首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human monoclonal antibody against islet cell surface antigens was generated from a pre-diabetic patient's peripheral blood lymphocytes transformed with Epstein-Barr virus. Reactivity of these transformed lymphocytes was evaluated using indirect immunofluorescence on rat islet cell suspensions and frozen sections of human pancreas. Several lymphoblastoid cell lines that react with islet cell surface were obtained. Preliminary immunoblots with enriched rat islet cell membrane antigens suggest a reactivity toward a 64 kdalton antigen.  相似文献   

2.
An antiserum (R4) from a rabbit immunized with suspensions of C57BL/61 ob/ob mouse islet cells contains antibodies which in a 125I-protein A radioligand assay can be demonstrated to bind to single cell suspensions of normal Naval Medical Research Institute (NMRI) mouse islet cells. The binding of 125I-protein A to islet cells was about four times that of normal rabbit serum (NRS) after incubation at a 1/600 dilution of R4 antiserum quantitatively absorbed to mouse spleen lymphocytes (R4A antiserum) and hepatocytes. Subsequent absorption of the R4A antiserum to islet cells significantly reduced the binding of 125I-protein A to islet cells incubated with the doubly absorbed serum. Immunoprecipitation of radiolabeled islet cell lysates followed by SDS polyacrylamide gel electrophoresis and autoradiography suggested that the R4A antiserum recognized a Mr 40,000 glycoprotein. This glycoprotein was not detected in spleen lymphocytes. Electron microscope detection of gold-protein A complexes suggested that the binding of islet cell surface antibodies was cell specific. islet cell suspensions incubated with R4A antiserum and gold-protein A showed that 86 +/- 3 gold particles were bound per 100 beta-cells (mean +/- SE for six experiments). In contrast, the number of gold particles per 100 endocrine non-beta-cells was 8 +/- 1 which was similar to the number achieved with NRS (3 +/- 1) on all endocrine islet cells. Our observations suggest that the pancreatic islet cells, in particular the beta-cells, express a specific antigen.  相似文献   

3.
A significant inhibition of insulin response was found after incubation of islet cells with blood lymphocytes from 18 out 20 insulin-dependent diabetics. No inhibition was found in 22 control subjects.  相似文献   

4.
Our aim was to derive T lymphocyte lines that specifically recognize islet antigens in murine models of autoimmune diabetes. Islets of Langerhans infiltrated with lymphocytes were isolated either from mice previously injected with multiple low doses of streptozotocin or from NOD-WEHI mice and were cultured in the presence of the T cell growth factor, interleukin 2 (IL-2). With islets from both models of autoimmune diabetes, rapidly proliferating, large granular lymphocytes emerged after 7-10 days and destroyed the islets and other cells such as fibroblasts in the cultures. Cytotoxicity assays showed that these cells were capable of destroying both P815 and YAC-1 tumor cells. In contrast to lymphocytes present initially in the islet infiltrates which express predominantly the L3T4 marker, the large granular lymphocytes were shown to be Ly-2 positive. They also expressed the alpha beta T cell receptor and contained mRNA for the alpha beta T cell receptor demonstrable by in situ hybridization. While morphologically similar to NK cells these large granular lymphocytes bear T cell markers and destroy a broader range of targets. They may represent a minor population of T lymphocytes particularly responsive to IL-2 although other studies show that T cells generally can develop a similar phenotype after prolonged culture with IL-2. The lack of target cell specificity indicates that these IL-2-stimulated large granular lymphocytes are unlikely to mediate the immunopathogenesis of diabetes in these animal models.  相似文献   

