首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kaposi's sarcoma (KS)-associated herpesvirus or human herpesvirus 8 (HHV8) DNA is found consistently in nearly all classical, endemic, transplant, and AIDS-associated KS lesions, as well as in several AIDS-associated lymphomas. We have previously sequenced the genes for the highly variable open reading frame K1 (ORF-K1) protein from more than 60 different HHV8 samples and demonstrated that they display up to 30% amino acid variability and cluster into four very distinct evolutionary subgroups (the A, B, C, and D subtypes) that correlate with the major migrationary diasporas of modern humans. Here we have extended this type of analysis to six other loci across the HHV8 genome to further evaluate overall genotype patterns and the potential for chimeric genomes. Comparison of the relatively conserved ORF26, T0.7/K12, and ORF75 gene regions at map positions 0. 35, 0.85, and 0.96 revealed typical ORF-K1-linked subtype patterns, except that between 20 and 30% of the genomes analyzed proved to be either intertypic or intratypic mosaics. In addition, a 2,500-bp region found at the extreme right-hand side of the unique segment in 45 HHV8 genomes proved to be highly diverged from the 3,500-bp sequence found at this position in the other 18 HHV8 genomes examined. Furthermore, these previously uncharacterized "orphan" region sequences proved to encompass multiexon latent-state mRNAs encoding two highly diverged alleles of the novel ORF-K15 protein. The predominant (P) and minor (M) forms of HHV8 ORF-K15 are structurally related integral membrane proteins that have only 33% overall amino acid identity to one another but retain conserved likely tyrosine kinase signaling motifs and may be distant evolutionary relatives of the LMP2 latency protein of Epstein-Barr virus. The M allele of ORF-K15 is also physically linked to a distinctive M subtype of the adjacent ORF75 gene locus, and in some cases, this linkage extends as far back as the T0.7 locus also. Overall, the results suggest that an original recombination event with a related primate virus from an unknown source introduced exogenous right-hand side ORF-K15(M) sequences into an ancient M form of HHV8, followed by eventual acquisition into the subtype C lineage of the modern P-form of the HHV8 genome and subsequent additional, more recent transfers by homologous recombination events into several subtype A and B lineages as well.  相似文献   

2.
Human herpesvirus 8(HHV-8) is thought to be essential for the development of all forms of Kaposi's sarcoma(KS).HHV-8 DNA is present virtually in all KS tumor biopsy samples.Genes at both ends of the HHV-8 genome have been shown to vary considerably.Seven major molecular subtypes of HHV-8 were defined based on the amino acid sequence of the open reading frame K1(ORF-K1),generally known as A,B,C,D,E,F,and Z.Most strains collected worldwide were clustered into two subtypes(A and C).Here,the K1/VR1 region of HH...  相似文献   

3.
To establish a sensitive and specific antibody assay, potent antigenic proteins encoded by human herpesvirus 8 (HHV8) were studied. Fifteen recombinant HHV8-encoded proteins were produced as glutathione S-transferase fusion proteins. The sera from AIDS-associated Kaposi's sarcoma (KS) patients reacted with four proteins encoded by open reading frames (ORFs) K8.1, 59, 65, and 73 in a Western blot assay. An enzyme-linked immunosorbent assay (ELISA) using these four proteins as antigens (mixed-antigen ELISA) revealed that all 26 sera derived from KS patients (24 with and 2 without human immunodeficiency virus infection) became positive for anti-HHV8 antibodies. The presence of HHV8 was demonstrated in 14 (1. 4%) of 1,004 sera from the Japanese general population and 10 (1.9%) of 527 sera from patients without HHV8-associated diseases. The presence of immunoglobulin G (IgG) and IgM antibodies against HHV8 examined further by the mixed-antigen ELISA and Western blotting revealed IgG antibody in all ELISA-positive sera, while IgM antibody against ORF K8.1 was absent. These data suggest that the ORF 73 and 65 proteins are potent antigens for a sensitive serological assay.  相似文献   

