首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
生物表面活性剂的合成与提取研究进展*   总被引:12,自引:0,他引:12  
生物表面活性剂(Biosurfactant)是由微生物产生的具有高表面活性的生物分子。相对于化学合成的表面活性剂,生物表面活性剂对生态系统的毒性较低,且可生物降解。因此,生物表面活性剂开始应用于环境污染治理的各个方面。中从生物表面活性剂生产菌的筛选、培养基的优化及生物表面活性剂的提取等方面对近年来生物表面活性剂的研究进展进行了总结,并对未来的发展方向作了展望。  相似文献   

2.
生物表面活性剂及其应用   总被引:24,自引:0,他引:24  
生物表面活性剂是由微生物产生的一类具有表面活性的生物化合物,除具有化学合成表面活性剂的理化特性外,还具有无毒、能生物降解等优点,其应用前景非常广阔,并有可能成为化学合成表面活性剂的替代品或升级换代品。简述了生物表面活性剂的历史、特性、种类及应用研究进展 。  相似文献   

3.
生物表面活性剂的工业应用   总被引:3,自引:0,他引:3  
生物表面活性剂的工业应用徐志伟,尤勤,孙炳寅(南京大学生物科学与技术系,南京)生物表面活性剂是一类由微生物产生的具有一定表面活性的两亲化合物,它们一般都具有良好的降低表面张力、界面张力的性能;也有的不能显著降低界面张力,但对油一水界面表现出很强的亲合...  相似文献   

4.
生物表面活性剂及其应用   总被引:15,自引:0,他引:15  
生物表面活性剂主要是由微生物产生的一种生物在分子物质,具有或优于化学合成表面活性剂的理化特性,作为一种绿色天然产物。极有可能取代化学合成表面活性剂,其应用前景十分广阔。本文阔述了生物表面活性剂的特点,种类,着重介绍它的潜在应用。  相似文献   

5.
发酵法生产生物表面活性剂   总被引:3,自引:1,他引:3  
发酵法生产表面活性剂相对于化工法而言有着无可比拟的优势。综述了发酵法生产生物表面活性剂的微生物源、发酵机理、发酵条件和产物分离技术等方面的研究进展 ,并简要介绍了其工业应用前景。  相似文献   

6.
生物表面活性剂产生菌的筛选及表面活性剂稳定性研究   总被引:22,自引:0,他引:22  
大庆油田油泥样品经富集培养,平板分离,获得52株菌。排油性实验和表面张力测定表明,菌株B22、B24、B2s产生的表面活性剂表面活性稳定,表面张力较低。温度、pH和NaCl浓度实验证实,细菌B22,产生的生物表面活性剂可耐受120℃高温,另2种生物表面活性剂可耐受80℃;3种细菌生物表面活性剂对pH有广泛适应性,1322pH适应范围为4.0~13.0,B24、B25的pH适应范围为2.0~13.0;NaCl浓度对表面活性剂的生物活性影响不大。将3株菌的生物表面活性剂用于室内油泥处理实验,72h石油去除率达70%以上。  相似文献   

7.
生物表面活性剂及其应用   总被引:11,自引:0,他引:11  
生物表面活性剂 (biosurfactant)是表面活性剂家族中的后起之秀 ,它是由微生物所产生的一类具有表面活性作用的物质。它具有减小表面张力、稳定乳化作用、增加泡沫等作用。它的表面活性作用以及对热、p H的稳定性均与化学合成的表面活性剂相当。但它具有一般的化学合成表面活性剂所无法篦美的优点——与环境的兼容性 ,即它没有毒性 ,并可被生物降解 ,因此它们不会对环境造成不利的影响。随着环保意识的不断增强 ,生物表面活性剂正愈来愈受到人们的关注。1 生物表面活性剂的结构特点生物表面活性剂通常是由微生物产生的 ,且多数是由细菌和…  相似文献   

8.
微生物产生的生物表面活性剂   总被引:4,自引:0,他引:4  
微生物产生的生物表面活性剂孙炳寅,徐志伟(南京大学生物科学与技术系,南京)表面活性剂是一类在很低浓度时能显著降低液体表面张力的化合物。它的分子一般都是由非极性的疏水(亲油)基因(主要是碳氢链或其取代物)和极性的亲水基团组成。在液体中,趋向集中于该液体...  相似文献   

9.
生物表面活性剂是微生物产生的一类具有表面活性的代谢产物,与化学表面活性剂相比,具有高效、低毒、易降解的优点。本文综述了氨基酸、酵母提取物、金属离子和有机酸作为促产因子时,对生物表面活性剂产量、结构和同系物组成影响的研究进展,并对其促产机理进行了归纳总结,最后对此领域的研究进行了展望。  相似文献   

10.
利用蓝色凝胶平板筛选法进行筛选,从华北某油田受污染的土壤中分离出一株优良的生物表面活性剂产生菌H1,生理生化反应及16S rDNA序列分析结果表明,该菌属于克雷伯氏菌属(Klebsiella),与Klebsiella pneumoniae同源性为99%。产剂性能研究试验表明,以4 g/L的蔗糖为碳源,以3 g/L的硝酸铵为氮源,初始pH值为7.0,30℃的培养条件有利于该生物表面活性剂的合成。  相似文献   