5.
To examine whether the lack of self-tolerance to beta cells is responsible for the development of type I diabetes in nonobese diabetic (NOD) mice, we attempted to induce T cell responses to cells from the islets of Langerhans. The data show that all NOD mice, irrespective of age, sex, and disease progression, possess islet cell-specific CD4+, MHC class II-restricted T cells. Both primary and secondary proliferative responses to islet cells were readily induced. The activation of T cells required presentation of islet cell Ag by APC in the responding lymph node cell population. Cells from other tissues, e.g., salivary gland, adrenal gland, and spleen, failed to activate autologous T lymphocytes. T cells specific for other Ag did not respond to islet cells, indicating that the proliferation is not the result of nonspecific stimulation by islet cell products. The presence of islet cell-reactive T cells is, however, not unique to NOD mice, because similar T cell reactivity was also demonstrated in non-diabetes-prone mouse strains. Hence, self-tolerance to islet cells appears to be absent. The results indicate a normal occurrence of islet cell-reactive T cells in both diabetes-prone as well as non-diabetes-prone mice. Thus, the lack of tolerance cannot be the initial cause of diabetes, but the activation of such autoreactive T cells may be important for the development of the disease.  相似文献   

6.
Most of our knowledge of the antigenic repertoire of autoreactive B lymphocytes in type 1 diabetes (T1D) comes from studies on the antigenic specificity of both circulating islet-reactive autoantibodies and peripheral B lymphocyte hybridomas generated from human blood or rodent spleen. In a recent study, we generated hybridoma cell lines of infiltrating B lymphocytes from different mouse strains developing insulitis, but with different degrees of susceptibility to T1D, to characterize the antigenic specificity of islet-infiltrating B lymphocytes during progression of the disease. We found that many hybridomas produced mAbs restricted to the peripheral nervous system (PNS), thus indicating an active B lymphocyte response against PNS elements in the pancreatic islet during disease development. The aim of this study was to identify the autoantigen recognized by these anti-PNS mAbs. Our results showed that peripherin is the autoantigen recognized by all anti-PNS mAbs, and, therefore, a relevant neuroendocrine autoantigen targeted by islet-infiltrating B lymphocytes. Moreover, we discovered that the immune dominant epitope of this B lymphocyte immune response is found at the C-terminal end of Per58 and Per61 isoforms. In conclusion, our study strongly suggests that peripherin is a major autoantigen targeted during T1D development and poses a new question on why peripherin-specific B lymphocytes are mainly attracted to the islet during disease.  相似文献   

7.
OBJECTIVES--To determine the pattern of cellular and humoral immune changes associated with insulin dependent diabetes before diabetes develops. DESIGN--Prospective study over 10 years of 25 non-diabetic identical twins of patients with insulin dependent diabetes. The non-diabetic twins were followed up either till they developed diabetes or to the end of the study. SETTING--Teaching hospital. SUBJECTS--25 non-diabetic identical cotwins of patients with diabetes; 46 controls of the same sex and similar age tested over the same period. Of the 25 twins (total follow up 144 patient years), 10 developed diabetes (prediabetic twins); the remainder were followed up for a mean of 7.7 years. MAIN OUTCOME MEASURES--Results of glucose tolerance tests or fasting blood glucose concentrations at each sample point. Measurements of activated T lymphocytes, expressing the HLA-DR antigen, islet cell antibodies, and insulin autoantibodies in samples. RESULTS--All 10 prediabetic twins had both cellular and humoral changes initially and in most samples before diabetes was diagnosed (activated T lymphocytes in 39/40, islet cell antibodies in 45/47, and insulin autoantibodies to islet cells and insulin were detected infrequently (in 8/54, 6/69, and 0/69 samples, respectively). The combination of cellular and humoral (islet cell antibodies or insulin autoantibodies) immune changes were detected in all 10 of the prediabetic twins but in only one of the 15 non-diabetic twins (P < 0.001). The positive predictive value in this cohort of increased percentages of activated T cells and the presence of antibodies to islet cells or insulin on two consecutive occasions was 100%. CONCLUSION--Most of the twins had cellular or humoral immune changes at some stage. A combination of cellular and humoral immune changes and their tendency to persist is highly predictive of insulin dependent diabetes and distinguishes twins who develop diabetes from those who do not.  相似文献   