4.
The aim of this study was to identify circulating microRNAs (miRNAs) that could be used as biomarkers in patients at risk for or affected by AIDS‐Kaposi's sarcoma (KS). Screening of 377 miRNAs was performed using low‐density arrays in pooled plasma samples of 10 HIV/human herpesvirus 8 (HHV8)‐infected asymptomatic and 10 AIDS‐KS patients before and after successful combined antiretroviral therapy (cART). MiR‐375 was identified as a potential marker of active KS, being the most down‐regulated in AIDS‐KS patients after cART and the most up‐regulated in naïve AIDS‐KS patients compared to naïve asymptomatic subjects. Validation on individual plasma samples confirmed that miR‐375 levels were higher in AIDS‐KS compared to asymptomatic patients, decreased after cART‐induced remission in most AIDS‐KS patients and increased in patients with active KS. In asymptomatic patients miR‐375 was up‐regulated after cART in both screening and validation. Statistical analyses revealed an association between miR‐375 changes and CD4 cell counts, which could explain the discordant cases and the opposite trend between asymptomatic and AIDS‐KS patients. These data suggest that circulating miR‐375 might be a good indicator of active AIDS‐KS. Moreover, changes in miR‐375 levels may have a prognostic value in HIV/HHV8‐infected patients undergoing treatment. Further large‐scale validation is needed.  相似文献   

5.
Di Qin  Chun Lu 《中国病毒学》2008,23(6):473-485
Kaposi sarcoma-associated herpesvirus (KSHV),also known as human herpesvirus 8 (HHV-8),is discovered in 1994 from Kaposi's sarcoma (KS) lesion of an acquired immunodeficiency syndrome (AIDS)patient.In addition to its association with KS,KSHV has also been implicated as the causative agent of two other AIDS-associated malignancies:primary effusion lymphoma (PEL) and multicentric Castleman's disease (MCD).KSHV is a complex DNA virus that not only has the ability to promote cellular growth and survival for tumor development,but also can provoke deregulated angiogenesis,inflammation,and modulate the patient's immune system in favor of tumor growth.As KSHV is a necessary but not sufficient etiological factor for KS,human immunodeficiency virus (HIV) is a very important cofactor.Here we review the basic information about the biology of KSHV,development of pathogenesis and interaction between KSHV and HIV.  相似文献   

6.
Simian retroperitoneal fibromatosis (RF) is a vascular fibroproliferative neoplasm which has many morphological and histological similarities to human Kaposi's sarcoma (KS). Like epidemic KS in AIDS patients, RF is highly associated with an immunodeficiency syndrome (simian acquired immunodeficiency syndrome [SAIDS]) caused by a retrovirus infection. Recently, a new gammaherpesvirus, called Kaposi's sarcoma-associated herpesvirus (KSHV) or human herpesvirus 8 (HHV8), has been identified in KS tumors, suggesting that KS has a viral etiology. Our previous experimental transmission studies and epidemiological data suggest that RF also has an infectious etiology. In order to determine whether a similar virus is also associated with RF, we have assayed for the presence of an unknown herpesvirus using degenerate PCR primers targeting the highly conserved DNA polymerase genes of the herpesvirus family. Here we provide DNA sequence evidence for two new herpesviruses closely related to KSHV from RF tissues of two macaque species, Macaca nemestrina and Macaca mulatta. Our data suggest that KSHV and the putative macaque herpesviruses define a new group within the subfamily Gammaherpesvirinae whose members are implicated in the pathogenesis of KS and KS-like neoplasms in different primate species.  相似文献   

