adventitial layer of guinea-pig inferior mesenteric vein. Vasoconstrictor responses to electrical field stimulation (0.2-64 Hz, 0.1 ms, 12 V, for 10 s) appear to be mediated primarily by norepinephrine at 0.2 to 4 Hz and by NPY at 8 to 64 Hz. NPY Y1 receptors mediate the contractile responses to both endogenous and exogenous NPY. Norepinephrine and NPY are involved in neuromuscular transmission in guinea pig mesenteric vein suggesting that the sympathetic nervous system requires the coordinated action of norepinephrine and NPY to serve capacitance.  相似文献   

12.
The influence of the efferent vestibular system on vestibulo-spinal activity was investigated during experiments on guinea pigs decerebrated and following cerebellar extirpation at precollincular level. Efferent vestibular neurons forming compact groups ventromedially to the vestibular nuclei were excited by means of electrical stimulation. Electromyographic activity in the triceps brachii extensor muscles of the right and left forelimbs was adopted as a test reaction (crossed extensor reflex and locomotor activity produced by stimulating the mesencephalic locomotor region). Adequate stimulation of the vestibular apparatus was accomplished by static tilting and cyclic shifting of the animal around its longitudinal axis at angles of ±20°. The efferent vestibular system was found to exert a bilateral inhibitory action on vestibulo-spinal activity. Vestibular efferent stimulation produced a reduction in the intensity of vestibulo-fugal influences: it does not change the dynamics of vestibulo-spinal reflex effects, however. Mechanisms of vestibular efferent action on vestibular control of spinal motor activity are discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 21, No. 1, pp. 78–86, January–February, 1989.  相似文献   

13.
Noisy galvanic vestibular stimulation has been associated with numerous cognitive and behavioural effects, such as enhancement of visual memory in healthy individuals, improvement of visual deficits in stroke patients, as well as possibly improvement of motor function in Parkinson’s disease; yet, the mechanism of action is unclear. Since Parkinson’s and other neuropsychiatric diseases are characterized by maladaptive dynamics of brain rhythms, we investigated whether noisy galvanic vestibular stimulation was associated with measurable changes in EEG oscillatory rhythms within theta (4–7.5 Hz), low alpha (8–10 Hz), high alpha (10.5–12 Hz), beta (13–30 Hz) and gamma (31–50 Hz) bands. We recorded the EEG while simultaneously delivering noisy bilateral, bipolar stimulation at varying intensities of imperceptible currents – at 10, 26, 42, 58, 74 and 90% of sensory threshold – to ten neurologically healthy subjects. Using standard spectral analysis, we investigated the transient aftereffects of noisy stimulation on rhythms. Subsequently, using robust artifact rejection techniques and the Least Absolute Shrinkage Selection Operator regression and cross-validation, we assessed the combinations of channels and power spectral features within each EEG frequency band that were linearly related with stimulus intensity. We show that noisy galvanic vestibular stimulation predominantly leads to a mild suppression of gamma power in lateral regions immediately after stimulation, followed by delayed increase in beta and gamma power in frontal regions approximately 20–25 s after stimulation ceased. Ongoing changes in the power of each oscillatory band throughout frontal, central/parietal, occipital and bilateral electrodes predicted the intensity of galvanic vestibular stimulation in a stimulus-dependent manner, demonstrating linear effects of stimulation on brain rhythms. We propose that modulation of neural oscillations is a potential mechanism for the previously-described cognitive and motor effects of vestibular stimulation, and noisy galvanic vestibular stimulation may provide an additional non-invasive means for neuromodulation of functional brain networks.  相似文献   

14.
大鼠前庭内侧核在前庭—交感反应中的作用   总被引:1,自引:1,他引:0  
潘培森  张义声 《生理学报》1991,43(2):184-188
实验在氯醛糖和尿酯混合麻醉的大鼠上进行。在内脏大神经上记录刺激同侧前庭神经进入脑干处的交感反应。电刺激前庭神经可在同侧内脏大神经引出—明确的叠加反应,其平均潜伏期为45.8±6.98ms,时程为55.21±5.35ms。增加刺激强度,反应幅度也增加,但潜伏期不变。用前庭内侧核(NVM)的片层场电位作为指标并选择其相位倒转处作刺激点,可在同侧内脏大神经记录到潜伏期为32ms 的叠加反应,而同一动物刺激前庭神经入脑处时内脏大神经反应的潜伏期为43ms。在 NVM 头端损毁后,此前庭-交感反应明显减小,再损毁尾端 NVM 后,此反应消失。损毁 Deiters 核对前庭-交感反应无影响。这些结果表明 NVM在内脏大神经记录到的前庭-交感反应中是一重要的中继站。  相似文献   

15.
Myocardial necrosis and mineralization has been identified in a colony of guinea pigs which were subsequently tested for vitamin E and selenium deficiency. Serum vitamin E and whole blood selenium levels were within normal ranges. The erythrocyte glutathione peroxidase test has potential as a predictor of whole blood selenium levels in the guinea pig. The red blood cell hemolysis test used in this study did not correlate consistently with the serum vitamin E levels. We suspect that myocardial necrosis and mineralization may have resulted from inbreeding guinea pigs within the closed colony.  相似文献   