8.
Success of transplantation of pancreatic islets which is a promising way for restoring efficient insulin regulation in type 1 diabetes depends on lifelong use of immunosuppressive drugs. To eliminate the use of systemic immunosuppressive drugs for islet transplantation, we examined the potential use of a local immunosuppressive factor, indoleamine 2,3-dioxygenase (IDO). Thus, the aim of this study was to determine whether local expression of IDO in bystander syngeneic fibroblasts could prevent islet allogeneic immune response in vitro. C57BL/6 (B6) mouse fibroblasts were induced to express IDO by either IFN-gamma treatment or transduction with an adenoviral vector and were co-cultured with B6 mouse lymphocytes and BALB/c mouse pancreatic islets in the presence or absence of an IDO inhibitor. Proliferation of lymphocytes were then assessed using [(3)H]-thymidine incorporation assay. IDO-expression by co-cultured syngeneic fibroblasts resulted in a five-fold decrease in lymphocyte proliferation rate upon stimulation of lymphocytes by allogeneic mouse pancreatic islets (21.9% +/- 5.3 and 22.1% +/- 4.9 in the preparations with IFN-gamma treated and genetically modified IDO-expressing fibroblasts, respectively vs. 100% in control groups, P < 0.01). Allogeneic response was restored when IDO inhibitor was added to the culture indicating that suppression was due to IDO. In conclusion, this study shows that local expression of IDO by syngeneic bystander fibroblasts can suppress in vitro proliferation of lymphocytes in response to stimulation with allogeneic pancreatic islets. This local immunosuppressive function of IDO may be employed for development of a novel alternative strategy for preventing allogeneic islet graft rejection.  相似文献   

9.
To assess the immunomodulatory activity of the HIV Tat transduction peptide for enhancement of suppression of Type 1 autoimmune diabetes, the 11 amino acid HIV-1 Tat transduction peptide was genetically linked to the major islet autoantigens proinsulin (INS) and glutamic acid decarboxylase (GAD). The Tat-autoantigen fusion proteins were synthesized in Escherichia coli and characterized by acrylamide gel separation and immunoblot analysis. Histological examination of pancreatic islets isolated from juvenile NOD mice inoculated orally with the Tat-autoantigen conjugates revealed a significant reduction in islet inflammation (insulitis) in comparison with islets from unimmunized mice. Increased serum IgG1 antibody isotype titers detected in Tat-autoantigen inoculated mice suggest that the transduction peptide-autoantigen fusion proteins stimulate Th2 lymphocyte mediated bystander suppression. The reduction of islet insulitis observed in Tat-autoantigen inoculated mice suggests that the adjuvant effect of the Tat transduction peptide resides in Tat enhanced delivery of linked autoantigens through enterocytes to lymphocytes in the gut-associated lymphoid tissues.  相似文献   

10.
The cellular mechanisms by which pancreatic islet grafts are rejected have not been clearly defined. In order to address the roles of CD4+ and CD8+ T cells in pancreatic islet rejection, we used an adoptive transfer model in which H-2b nude mice were reconstituted with negatively selected H-2b CD4+ or CD8+ T cell subpopulations and engrafted with fully allogeneic pancreatic islet grafts. We found that primary (unprimed) CD4+ T cells mediated the rejection of pancreatic islet grafts, whereas, primary CD8+ T cells failed to do so, even though both T cell subpopulations were competent to reject skin allografts. These data indicate that primary CD4+ T cells are necessary for rejection of allogeneic pancreatic islet grafts, whereas primary CD8+ T lymphocytes are not. Implications concerning the nature of the APC involved in the initiation of the rejection response to islet allografts and the expression of MHC Ag by pancreatic islet cells are discussed.  相似文献   

11.
Oxygen free radicals have been implicated as mediators of pancreatic islet beta cell damage in autoimmune, insulin-dependent diabetes mellitus (IDDM). In this study, we show that the antioxidant, probucol, produced only a small decrease in diabetes incidence in nonobese diabetic (NOD) mice, an animal model for human IDDM. However, combination of probucol with the antiinflammatory corticosteroid, deflazacort, produced an early synergistic effect, delaying diabetes onset by 3 weeks, and a later additive effect, decreasing diabetes incidence from 68% (17 of 25 mice) to 23% (6 of 26 mice, p < 0.005). Protection against diabetes by the combination of probucol and deflazacort was associated with a significant decrease in pancreatic islet infiltration by macrophages/lymphocytes (insulitis) and prevention of islet beta cell loss.  相似文献   