7.
Based on a review of the literature on human herpesvirus-8 (HHV8) and Kaposi's sarcoma (KS) and on the distribution of KS in Italy (Veneto region particularly), we hypothesize that the bite of bloodsucking arthropods is a cofactor in the seroconversion to HHV8 positivity and probably in the pathogenesis of KS. The bloodsucking arthropod releases with saliva powerful antihaemostatics and immunomodulators which may favour the replication and the establishment of the pathogen. Transmission would depend on the close contact of the child with a seropositive mother (or relatives) whose infective saliva is used to relieve itching and scratching at the arthropod bite's sites. During any deregulation of the immune system (e.g. ageing), local immune responses to new insect bites may induce virus activation which could prelude KS insurgence. The pathogen is not directly transmitted by the arthropod which merely prepares the cutaneous microenvironment for the virus. We have therefore introduced a new category of medically important arthropods, "promoter arthropods", besides those already defined as biological or mechanical vectors. Promoter arthropods are species able to induce in the host long-lasting, immediate or delayed-type hypersensitivity responses as well as local immunosuppression due to substances injected with their saliva. The striking variability of ORF-K1 gene of HHV8 could be due to the adaptation of the virus to the specific microenvironments resulting from the immune response to the salivary antigens characteristic of the bloodsucking arthropod species prevalent in each geographical area. It is worth noting that other viruses (especially Hepatitis B Virus) may exploit the same non-sexual transmission route.  相似文献   

8.
Human herpesvirus 8 (HHV8) is the primary viral etiologic agent in Kaposi's sarcoma (KS). However, individuals dually infected with both HHV8 and human immunodeficiency virus type 1 (HIV-1) show an enhanced prevalence of KS when compared with those singularly infected with HHV8. Host immune suppression conferred by HIV infection cannot wholly explain this increased presentation of KS. To better understand how HHV8 and HIV-1 might interact directly in the pathogenesis of KS, we queried for potential regulatory interactions between the two viruses. Here, we report that HHV8 and HIV-1 reciprocally up-regulate the gene expression of each other. We found that the KIE2 immediate-early gene product of HHV8 interacted synergistically with Tat in activating expression from the HIV-1 long terminal repeat. On the other hand, HIV-1 encoded Tat and Vpr proteins increased intracellular HHV8-specific expression. These results provide molecular insights correlating coinfection with HHV8 and HIV-1 with an unusually high incidence of KS.  相似文献   

9.
Through the mentorship process, Dr. Arthur Pardee emphasized the critical importance of bidirectional translational research-not only advancing drug development from bench to bedside, but also bringing back precious clinical material to the laboratory to assess the biologic effects of therapeutic agents on their targets. This mini-review focuses on the signal transduction pathways of Kaposi's sarcoma (KS) and on how the knowledge of such pathways has led to the rational development of molecularly targeted pathogenesis-driven therapies. Acquired immune deficiency syndrome (AIDS) related-KS results from co-infection with human immunodeficiency virus and KS herpesvirus/human herpesvirus-8 (KSHV/HHV8), which leads to the development of an angiogenic-inflammatory state that is critical in the pathogenesis of KS. KS is driven by KSHV/HHV8-specific pathways, which include viral G protein-coupled receptor (vGPCR), viral interleukin-6 (vIL-6), and viral chemokine homologues. In addition, cellular growth/angiogenic pathways, such as vascular endothelial growth factor (VEGF), insulin-like growth factor, platelet-derived growth factor (PDGF), angiopoietin and matrix metalloproteinases (MMPs) are "pirated" by KSHV/HHV8. As a very tangible example of how translational research has led to a marked improvement in patient outcome, the signal transduction inhibitor imatinib (a tyrosine kinase inhibitor of c-kit and PDGF) was administered to patients with KS whose tumors were serially biopsied. Not only did the patients' tumors regress, but also the regression was correlated with the inhibition of PDGF receptor (PDGFR) in the biopsy samples. Recent and future clinical trials of molecularly targeted therapy for the treatment of KS are a prelude to a shift in the paradigm of how KS is managed.  相似文献   

