首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Soil carbon is returned to the atmosphere through the process of soil respiration, which represents one of the largest fluxes in the terrestrial C cycle. The effects of climate change on the components of soil respiration can affect the sink or source capacity of ecosystems for atmospheric carbon, but no current techniques can unambiguously separate soil respiration into its components. Long‐term free air CO2 enrichment (FACE) experiments provide a unique opportunity to study soil C dynamics because the CO2 used for fumigation has a distinct isotopic signature and serves as a continuous label at the ecosystem level. We used the 13C tracer at the Duke Forest FACE site to follow the disappearance of C fixed before fumigation began in 1996 (pretreatment C) from soil CO2 and soil‐respired CO2, as an index of belowground C dynamics during the first 8 years of the experiment. The decay of pretreatment C as detected in the isotopic composition of soil‐respired CO2 and soil CO2 at 15, 30, 70, and 200 cm soil depth was best described by a model having one to three exponential pools within the soil system. The majority of soil‐respired CO2 (71%) originated in soil C pools with a turnover time of about 35 days. About 55%, 50%, and 68% of soil CO2 at 15, 30, and 70 cm, respectively, originated in soil pools with turnover times of less than 1 year. The rest of soil CO2 and soil‐respired CO2 originated in soil pools that turn over at decadal time scales. Our results suggest that a large fraction of the C returned to the atmosphere through soil respiration results from dynamic soil C pools that cannot be easily detected in traditionally defined soil organic matter standing stocks. Fast oxidation of labile C substrates may prevent increases in soil C accumulation in forests exposed to elevated [CO2] and may consequently result in shorter ecosystem C residence times.  相似文献   

3.
Soil surface carbon dioxide (CO2) flux (RS) was measured for 2 years at the Boreal Soil and Air Warming Experiment site near Thompson, MB, Canada. The experimental design was a complete random block design that consisted of four replicate blocks, with each block containing a 15 m × 15 m control and heated plot. Black spruce [Picea mariana (Mill.) BSP] was the overstory species and Epilobium angustifolium was the dominant understory. Soil temperature was maintained (~5 °C) above the control soil temperature using electric cables inside water filled polyethylene tubing for each heated plot. Air inside a 7.3‐m‐diameter chamber, centered in the soil warming plot, contained approximately nine black spruce trees was heated ~5 °C above control ambient air temperature allowing for the testing of soil‐only warming and soil+air warming. Soil surface CO2 flux (RS) was positively correlated (P < 0.0001) to soil temperature at 10 cm depth. Soil surface CO2 flux (RS) was 24% greater in the soil‐only warming than the control in 2004, but was only 11% greater in 2005, while RS in the soil+air warming treatments was 31% less than the control in 2004 and 23% less in 2005. Live fine root mass (< 2 mm diameter) was less in the heated than control treatments in 2004 and statistically less (P < 0.01) in 2005. Similar root mass between the two heated treatments suggests that different heating methods (soil‐only vs. soil+air warming) can affect the rate of decomposition.  相似文献   

4.
The response of heterotrophic CO2 flux to soil warming   总被引:3,自引:0,他引:3  
In a forest ecosystem at steady state, net carbon (C) assimilation by plants and C loss through soil and litter decomposition by heterotrophic organisms are balanced. However, a perturbation to the system, such as increased mean soil temperature, will lead to faster decay, enhancing CO2 release from decomposers, and thus upsetting the balance. Recent in situ experiments have indicated that the stimulation of soil respiration following a step increase in annual average soil temperature declines over time. One possible explanation for this decline may be changes in substrate availability. This hypothesis is examined by using the ecosystem model G'DAY, which simulates C and nitrogen (N) dynamics in plants and soil. We applied the model to observations from a soil‐warming experiment in a Norway spruce (Picea abies (L.) Karst.) stand by simulating a step increase of soil temperature. The model provided a good qualitative reproduction of the observed reduction of heterotrophic respiration (Rh) under sustained warming. The simulations showed how the combined effects of faster turnover and reduced substrate availability lead to a transient increase of Rh. The simulated annual increase in Rh from soil was 60% in the first year after perturbation but decreased to 30% after a decade. One conclusion from the analysis of the simulations is that Rh can decrease even though the temperature response function for decomposition remains unchanged. G'DAY suggests that acclimation of Rh to soil warming is partly an effect of substrate depletion of labile C pools during the first decade of warming as a result of accelerated rates of mineralization. The response is attributed mainly to changing levels of C in pools with short time constants, reflecting the importance of high‐quality soil C fractions. Changes of the structure or physiology of the decomposer community were not invoked. Therefore, it becomes a question of definition whether the simulated dynamics of the declining response of CO2 release to the warming should be named acclimation or seen as a natural part of the system dynamics.  相似文献   