12.
Rat islets, rat insulinoma cells and islets from three different mouse strains were labelled with 35S-cysteine and/or 35S-methionine. Detergent lysates of the cells were subjected to immunoprecipitation with sera from 5 newly diagnosed diabetic children and 5 control sera. The immunoprecipitates were analysed by sodium dodecyl sulphate (SDS)-polyacrylamide gel electrophoresis followed by autoradiography. One of the sera immunoprecipitated a protein of Mr 64K from lysates of rat islets, rat insulinoma cells, A. TH and NMRI but not CBA/H mouse islets. This protein was not consistently immunoprecipitated by the other diabetic sera, however, it was never found with control sera nor was it detected in rodent lymphocytes. Some proteins of lower molecular weight (59K, 57K, 40K, 29K) were specifically immunoprecipitated by one or more diabetic sera from some of the rodent islet cell preparations. It is concluded that rodent islet cells contain a protein of Mr 64K which may be antigenically related to a 64K protein previously detected in immunoprecipitates of human islet cells with the same diabetic sera. The variable results with rat and mouse islet cell material suggest that the level of cross-reactivity is low. Further studies are needed to clarify whether the lower molecular components detected in some immunoprecipitates represent other antigenic determinants or degradation products of the 64K protein.  相似文献   

13.
Inhibition of autoimmune diabetes by Fas ligand: the paradox is solved   总被引:20,自引:0,他引:20  
Previous reports that diabetogenic lymphocytes did not induce diabetes in nonobese diabetic (NOD)-lpr mice suggested the critical role of Fas-Fas ligand (FasL) interaction in pancreatic beta cell apoptosis. However, recent works demonstrated that FasL is not an effector molecule in islet beta cell death. We addressed why diabetes cannot be transferred to NOD-lpr mice despite the nonessential role of Fas in beta cell apoptosis. Lymphocytes from NOD-lpr mice were constitutively expressing FasL. A decrease in the number of FasL+ lymphocytes by neonatal thymectomy facilitated the development of insulitis. Cotransfer of FasL+ lymphocytes from NOD-lpr mice completely abrogated diabetes after adoptive transfer of lymphocytes from diabetic NOD mice. The inhibition of diabetes by cotransferred lymphocytes was reversed by anti-FasL Ab, indicating that FasL on abnormal lymphocytes from NOD-lpr mice was responsible for the inhibition of diabetes transfer. Pretreatment of lymphocytes with soluble FasL (sFasL) also inhibited diabetes transfer. sFasL treatment decreased the number of CD4+CD45RBlow cells and increased the number of propidium iodide-stained cells among CD4+CD45RBlow cells, suggesting that sFasL induces apoptosis on CD4+CD45RBlow "memory" cells. These results resolve the paradox between previous findings and suggest a new role for FasL in the treatment of autoimmune disorders. Our data also suggest that sFasL is involved in the deletion of potentially hazardous peripheral "memory" cells, contrary to previous reports that Fas on unmanipulated peripheral lymphocytes is nonfunctional.  相似文献   

14.
To test whether accumulation of naive lymphocytes is sufficient to trigger lymphoid development, we generated mice with islet expression of the chemokine TCA4/SLC. This chemokine is specific for naive lymphocytes and mature dendritic cells (DC) which express the CCR7 receptor. Islets initially developed accumulations of T cells with DC, with scattered B cells at the perimeter. These infiltrates consolidated into organized lymphoid tissue, with high endothelial venules and stromal reticulum. Infiltrate lymphocytes showed a naive CD44low CD25- CD69- phenotype, though half were CD62L negative. When backcrossed to RAG-1 knockout, DC were not recruited. Interestingly, islet lymphoid tissue developed in backcrosses to Ikaros knockout mice despite the absence of normal peripheral nodes. Our results indicate that TCA4/SLC can induce the development and organization of lymphoid tissue through diffential recruitment of T and B lymphocytes and secondary effects on stromal cell development.  相似文献   