10.
International Journal of Peptide Research and Therapeutics - Kaposi’s sarcoma (KS)-associated herpesvirus (KSHV) or human herpesvirus 8 (HHV8) has caused infection in different parts of the...  相似文献   

11.
Human herpesvirus 8 (HHV8) infects Kaposi's sarcoma (KS) spindle cells in situ, as well as the lesional endothelial cells considered to be spindle cell precursors. The HHV8 genome contains several oncogenes, suggesting that infection of endothelial and spindle cells could induce cellular transformation and tumorigenesis and promote the formation of KS lesions. To investigate the potential of HHV8 infection of endothelial cells to contribute to the development of KS, we have developed an in vitro model utilizing dermal microvascular endothelial cells that support significant HHV8 infection. In contrast to existing in vitro systems used to study HHV8 pathogenesis, the majority of dermal endothelial cells are infected with HHV8 and the viral genome is maintained indefinitely. Infection is predominantly latent, with a small percentage of cells supporting lytic replication, and latency is responsive to lytic induction stimuli. Infected endothelial cells develop a spindle shape resembling that of KS lesional cells and show characteristics of a transformed phenotype, including loss of contact inhibition and acquisition of anchorage-independent growth. These results describe a relevant model system in which to study virus-host interactions in vitro and demonstrate the ability of HHV8 to induce phenotypic changes in infected endothelial cells that resemble characteristics of KS spindle cells in vivo. Thus, our results are consistent with a direct role for HHV8 in the pathogenesis of KS.  相似文献   

12.
Epidemiology and pathogenesis of Kaposi's sarcoma-associated herpesvirus   总被引:10,自引:0,他引:10  
Kaposi's sarcoma (KS) occurs in Europe and the Mediterranean countries (classic KS) and Africa (endemic KS), immunosuppressed patients (iatrogenic or post-transplant KS) and those with acquired immune deficiency syndrome (AIDS), especially among those who acquired human immunodeficiency virus sexually (AIDS-KS). KS-associated herpesvirus (KSHV or HHV-8) is unusual among herpesviruses in having a restricted geographical distribution. Like KS, which it induces in immunosuppressed or elderly people, the virus is prevalent in Africa, in Mediterranean countries, among Jews and Arabs and certain Amerindians. Distinct KSHV genotypes occur in different parts of the world, but have not been identified as having a differential pathogenesis. KSHV is aetiologically linked to three distinct neoplasms: (i) KS, (ii) primary effusion lymphoma, and (iii) plasmablastic multicentric Castleman's disease. The histogenesis, clonality and pathology of the tumours are described, together with the epidemiology and possible modes of transmission of the virus.  相似文献   

13.
The molecular pathology of Kaposi's sarcoma-associated herpesvirus   总被引:9,自引:0,他引:9  
Kaposi's sarcoma (KS)-associated herpesvirus (KSHV) is the eighth and most recently identified human herpesvirus (HHV-8). KSHV was discovered in 1994 by Chang et al. who used representational difference analysis to search for DNA sequences present in AIDS-associated KS but not in adjacent normal skin [1]. The virus has since been shown to be specifically associated with all forms of this disease and has fulfilled all of Hill's criteria for causation (reviewed in ). KSHV is also found in all cases of primary effusion lymphoma and in a plasmablastic variant of multicentric Castleman's disease. Over the last few years a wealth of data has been gained on the role of KSHV genes during infection. This review is an attempt to assemble this information into a more complete picture of how KSHV may cause disease.  相似文献   

14.
Kaposi’s sarcoma (KS)-associated herpesvirus (KSHV) is the eighth and most recently identified human herpesvirus (HHV-8). KSHV was discovered in 1994 by Chang et al. who used representational difference analysis to search for DNA sequences present in AIDS-associated KS but not in adjacent normal skin [1]. The virus has since been shown to be specifically associated with all forms of this disease and has fulfilled all of Hill’s criteria for causation (reviewed in [2]). KSHV is also found in all cases of primary effusion lymphoma [3] and in a plasmablastic variant of multicentric Castleman’s disease [4], [5]. Over the last few years a wealth of data has been gained on the role of KSHV genes during infection. This review is an attempt to assemble this information into a more complete picture of how KSHV may cause disease.  相似文献   