5.
6.
Vegetation responses to high [CO2] include both direct photosynthetic effects and indirect effects associated with various plant and soil feedbacks. Synthesis of these direct and indirect effects requires ecosystem process models describing the cycling of carbon and essential mineral nutrients through plants and soils. Here we use the ecosystem model G'DAY to investigate responses to an instantaneous doubling of [CO2]. The analysis indicates that the magnitude and even direction of the growth response to high [CO2] can vary widely on different timescales, because responses on different timescales are determined by different ecosystem-level feedbacks and hence by different sets of key model parameters. Of particular importance are parameters describing the flexibility of plant and soil nitrogen to carbon (N:C) ratios; large responses occur if N:C ratios decline significantly at high [CO2], with little or no response if N:C ratios are inflexible. According to G'DAY, the CO2-response changes over time because responses on longer timescales are dictated by the N:C ratios of less rapidly cycled organic matter.  相似文献   

7.
Rates of atmospheric CH4 consumption of soils in temperate forest were compared in plots continuously enriched with CO2 at 200 µL L?1 above ambient and in control plots exposed to the ambient atmosphere of 360 µL CO2 L?1. The purpose was to determine if ecosystem atmospheric CO2 enrichment would alter soil microbial CH4 consumption at the forest floor and if the effect of CO2 would change with time or with environmental conditions. Reduced CH4 consumption was observed in CO2‐enriched plots relative to control plots on 46 out of 48 sampling dates, such that CO2‐enriched plots showed annual reductions in CH4 consumption of 16% in 1998 and 30% in 1999. No significant differences were observed in soil moisture, temperature, pH, inorganic‐N or rates of N‐mineralization between CO2‐enriched and control plots, indicating that differences in CH4 consumption between treatments were likely the result of changes in the composition or size of the CH4‐oxidizing microbial community. A repeated measures analysis of variance that included soil moisture, soil temperature (from 0 to 30 cm), and time as covariates indicated that the reduction of CH4 consumption under elevated CO2 was enhanced at higher soil temperatures. Additionally, the effect of elevated CO2 on CH4 consumption increased with time during the two‐year study. Overall, these data suggest that rising atmospheric CO2 will reduce atmospheric CH4 consumption in temperate forests and that the effect will be greater in warmer climates. A 30% reduction in atmospheric CH4 consumption by temperate forest soils in response to rising atmospheric CO2 will result in a 10% reduction in the sink strength of temperate forest soils in the atmospheric CH4 budget and a positive feedback to the greenhouse effect.  相似文献   

8.
Stocks of carbon in Amazonian forest biomass and soils have received considerable research attention because of their potential as sources and sinks of atmospheric CO2. Fluxes of CO2 from soil to the atmosphere, on the other hand, have not been addressed comprehensively in regard to temporal and spatial variations and to land cover change, and have been measured directly only in a few locations in Amazonia. Considerable variation exists across the Amazon Basin in soil properties, climate, and management practices in forests and cattle pastures that might affect soil CO2 fluxes. Here we report soil CO2 fluxes from an area of rapid deforestation in the southwestern Amazonian state of Acre. Specifically we addressed (1) the seasonal variation of soil CO2 fluxes, soil moisture, and soil temperature; (2) the effects of land cover (pastures, mature, and secondary forests) on these fluxes; (3) annual estimates of soil respiration; and (4) the relative contributions of grass‐derived and forest‐derived C as indicated by δ13CO2. Fluxes were greatest during the wet season and declined during the dry season in all land covers. Soil respiration was significantly correlated with soil water‐filled pore space but not correlated with temperature. Annual fluxes were higher in pastures compared with mature and secondary forests, and some of the pastures also had higher soil C stocks. The δ13C of CO2 respired in pasture soils showed that high respiration rates in pastures were derived almost entirely from grass root respiration and decomposition of grass residues. These results indicate that the pastures are very productive and that the larger flux of C cycling through pasture soils compared with forest soils is probably due to greater allocation of C belowground. Secondary forests had soil respiration rates similar to mature forests, and there was no correlation between soil respiration and either forest age or forest biomass. Hence, belowground allocation of C does not appear to be directly related to the stature of vegetation in this region. Variation in seasonal and annual rates of soil respiration of these forests and pastures is more indicative of flux of C through the soil rather than major net changes in ecosystem C stocks.  相似文献   