15.
Mesenchymal stem cells (MSCs) are suggested to be immune modulators because of their therapeutic potential in transplantation. In the present study, we evaluated the therapeutic potential of autologous MSCs for preventing graft rejection after allogeneic rat islet transplantation. We assessed the ability of MSCs to elicit an antiproliferative response in alloreactive lymphocytes and tested the immunosuppressive effect of MSCs in allogeneic islet transplantation. In islet allotransplantation, injection of autologous MSCs or a subtherapeutic dose of cyclosporine A (CsA; 5 mg/kg) alone did not prolong allograft survival. However, graft survival was attained for >100 d in 33% of autologous MSC-plus-CsA-treated recipients, indicating that graft acceptance was achieved in a subgroup of allograft recipients. Splenocytes from autologous MSC-plus-CsA-treated rats exhibited a reduced mixed lymphocyte reaction (MLR)-proliferative response to donor stimulators and increased interleukin (IL)-10 release. Interestingly, after excluding host CD11b(+) cells, splenic T cells from autologous MSC-plus-CsA-treated rats did not produce IL-10 or did not inhibit proliferative responses under the same conditions. The use of autologous MSC-plus-CsA downregulated immune responses, inducing donor-specific T-cell hyporesponsiveness by reducing the production of proinflammatory cytokines and inducing antiinflammatory cytokine production, especially that of IL-10, during the early posttransplantation period. T-regulatory cells made a contribution at a later phase. In conclusion, the combined use of autologous MSCs and low-dose CsA exerted a synergistic immunosuppressive effect in an islet allograft model, suggesting a role for autologous MSCs as an immune modulator.  相似文献   

16.
Type 1 diabetes (T1D) is caused by a T cell-mediated autoimmune response that leads to the loss of insulin-producing β cells. The optimal preclinical testing of promising therapies would be aided by a humanized immune-mediated T1D model. We develop this model in NOD-scid IL2rγnull mice. The selective destruction of pancreatic islet β cells was mediated by human T lymphocytes after an initial trigger was supplied by the injection of irradiated spleen mononuclear cells (SMC) from diabetic nonobese diabetic (NOD) mice. This resulted in severe insulitis, a marked loss of total β-cell mass, and other related phenotypes of T1D. The migration of human T cells to pancreatic islets was controlled by the β cell-produced highly conserved chemokine stromal cell-derived factor 1 (SDF-1) and its receptor C-X-C chemokine receptor (CXCR) 4, as demonstrated by in vivo blocking experiments using antibody to CXCR4. The specificity of humanized T cell-mediated immune responses against islet β cells was generated by the local inflammatory microenvironment in pancreatic islets including human CD4+ T cell infiltration and clonal expansion, and the mouse islet β-cell-derived CD1d-mediated human iNKT activation. The selective destruction of mouse islet β cells by a human T cell-mediated immune response in this humanized T1D model can mimic those observed in T1D patients. This model can provide a valuable tool for translational research into T1D.  相似文献   

17.
Background aims. Mesenchymal stromal cells (MSC) have now been shown to reside in numerous tissues throughout the body, including the pancreas. Ex vivo culture-expanded MSC derived from many tissues display important interactions with different types of immune cells in vitro and potentially play a significant role in tissue homeostasis in vivo. In this study, we investigated the biologic and immunomodulatory properties of human pancreatic islet-derived MSC. Methods. We culture-expanded MSC from cadaveric human pancreatic islets and characterized them using flow cytometry, differentiation assays and nuclear magnetic resonance-based metabolomics. We also investigated the immunologic properties of pancreatic islet-derived MSC compared with bone marrow (BM) MSC. Results. Pancreatic islet and BM-derived MSC expressed the same cell-surface markers by flow cytometry, and both could differentiate into bone, fat and cartilage. Metabolomics analysis of MSC from BM and pancreatic islets also showed a similar set of metabolic markers but quantitative polymerase chain reactions showed that pancreatic islet MSC expressed more interleukin(IL)-1b, IL-6, STAT3 and FGF9 compared with BM MSC, and less IL-10. However, similar to BM MSC, pancreatic islet MSC were able to suppress proliferation of allogeneic T lymphocytes stimulated with anti-CD3 and anti-CD28 antibodies. Conclusions. Our in vitro analysis shows pancreatic islet-derived MSC have phenotypic, biologic and immunomodulatory characteristics similar, but not identical, to BM-derived MSC. We propose that pancreatic islet-derived MSC could potentially play an important role in improving the outcome of pancreatic islet transplantation by promoting engraftment and creating a favorable immune environment for long-term survival of islet allografts.  相似文献   

18.