15.
Kaposi’s sarcoma (KS) is an enigmatic vascular neoplasm that has reached epidemic proportions in parts of the developing world and is a leading cause of morbidity and mortality among the AIDS population. Unfortunately, KS is still difficult to manage therapeutically, especially in its most advanced clinical manifestations. The recent identification of the KS-associated human herpesvirus (KSHV or HHV8) as its viral etiologic agent has prompted renewed interest in the molecular pathogenesis of this disease. Emerging evidence now points to a single KSHV gene, vGPCR, as essential for KS development, providing a unique opportunity to expose new targets for the treatment of this tumor. In this regard, recent work has identified the Akt/TSC/mTOR signaling cascade as a critical pathway in vGPCR sarcomagenesis. Indeed, pharmacological inhibition of mTOR with rapamycin has shown promising results in preventing vGPCR tumorigenesis in an animal model for KS. These observations are further validated by coincident reports demonstrating the efficacy of rapamycin (sirolimus) as an immunossuppresive and anti-tumoral solution for posttransplant KS patients. Collectively, these data suggest that inhibition of the Akt/TSC/mTOR signaling pathway may provide a novel molecular-based approach for the treatment of patients who currently have a paucity of therapeutic options.  相似文献   

16.
Human herpesvirus 8 (HH'V-8) is thought to be essential for the development of all forms of Kaposi's sarcoma (KS). HHV-8 DNA is present virtually in all KS tumor biopsy samples. Genes at both ends of the HHV-8 genome have been shown to vary considerably. Seve nmajor molecular subtypes of HHV-8 were defined based on the amino acid sequence of the open reading frame K1 (ORF-Kl), generally known as A, B, C, D, E, E and Z. Most strains collected worldwide were clustered into two subtypes (A and C). Here, the Kl/VRl region of HHV-8 was amplified by nested PCR in 22 (81.48%) of 27 cases from Xinjiang Uygur Autonomous Region, a province in northwest-ern China. Phylogenetic analysis on the basis of the KI/VRI amino acid sequence indicated that the majority of these KS patients were infected by subtype C HHV-8 (n = 18, including 15 belonging to the C2 group), and several by subtype A (n = 4, including 3 being the Al group). This is the fast report of subtype A HHV-g in China. Furthermore, the correlations between different forms and lesions of KS and different subtypes of HHV-8 were analyzed. The findings showed that subtype A HHV-8 resulted in significantly more frequent mucosal KS lesions than subtype C. However, there was no obvious correlation between different forms of KS and different subtypes of HHV-8.  相似文献   

17.
18.
Kaposi’s sarcoma (KS) has become a common AIDS-defining cancer in sub-Saharan Africa. Kaposi’s sarcoma-associated human herpesvirus strongly modulated by HIV-related immune suppression are the principal causes of this cancer. No other risk factors have been identified as playing a strong role. HIV prevention programs and good coverage of antiretroviral therapy (ART) in developed countries resulted in a remarkable decline in HIV-KS incidence and better KS prognosis. By contrast, in sub-Saharan Africa, population ART rollout has lagged, but clinical studies have shown positive results in reduction of KS incidence and better KS prognosis. However, the effect of ART rollout in relation to population KS incidence is unclear. We describe the incidence of KS in sub-Saharan Africa, in four time-periods, (1) before 1980 (before HIV/AIDS era); (2) 1981–2000 (early HIV/AIDS era, limited or no ART coverage); (3) 2001–2010 (early ART coverage period); and (4) 2011–2016 (fair to good ART coverage period). We used KS incidence data available from WHO-International Agency for Research on Cancer (IARC) publications and the Africa Cancer Registry Network. National HIV prevalence and ART coverage data were derived from UNAIDS/WHO. A rapid increase in KS incidence was observed throughout sub-Saharan Africa as the HIV epidemic progressed, reaching peak incidences in Period 2 (pre-ART rollout) of 50.8 in males and 20.3 per 100 000 in females (Zimbabwe, Harare). The overall unweighted average decline in KS incidence between 2000 and 2010 and 2011–2016 was 27%, but this decline was not statistically significant across the region. ART rollout coincides with a decline in KS incidence across several regions in sub-Saharan Africa. The importance of other risk factors such as reductions in HIV incidence could not be ascertained.  相似文献   