9.
Net grassland carbon flux over a subambient to superambient CO2 gradient   总被引:2,自引:0,他引:2  
Increasing atmospheric CO2 concentrations may have a profound effect on the structure and function of plant communities. A previously grazed, central Texas grassland was exposed to a 200‐µmol mol?1 to 550 µmol mol?1 CO2 gradient from March to mid‐December in 1998 and 1999 using two, 60‐m long, polyethylene‐ covered chambers built directly onto the site. One chamber was operated at subambient CO2 concentrations (200–360 µmol mol?1 daytime) and the other was regulated at superambient concentrations (360–550 µmol mol?1). Continuous CO2 gradients were maintained in each chamber by photosynthesis during the day and respiration at night. Net ecosystem CO2 flux and end‐of‐year biomass were measured in each of 10, 5‐m long sections in each chamber. Net CO2 fluxes were maximal in late May (c. day 150) in 1998 and in late August in 1999 (c. day 240). In both years, fluxes were near zero and similar in both chambers at the beginning and end of the growing season. Average daily CO2 flux in 1998 was 13 g CO2 m?2 day?1 in the subambient chamber and 20 g CO2 m?2 day?1 in the superambient chamber; comparable averages were 15 and 26 g CO2 m?2 day?1 in 1999. Flux was positively and linearly correlated with end‐of‐year above‐ground biomass but flux was not linearly correlated with CO2 concentration; a finding likely to be explained by inherent differences in vegetation. Because C3 plants were the dominant functional group, we adjusted average daily flux in each section by dividing the flux by the average percentage C3 cover. Adjusted fluxes were better correlated with CO2 concentration, although scatter remained. Our results indicate that after accounting for vegetation differences, CO2 flux increased linearly with CO2 concentration. This trend was more evident at subambient than superambient CO2 concentrations.  相似文献   

10.
11.
12.
An improved understanding of the response of forest ecosystems to elevated levels of CO2 in the atmosphere is crucial because atmospheric CO2 concentration continues to increase at an accelerating rate and forests are an important sink in the global carbon cycle. Several CO2‐enrichment experiments have now been running for more than 10 years, with highly variable short‐term results after the first decade. Responses to rising [CO2] over the next few decades will depend on several plant and ecosystem feedbacks that are inadequately understood. In this study, we conduct a sensitivity analysis, within the context of the simulated CO2 response, using a new version of the G'DAY ecosystem model, with an improved decomposition submodel, applied to a nitrogen‐limited Norway spruce forest site in the north of Sweden. The new decomposition model incorporates important modifications to soil processes, including some that constitute negative feedbacks on an ecosystem's growth response to elevated [CO2]. The sensitivity analysis reveals key parameters and processes that are important for the simulated CO2 response on the short term and others that are more important on the long term. A process that has a strong impact on the short‐term response is a change in decomposer composition, potentially in response to altered litter quality. Parameters that become increasingly important in the long term are carbon allocation to root exudates that are directly or indirectly associated with atmospheric N2 fixation, and the rate of humification of soil organic matter. We identify factors intrinsic to species and site (microbes and resources) and ecosystem nutrient supply that determine the duration of the enhanced simulated growth response to elevated [CO2].  相似文献   

13.
Elevated CO2, increased nitrogen (N) deposition and increasing species richness can increase net primary productivity (NPP). However, unless there are comparable changes in decomposition, increases in productivity will most likely be unsustainable. Without comparable increases in decomposition nutrients would accumulate in dead organic matter leading to nutrient limitations that could eventually prohibit additional increases in productivity. To address this issue, we measured aboveground plant and litter quality and belowground root quality, as well as decomposition of aboveground litter for one and 2‐year periods using in situ litterbags in response to a three‐way factorial manipulation of CO2 (ambient vs. 560 ppm), N deposition (ambient vs. the addition of 4 g N m−2 yr−1) and plant species richness (one, four, nine and 16 species) in experimental grassland plots. Litter chemistry responded to the CO2, N and plant diversity treatments, but decomposition was much less responsive. Elevated CO2 induced decreases in % N and % lignin in plant tissues. N addition led to increases in % N and decreases in % lignin. Increasing plant diversity led to decreases in % N and % lignin and an increase in % cellulose. In contrast to the litter chemistry changes, elevated CO2 had a much lower impact on decomposition and resulted in only a 2.5% decrease in carbon (C) loss. Detectable responses were not observed either to N addition or to species richness. These results suggest that global change factors such as biodiversity loss, elevated CO2 and N deposition lead to significant changes in tissue quality; however, the response of decomposition is modest. Thus, the observed increases in productivity at higher diversity levels and with elevated CO2 and N fertilization are not matched by an increase in decomposition rates. This lack of coupled responses between production and decomposition is likely to result in an accumulation of nutrients in the litter pool which will dampen the response of NPP to these factors over time.  相似文献   