11.
One of the important strategies for modulating enzyme activity is the use of additives to affect their microenvironment and subsequently make them suitable for use in different industrial processes. Ionic liquids (ILs) have been investigated extensively in recent years as such additives. They are a class of solvents with peculiar properties and a "green" reputation in comparison to classical organic solvents. ILs as co-solvents in aqueous systems have an effect on substrate solubility, enzyme structure and on enzyme–water interactions. These effects can lead to higher reaction yields, improved selectivity, and changes in substrate specificity, and thus there is great potential for IL incorporation in biocatalysis. The use of surfactants, which are usually denaturating agents, as additives in enzymatic reactions is less reviewed in recent years. However, interesting modulations in enzyme activity in their presence have been reported. In the case of surfactants there is a more pronounced effect on the enzyme structure, as can be observed in a number of crystal structures obtained in their presence. For each additive and enzymatic process, a specific optimization process is needed and there is no one-fits-all solution. Combining ILs and surfactants in either mixed micelles or water-in-IL microemulsions for use in enzymatic reaction systems is a promising direction which may further expand the range of enzyme applications in industrial processes. While many reviews exist on the use of ILs in biocatalysis, the present review centers on systems in which ILs or surfactants were able to modulate and improve the natural activity of enzymes in aqueous systems.  相似文献   

12.
13.
Two improvement approaches comprising of a mixed culture of Trichoderma reesei and Aspergillus niger and the addition of surfactants were employed in this study in order to enhance cellulolytic enzyme production as well as to improve the composition. Different delay times of A. niger inoculation (0, 24, and 48 h) and inoculum ratios of T. reesei versus A. niger (1:1 and 5:1) derived six mixed culture forms, which were 0 h/1:1, 0 h/5:1, 24 h/1:1, 24 h/5:1, 48 h/1:1, and 48 h/5:1. It was found that the form 48 h/5:1 allowed the highest FPA, 3.30 ± 0.34 IU/mL, and a relatively high BGA, 1.01 ± 0.25 IU/mL, thereafter being selected for the subsequent improvement step addition of surfactants. Among the three surfactants, including Triton X-100, CHAPS and sodium taurocholate, the third one was found to be the best one giving rise to the highest FPA and BGA, 5.02 ± 0.40 and 1.48 ± 0.28 IU/mL, respectively. Differently sourced cellulases were compared in the enzymatic hydrolysis of steam-exploded corn stover (SECS). Moreover, the cellulase produced by the mixed culture form 48 h/5:1 using SECS as a substrate showed the highest yield at 80.93 ± 2.04%, indicating that the composition of this cellulase was improved by the mixed culture of T. reesei and A. niger. The results validate that these two improvement approaches are efficient and applicable in cellulase production.  相似文献   

14.
Isotherms for the binding of dodecyltrimethylammonium (DTA+) and tetradecyltrimethylammonium (TTA+) ions by DNA in aqueous solution at 30°C are reported. The binding isotherms were determined using a potentiometric technique with cationic surfactant-selective electrodes. The DNA concentrations used are 5 × 10?4 and 10?3 equiv./kg, Surfactant concentrations varying from 3 × 10?6M to the critical micelle concentration. The influence of added NaCl (0.01 M) on the binding process is studied. The binding process is shown to be highly cooperative. Applying the binding theory of Schwarz and of Satake and Yang, binding constants and cooperativity parameters can be calculated. The binding constant K is found to be 1.2kT larger for TTA+ than for DTA+ in salt-free solution, and 1.4kT larger for TTA+ than for DTA+ in 0.01 M NaCl. The cooperativity parameter u is about 1.4kT larger for TTA+ in salt-free solution and 1.2kT larger in 0.01 M NaCl. It is concluded that the hydrophobic part of the bound surfactant is not completely immersed in the hydrophobic DNA core, but also interacts with other surfactant molecules. This situation is compared to the case of micelle formation.  相似文献   

15.
16.
On the mechanism of bacteriorhodopsin solubilization by surfactants   总被引:1,自引:0,他引:1  
Purple membrane bacteriorhodopsin can be easily solubilized by Triton X-100 and other detergents, but not by deoxycholate. In order to understand this behavior, we have examined the effects of a variety of surfactants. We show that detergents containing the cholane ring (cholate, taurocholate, 3[(3-cholamidopropyl)diethyl-ammonio]propanesulfonic acid...) are virtually unable to solubilize native bacteriorhodopsin. However, when the protein is reconstituted in dimyristoyl phosphatidylcholine and solubilization is assayed at a temperature such that bacteriorhodopsin is in the form of monomers, solubilization by cholane detergents does occur. We propose that steric factors prevent access of the rigid planar surfactant molecules to the hydrophobic protein regions. These are perhaps located in the monomer-monomer interface, whose solvation by surfactants is essential for solubilization to occur. We note that the capacity of some detergents to solubilize bacteriorhodopsin is always associated within the same range of surfactant concentrations with bleaching (partial or total) of the protein chromophore. The detergent-induced bleaching is at least partially reversible, suggesting that free retinal remains associated to some membrane components. While some surfactant molecules remain tightly bound to the membrane protein, cholane detergents can be completely removed from bacteriorhodopsin. Our results indicate that a structure-function relationship exists for detergents applied to the solubilization of bacteriorhodopsin.  相似文献   