19.
Kaposi's sarcoma (KS)-associated herpesvirus or human herpes virus 8 is considered the etiological agent of KS, a highly vascularized neoplasm that is the most common tumor affecting HIV/AIDS patients. The KS-associated herpesvirus/human herpes virus 8 open reading frame 74 encodes a constitutively active G protein-coupled receptor known as vGPCR that binds CXC chemokines with high affinity. In this study, we show that conditional transgenic expression of vGPCR by cells of endothelial origin triggers an angiogenic program in vivo, leading to development of an angioproliferative disease that resembles KS. This angiogenic program consists partly in the expression of the angiogenic factors placental growth factor, platelet-derived growth factor B, and inducible NO synthase by the vGPCR-expressing cells. Finally, we show that continued vGPCR expression is essential for progression of the KS-like phenotype and that down-regulation of vGPCR expression results in reduced expression of angiogenic factors and regression of the lesions. Together, these findings implicate vGPCR as a key element in KS pathogenesis and suggest that strategies to block its function may represent a novel approach for the treatment of KS.  相似文献   

20.
Kaposi's sarcoma (KS)-associated herpesvirus or human herpesvirus 8 (KSHV/HHV8) is the likely cause of KS and primary effusion lymphomas or body cavity-based lymphomas (BCBLs). A latency-associated nuclear immunofluorescence antigen (LANA) (D. H. Kedes, E. Operskalski, M. Busch, R. Kohn, J. Flood, and D. Ganem, Nat. Med. 2:918-924, 1996; S. J. Gao, L. Kingsley, M. Li, W. Zheng, C. Parravicini, J. Ziegler, R. Newton, C. R. Rinaldo, A. Saah, J. Phair, R. Detels, Y. Chang, and P. S. Moore, Nat. Med. 2:925-928, 1996) and a 222- to 234-kDa nuclear protein (LNA) (S. J. Gao, L. Kingsley, D. R. Hoover, T. J. Spira, C. R. Rinaldo, A. Saah, J. Phair, R. Detels, P. Parry, Y. Chang, and P. S. Moore, N. Engl. J. Med. 335:233-241, 1996) have previously been described in BCBL cell lines by immunofluorescence and Western blotting techniques, respectively. To identify the viral gene(s) encoding this antigen(s) we screened a cDNA library from HBL-6 cells, a B-cell lymphoma cell line persistently infected with KSHV/HHV8, with KS patient sera. One set of positive clones contained the 3' end of orf73, as well as the complete orf72 and orfK13, and another set contained the 5' end of orf73. Comparison of cDNA sequences with the KSHV/HHV8 genomic sequence revealed a splice event, occurring upstream of orf73. Immunoaffinity purified antibodies to a recombinant carboxy-terminal fragment of the orf73-encoded protein showed the characteristic speckled nuclear immunofluorescence pattern of LANA and reacted with the 222- to 234-kDa LNA on Western blots. Expression of full-length orf73 in bacteria and COS7 cells reproduced the LNA banding pattern. Immunohistochemistry on cases of nodular KS revealed that orf73/LNA is expressed in the nucleus of KS spindle cells. These findings demonstrate that orf73 encodes the 222- to 234-kDa LNA, is a component of LANA, and is expressed in KS tumor cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号