14.
Terrestrial higher plants exchange large amounts of CO2 with the atmosphere each year; c. 15% of the atmospheric pool of C is assimilated in terrestrial-plant photosynthesis each year, with an about equal amount returned to the atmosphere as CO2 in plant respiration and the decomposition of soil organic matter and plant litter. Any global change in plant C metabolism can potentially affect atmospheric CO2 content during the course of years to decades. In particular, plant responses to the presently increasing atmospheric CO2 concentration might influence the rate of atmospheric CO2 increase through various biotic feedbacks. Climatic changes caused by increasing atmospheric CO2 concentration may modulate plant and ecosystem responses to CO2 concentration. Climatic changes and increases in pollution associated with increasing atmospheric CO2 concentration may be as significant to plant and ecosystem C balance as CO2 concentration itself. Moreover, human activities such as deforestation and livestock grazing can have impacts on the C balance and structure of individual terrestrial ecosystems that far outweigh effects of increasing CO2 concentration and climatic change. In short-term experiments, which in this case means on the order of 10 years or less, elevated atmospheric CO2 concentration affects terrestrial higher plants in several ways. Elevated CO2 can stimulate photosynthesis, but plants may acclimate and (or) adapt to a change in atmospheric CO2 concentration. Acclimation and adaptation of photosynthesis to increasing CO2 concentration is unlikely to be complete, however. Plant water use efficiency is positively related to CO2 concentration, implying the potential for more plant growth per unit of precipitation or soil moisture with increasing atmospheric CO2 concentration. Plant respiration may be inhibited by elevated CO2 concentration, and although a naive C balance perspective would count this as a benefit to a plant, because respiration is essential for plant growth and health, an inhibition of respiration can be detrimental. The net effect on terrestrial plants of elevated atmospheric CO2 concentration is generally an increase in growth and C accumulation in phytomass. Published estimations, and speculations about, the magnitude of global terrestrial-plant growth responses to increasing atmospheric CO2 concentration range from negligible to fantastic. Well-reasoned analyses point to moderate global plant responses to CO2 concentration. Transfer of C from plants to soils is likely to increase with elevated CO2 concentrations because of greater plant growth, but quantitative effects of those increased inputs to soils on soil C pool sizes are unknown. Whether increases in leaf-level photosynthesis and short-term plant growth stimulations caused by elevated atmospheric CO2 concentration will have, by themselves, significant long-term (tens to hundreds of years) effects on ecosystem C storage and atmospheric CO2 concentration is a matter for speculation, not firm conclusion. Long-term field studies of plant responses to elevated atmospheric CO2 are needed. These will be expensive, difficult, and by definition, results will not be forthcoming for at least decades. Analyses of plants and ecosystems surrounding natural geological CO2 degassing vents may provide the best surrogates for long-term controlled experiments, and therefore the most relevant information pertaining to long-term terrestrial-plant responses to elevated CO2 concentration, but pollutants associated with the vents are a concern in some cases, and quantitative knowledge of the history of atmospheric CO2 concentrations near vents is limited. On the whole, terrestrial higher-plant responses to increasing atmospheric CO2 concentration probably act as negative feedbacks on atmospheric CO2 concentration increases, but they cannot by themselves stop the fossil-fuel-oxidation-driven increase in atmospheric CO2 concentration. And, in the very long-term, atmospheric CO2 concentration is controlled by atmosphere-ocean C equilibrium rather than by terrestrial plant and ecosystem responses to atmospheric CO2 concentration.  相似文献   

15.
The response of forest soil CO2 efflux to the elevation of two climatic factors, the atmospheric concentration of CO2 (↑CO2 of 700 μmol mol−1) and air temperature (↑ T with average annual increase of 5°C), and their combination (↑CO2+↑ T ) was investigated in a 4-year, full-factorial field experiment consisting of closed chambers built around 20-year-old Scots pines ( Pinus sylvestris L.) in the boreal zone of Finland. Mean soil CO2 efflux in May–October increased with elevated CO2 by 23–37%, with elevated temperature by 27–43%, and with the combined treatment by 35–59%. Temperature elevation was a significant factor in the combined 4-year efflux data, whereas the effect of elevated CO2 was not as evident. Elevated temperature had the most pronounced impact early and late in the season, while the influence of elevated CO2 alone was especially notable late in the season. Needle area was found to be a significant predictor of soil CO2 efflux, particularly in August, a month of high root growth, thus supporting the assumption of a close link between whole-tree physiology and soil CO2 emissions. The decrease in the temperature sensitivity of soil CO2 efflux observed in the elevated temperature treatments in the second year nevertheless suggests the existence of soil response mechanisms that may be independent of the assimilating component of the forest ecosystem. In conclusion, elevated atmospheric CO2 and air temperature consistently increased forest soil CO2 efflux over the 4-year period, their combined effect being additive, with no apparent interaction.  相似文献   