17.
The mechanism and detailed processes of DNA compaction and decompaction are essential for the life activities, as well as for the researches in the molecular biology, genetics and biomedicine. The compaction of two kinds of DNA molecules caused by Cetyltrimethyl Ammonium Bromide (CTAB) and their decompaction induced with sodium dodecyl sulfate (SDS) or excessive amount of CTAB have been investigated with multiple perspectives such as the UV-VIS spectrophotometry, dynamic light scattering, and zeta potential. The compaction phenomenon of DNA can easily be observed when the CTAB combines with the DNA, not just when the molar ratio QCTAB/QDNA is approximately equal to 1 as the conventional recognition, but also when QCTAB/QDNA <1,DNA can be compacted; Molecular state of DNA is only changed in the conformational structure, but not in the chemical structure. Finally, a model is suggested to help catch on the biophysical mechanism of DNA chain conformational change.  相似文献   

18.
A new method is described for the microdetermination of anionic and cationic surfactants. Anionics can be determined by measuring the degree of their inhibition of enzyme activity (inhibition method). On the other hand, cationics are determined by a method utilizing the finding that the original inhibition of a potent inhibitor previously added to a substrate solution is suppressed by the addition of small amount of cationics (suppression method). In this study, the enzyme is acid phosphatase and p-nitrophenyl phosphate is used as substrate. Employing the method described above, 5–50 ppm of alkylbenzene sulfonate (ABS), 10–90 ppm of sodium dodecyl sulfate (SDS) and 5–15 ppm of dodecyl trimethyl ammonium chloride and dodecyl pyridinium chloride can be determined. The procedure is relatively simple and the analysis requires only 4–5 min.  相似文献   

19.
Characterization of the solubilization of lipid bilayers by surfactants   总被引:11,自引:0,他引:11  
This communication addresses the state of aggregation of lipid-detergent mixed dispersions. Analysis of recently published data suggest that for any given detergent-lipid mixture the most important factor in determining the type of aggregates (mixed vesicles or mixed micelles) and the size of the aggregate is the detergent to lipid molar ratio in these aggregates, herein denoted the effective ratio, Re. For mixed bilayers this effective ratio has been previously shown to be a function of the lipid and detergent concentrations and of an equilibrium partition coefficient, K, which describes the distribution of the detergent between the bilayers and the aqueous phase. We show that, similar to mixed bilayers, the size of mixed micelles is also a function of the effective ratio, but for these dispersions the distribution of detergent between the mixed micelles and the aqueous medium obeys a much higher partition coefficient. In practical terms, the detergent concentration in the mixed micelles is equal to the difference between the total detergent concentration and the critical micelle concentration (cmc). Thus, the effective ratio is equal to this difference divided by the lipid concentration. Transformation of mixed bilayers to mixed micelles, commonly denoted solubilization, occurs when the surfactant to lipid effective ratio reaches a critical value. Experimental evaluation of this critical ratio can be based on the linear dependence of detergent concentration, required for solubilization, on the lipid concentration. According to the 'equilibrium partition model', the dependence of the 'solubilizing detergent concentration' on the lipid concentration intersects with the lipid axis at -1/K, while the slope of this dependence is the critical effective ratio. On the other hand, assuming that when solubilization occurs the detergent concentration in the aqueous phase is approximately equal to the critical micelle concentration, implies that the above dependence intersects with the detergent axis at the critical micelle concentration, while its slope, again, is equal to the critical effective ratio. Analysis of existing data suggests that within experimental error both these distinctively different approaches are valid, indicating that the critical effective ratio at which solubilization occurs is approximately equal to the product of the critical micelle concentration and the distribution coefficient K. Since the nature of detergent affects K and the critical micelle concentration in opposite directions, the critical ('solubilizing') effective ratio depends upon the nature of detergent less than any of these two factors.  相似文献   

20.
Enhancement of metal bioremediation by use of microbial surfactants   总被引:1,自引:0,他引:1  
Metal pollution all around the globe, especially in the mining and plating areas of the world, has been found to have grave consequences. An excellent option for enhanced metal contaminated site bioremediation is the use of microbial products viz. microbial surfactants and extracellular polymers which would increase the efficiency of metal reducing/sequestering organisms for field bioremediation. Important here is the advantage of such compounds at metal and organic compound co-contaminated site since microorganisms have long been found to produce surface-active compounds when grown on hydrocarbons. Other options capable of proving efficient enhancers include exploiting the chemotactic potential and biofilm forming ability of the relevant microorganisms. Chemotaxis towards environmental pollutants has excellent potential to enhance the biodegradation of many contaminants and biofilm offers them a better survival niche even in the presence of high levels of toxic compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号