Aim

To develop a preclinical large animal model of autoimmune diabetes to facilitate the translational research of autoimmune diabetes in human.

Materials and methods

Nine young rhesus monkeys received multiple-low-dose (MLD) intravenous injections of streptozotocin for five consecutive days, followed by two additional boosting injections of STZ given 1 week apart. The induction of autoimmune diabetes was evaluated by regular metabolic testing, serological assessment of islet-reactive autoantibodies and histological examination of pancreatic tissues.

Results

Seven of nine treated animals became diabetic with moderate hyperglycemia initially and more severe hyperglycemia thereafter. All diabetic animals exhibited severely impaired glucose tolerance, limited islet function, and required insulin therapy to maintain relatively normal glucose metabolism and healthy status. Serological tests showed that all diabetic monkeys developed autoantibodies specifically against insulin and islet antigens. Furthermore, histological examination of the pancreata from diabetic animals revealed evidence of specific destruction of islet β cells and islets infiltrated with T lymphocytes. Overt and persistent diabetes can be induced in young rhesus monkeys by the injection of MLD-STZ, and autoimmune responses to pancreatic islet cells seem to be involved in the development of glucose intolerance and diabetes.

Conclusion

These data indicate for the first time that autoimmune diabetes can be induced in primates; this may serve as a valuable preclinical model for studying the pathogenesis of and potential therapies for autoimmune diabetes in humans.  相似文献   

19.
BACKGROUND: Currently, successful transplantation of allografts requires the systemic use of immunosuppressive drugs. These can cause serious morbidity due to toxicity and increased susceptibility to cancer and infections. Local production of immunosuppressive molecules limited to the graft site would reduce the need for conventional, generalized immunosuppressive therapies and thus educe fewer side effects. This is particularly salient in a disease like type 1 diabetes, which is not immediately life-threatening yet islet allografts can effect a cure. METHODS: We studied the efficacy of locally produced anti-CD4 antibody, mediated by adenovirus (Adv-anti-CD4) transduction of islets, to enhance allograft survival. Adenovirus-transduced islets were transplanted under the kidney capsule of diabetic recipients and graft rejection determined by monitoring blood glucose levels. RESULTS: Adv-anti-CD4 transduction of mouse islets afforded protection against allogeneic rejection after transplantation into fully mismatched recipients. In some recipients, the islet allograft survival was prolonged (persisting for at least 15 weeks), corresponding to the prolonged expression of the anti-CD4 antibody. The effect was local, as absence of CD4+ T lymphocytes was observed primarily at the graft site. CONCLUSIONS: Immunosuppressive effects can be restricted locally by our strategy. Local production of a single antibody against one subset of T lymphocytes can protect mouse islets from allograft rejection during transplantation to treat diabetes. Our findings foreshadow that this strategy may be even more effective when a combination of antibodies are used and that similar strategies may prevent xenograft rejection.  相似文献   

20.
To analyze the control of self tolerance to tissue-specific Ag, we have constructed C57BL/6 (H-2b) transgenic mice that express allogeneic class II (I-Ad) molecules exclusively on pancreatic islet cells. By a number of criteria, including I-Ad mRNA, and tissue and cell surface I-Ad protein levels, the islet cells appear to be expressing levels of I-Ad similar to B lymphocytes. Although one of the transgenic lines that expresses only the beta-chain occasionally displays slightly elevated glucose levels, this hyperglycemia is not enhanced when alpha and beta are coexpressed, allowing for cell surface I-Ad expression. None of the mice examined has demonstrated any autoimmune reaction to the I-Ad+ islet cells. Despite this apparent lack of recognition of the I-Ad+ islet cells, these animals demonstrate no reduction in the in vitro MLR generated to the same MHC molecule. Therefore, these mice remain functionally tolerant to the transgene product without inactivating those T cells that can recognize this same MHC molecule in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号