16.
17.
18.
The stomatal response to CO2 is linked to changes in guard cell zeaxanthin*   总被引:2,自引:2,他引:2  
The mechanisms mediating CO2 sensing and light–CO2 interactions in guard cells are unknown. In growth chamber-grown Vicia faba leaves kept under constant light (500 μ mol m–2 s–1) and temperature, guard cell zeaxanthin content tracked ambient [CO2] and stomatal apertures. Increases in [CO2] from 400 to 1200 cm3 m–3 decreased zeaxanthin content from 180 to 80 mmol mol–1 Chl and decreased stomatal apertures by 7·0 μ m. Changes in zeaxanthin and aperture were reversed when [CO2] was lowered. Guard cell zeaxanthin content was linearly correlated with stomatal apertures. In the dark, the CO2-induced changes in stomatal aperture were much smaller, and guard cell zeaxanthin content did not change with chamber [CO2]. Guard cell zeaxanthin also tracked [CO2] and stomatal aperture in illuminated stomata from epidermal peels. Dithiothreitol (DTT), an inhibitor of zeaxanthin formation, eliminated CO2-induced zeaxanthin changes in guard cells from illuminated epidermal peels and reduced the stomatal CO2 response to the level observed in the dark. These data suggest that CO2-dependent changes in the zeaxanthin content of guard cells could modulate CO2-dependent changes of stomatal apertures in the light while a zeaxanthin-independent CO2 sensing mechanism would modulate the CO2 response in the dark.  相似文献   

19.
Pinus eldarica L. trees, rooted in the natural soil of an agricultural field at Phoenix, Arizona, were grown from the seedling stage in clear-plastic-wall open-top enclosures maintained at four different atmospheric CO2 concentrations for 15 months. Light response functions were determined for one tree from each treatment by means of whole-tree net CO2 exchange measurements at the end of this period, after which rates of carbon assimilation of an ambient-treatment tree were measured across a range of atmospheric CO2 concentrations. The first of these data sets incorporates the consequences of both the CO2-induced enhancement of net photosynthesis per unit needle area and the CO2-induced enhancement of needle area itself (due primarily to the production of more needles), whereas the second data set reflects only the first of these effects. Hence the division of the normalized results of the first data set by the normalized results of the second set yields a representation of the increase in whole-tree net photosynthesis due to enhanced needle production caused by atmospheric CO2 enrichment. In the solitary trees we studied, the relative contribution of this effect increased rapidly with the CO2 concentration of the air to increase whole-tree net photosynthesis by nearly 50% at a CO2 concentration approximately 300 μmol mol−1 above ambient.  相似文献   

20.
Microcosms of Danthonia richardsonii (Cashmore) accumulated more carbon when grown under CO2 enrichment (719 μL L–1 cf. 359 μL L–1) over a four-year period, even when nitrogen availability severely restricted productivity (enhancement ratios for total microcosm C accumulation of 1.21, 1.14 and 1.29 for mineral N supplies of 2.2, 6.7 and 19.8 g N m–2 y–1, respectively). The effect of CO2 enrichment on total system carbon content did not diminish with time. Increased carbon accumulation occurred despite the development over time of a lower leaf area index and less carbon in the green leaf fraction at high CO2. The extra carbon accumulated at high CO2 in the soil, senesced leaf and leaf litter fractions at all N levels, and in root at high-N, while at low-and mid-N less carbon accumulated in the root fraction at high CO2. The rate of leaf turnover was increased under CO2 enrichment, as indicated by increases in the carbon mass ratio of senesced to green leaf lamina. Microcosm evapotranspiration rates were lower at high CO2 when water was in abundant supply, resulting in higher average soil water contents. The higher soil water contents at high CO2 have important implications for microcosm function, and may have contributed significantly to the increased carbon accumulation at high CO2. These results indicate that CO2 enrichment can increase carbon accumulation by a simple soil–plant system, and that any increase in whole system carbon accumulation may not be evident from snapshot measurements of live plant carbon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号