16.
Responses to electrical stimulation of the ear applied between round-window and vertex electrodes were recorded in awake guinea-pigs from the same electrodes or from separate vertex/mastoid subdermal needle electrodes. They were averaged during opposite phases of sinusoidal rotation or before and after constant velocity rotation. In both cases the responses were subtracted from each other and yielded differential per- or post-rotatory “electrovestibular” responses. For comparison, responses were also recorded in the same animals and conditions of electrical stimulation during silence and during presentation of a broad-band noise. The difference yielded “electroacoustic” responses. In round-window records, electrovestibular and electroacoustic responses presented typical compound nerve action potential patterns. Electrovestibular responses could be recorded for head angular velocities as low as 3° sec−1 at 0.1 Hz. Response amplitude showed a logarithmic relation to head velocity. Changes in amplitude, as a function of time after rotation, were comparable to those reported for vestibular nerve fibre responses. In vertex/mastoid records, electroacoustic responses presented a sequence of peaks similar to the click-evoked auditory brain-stem responses, and electrovestibular responses presented two peaks, presumably representing contributions of central vestibular structures. Such “electrovestibulography” permits the study of an individual ear and makes available to the investigator a large range of vestibular stimulation conditions.  相似文献   

17.
We examined the inhibitory and excitatory components of the nonadrenergic noncholinergic (NANC) innervation of the guinea pig airways by in vivo and in vitro methods. Electrical stimulation of the vagus in chloralose-urethan-anesthetized guinea pigs after cholinergic and adrenergic blockade produced peripheral airway constriction (insufflation pressure) and tracheal relaxation (pouch pressure). Vagal stimulation was applied for 90 s at 5-V pulses of 2-ms duration at frequencies of 5, 15, 25, and 35 Hz in each group (n = 6). The pouch relaxation peaked at 15 Hz. The insufflation pressure was highest at 5 Hz. Field stimulations of the same frequencies were applied on tracheal spirals and lung parenchymal strips. The maximal relaxation of the trachea occurred at 15-35 Hz. The lung parenchymal strip tensions increased almost linearly as the frequency increased from 5 to 35 Hz. The results of the study indicated a frequency-dependent response for both excitatory and inhibitory components of the NANC, which operate at different frequencies for optimal responses.  相似文献   

18.
本实验利用听觉电生理学方法,研究了催产素(Oxytocin)对豚鼠内耳听觉机能的作用。给豚鼠肌内注射催产素后,由短声引起的耳蜗微音器电位和听神经复合动作电位幅值增加,听神经复合动作电位和听皮层诱发电位的阈值降低。说明催产素具有提高豚鼠内耳听觉机能的作用。  相似文献   

19.

Background

Vestibular reflexes, evoked by human electrical (galvanic) vestibular stimulation (EVS), are utilized to assess vestibular function and investigate its pathways. Our study aimed to investigate the electrically-evoked vestibulo-ocular reflex (eVOR) output after bilateral and unilateral vestibular deafferentations to determine the characteristics for interpreting unilateral lesions such as vestibular schwannomas.

Methods

EVOR was recorded with dual-search coils as binocular three-dimensional eye movements evoked by bipolar 100 ms-step at EVS intensities of [0.9, 2.5, 5.0, 7.5, 10.0]mA and unipolar 100 ms-step at 5 mA EVS intensity. Five bilateral vestibular deafferented (BVD), 12 unilateral vestibular deafferented (UVD), four unilateral vestibular schwannoma (UVS) patients and 17 healthy subjects were tested with bipolar EVS, and five UVDs with unipolar EVS.

Results

After BVD, bipolar EVS elicited no eVOR. After UVD, bipolar EVS of one functioning ear elicited bidirectional, excitatory eVOR to cathodal EVS with 9 ms latency and inhibitory eVOR to anodal EVS, opposite in direction, at half the amplitude with 12 ms latency, exhibiting an excitatory-inhibitory asymmetry. The eVOR patterns from UVS were consistent with responses from UVD confirming the vestibular loss on the lesion side. Unexpectedly, unipolar EVS of the UVD ear, instead of absent response, evoked one-third the bipolar eVOR while unipolar EVS of the functioning ear evoked half the bipolar response.

Conclusions

The bidirectional eVOR evoked by bipolar EVS from UVD with an excitatory-inhibitory asymmetry and the 3 ms latency difference between normal and lesion side may be useful for detecting vestibular lesions such as UVS. We suggest that current spread could account for the small eVOR to 5 mA unipolar EVS of the UVD ear.  相似文献   

20.
Membrane currents through potassium channels activated by nicorandil, which has a potent coronary vasodilating action, have been studied in ventricular cells of guinea pigs by using the single pipette whole-cell clamp technique. In the presence of 0.1 mM nicorandil, the duration of the action potential was shortened from 196 to 145 ms. Nicorandil markedly increased outward currents at potentials positive to the resting potential. When the difference in the currents before and after the application of nicorandil were plotted against the membrane potential, the current-voltage relation reversed close to the potassium equilibrium potential. The difference current during depolarizing pulses showed no time-dependent relaxation. These results indicate that the current evoked by nicorandil is carried by K+ ions and has voltage-independent kinetics. Power-density spectra obtained in the presence of nicorandil were fitted well by a single Lorentzian curve with a corner frequency of 4.4 Hz. The amplitude of the single-channel unit current was estimated from the relation between the variance and the mean current, and was 0.27 +/- 0.1 pA (n = 7) at -35 mV. The estimated slope conductance was 4.6 +/- 1.7 pS. Nicorandil did not affect Ca2+ currents. It is concluded that nicorandil activates a small-conductance K+ channel without affecting the Ca2+ channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号