首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Successful design of components for total shoulder arthroplasty has proven to be challenging. This is because of the difficulties in maintaining fixation of the component that inserts into the scapula; i.e., the glenoid component. Glenoid components that are fixated to both the glenoid and acromion (a long process extending medially on the dorsal aspect of the scapula) have the possible advantage of greater stability over those that are fixated to the glenoid alone. In this study, a finite element analysis is used to investigate whether or not acromion fixation is advantageous for glenoid components. Full muscle loading and joint reaction forces are included in the finite element model. Reflective photoelasticity of five scapulae is used to obtain experimental data to compare with results from the finite element analysis, and it confirms the structural behaviour of the finite element model. When implanted with an acromion-fixated prosthesis, it is found that high unphysiological stresses occur in the scapula bone, and that stresses in the fixation are not reduced. Very high stresses are predicted in that part of the prosthesis which connects the acromion to the glenoid. It is found that the very high stresses are partly in response to the muscle and joint reaction forces acting at the acromion. It is concluded that, because of the relatively high forces acting at the acromion, fixation to it may not be the way forward in glenoid component design.  相似文献   

2.
Musculoskeletal models generally solve the muscular redundancy by numerical optimisation. They have been extensively validated using instrumented implants. Conversely, a reduction approach considers only one flexor or extensor muscle group at the time to equilibrate the inter-segmental joint moment. It is not clear if such models can still predict reliable joint contact and musculo-tendon forces during gait.Tibiofemoral contact force and gastrocnemii, quadriceps, and hamstrings musculo-tendon forces were estimated using a reduction approach for five subjects walking with an instrumented prosthesis. The errors in the proximal-distal tibiofemoral contact force fell in the range (0.3–0.9 body weight) reported in the literature for musculoskeletal models using numerical optimisation. The musculo-tendon forces were in agreement with the EMG envelops and appeared comparable to the ones reported in the literature with generic musculoskeletal models.Although evident simplifications and limitations, it seems that the reduction approach can provided quite reliable results. It can be a useful pedagogical tool in biomechanics, e.g. to illustrate the theoretical differences between inter-segmental and contact forces, and can provide a first estimate of the joint loadings in subjects with limited musculoskeletal deformities and neurological disorders.  相似文献   

3.
Positive autoregulation in gene regulation networks has been shown in the past to exhibit stochastic behavior, including stochastic bistability, in which an initially uniform cell population develops into two distinct subpopulations. However, positive autoregulation is often mediated by signal molecules, which have not been considered in prior stochastic analysis of these networks. Here we propose both a full model of such a network that includes a signal molecule, and a simplified model in which the signal molecules have been eliminated through the use of two simplifications. The simplified model is amenable to direct mathematical analysis that shows that stochastic bistability is possible. We use stochastic Petri networks for simulating both types of models. The simulation results show that 1), the stochastic behavior of the two models is similar; and 2), that the analytical steady-state distribution of the simplified model matches well the transient results at times equal to that of a cell generation. A discussion of the simplifications we used in the context of the results indicates the importance of the signal molecule number as a factor determining the presence of bistability. This is further supported from a deterministic steady-state analysis of the full model that is shown to be a useful indicator of potential stochastic bistability. We use the regulation of SdiA in Escherichia coli as an example, due to the importance of this protein and of the signal molecule, a bacterial autoinducer, that is involved. However, the use of kinetic parameter values representing typical cellular activities make the conclusions applicable to other signal-mediated positive autoregulation networks as well.  相似文献   

4.
In order to help to understand the loosening phenomenon around gleno?d prostheses, a 3D finite element model of a previously tested implanted scapula has been developed. The construction of the model was done using CT scans of the tested scapula. Different bone material properties were tested and shell elements or 8 nodes hexaedric elements were used to model the cortical bone. Surface contact elements were introduced on one hand between the bone and the lower part of the plate of the implant, and on the other, between the loading metallic ball and the upper surface of the implant. The results of the model were compared with those issued from in vitro experiments carried out on the same scapula. The evaluation of the model was done for nine cases of loading of 500 N distributed on the implant, in terms of strains (principal strains of six spots around peripheral cortex of the gleno?d) and displacement of four points positioned on the implant. The best configuration of the model presented here, fits with experiments for most of the strains (difference lower than 150microdef) but it seems to be still too stiff (mainly in the lower part). Nevertheless, we want, in this paper, to underline the importance of doing a multiparametric validation for such a model. Indeed, some models can give correct results for one case of loading but bad results for another kind of loading, some others can give good results for one kind of compared parameters (like strains for instance) but bad results for the other one (like displacements).  相似文献   

5.
According to Wolff’s law, the changes in stress after a prosthesis implantation may modify the shape and internal structure of bone, thus compromising the long-term prosthesis fixation and, consequently, be a significant factor for glenoid loosening. The aim of the present study is to evaluate the changes in the bone adaptation process of the scapula after an anatomical and reverse total shoulder arthroplasty. Five finite element models of the implanted scapula are developed considering the implantation of three anatomical, cemented, all-polyethylene components; an anatomical, cementless, metal-backed component; and a reverse, all-metal component. The methodology followed to simulate the bone adaptation of the scapula was previously validated for the intact model, prior to the prosthesis implantation. Additionally, the influence of the bone quality on the adaptation process is also investigated by considering an osteoporotic condition. The results show that the stress shielding phenomenon is more concerning in cementless, metal-based components than in cemented, all-polyethylene components, regardless of the bone quality. Consequently, as far as the bone adaptation process of the bone is concerned, cemented, all-polyethylene components are better suited for the treatment of the shoulder joint.  相似文献   

6.
Glenoid component loosening is the dominant cause of failure in total shoulder arthroplasty. It is presumed that loosening in the glenoid is caused by high stresses in the cement layer. Several anchorage systems have been designed with the aim of reducing the loosening rate, the two major categories being "keeled" fixation and "pegged" fixation. However, no three-dimensional finite element analysis has been performed to quantify the stresses in the cement or to compare the different glenoid prosthesis anchorage systems. The objective of this study was to determine the stresses in the cement layer and surrounding bone for glenoid replacement components. A three-dimensional model of the scapula was generated using CT data for geometry and material property definition. Keeled and pegged designs were inserted into the glenoid, surrounded by a 1-mm layer of bone cement. A 90 deg arm abduction load with a full muscle and joint load was applied, following van der Helm (1994). Deformations of the prosthesis, stresses in the cement, and stresses in the bone were calculated. Stresses were also calculated for a simulated case of rheumatoid arthritis (RA) in which bone properties were modified to reflect that condition. A maximum principal stress-based failure model was used to predict what quantity of the cement is at risk of failure at the levels of stress computed. The prediction is that 94 percent (pegged prosthesis) and 68 percent (keeled prosthesis) of the cement has a greater than 95 percent probability of survival in normal bone. In RA bone, however, the situation is reversed where 86 percent (pegged prosthesis) and 99 percent (keeled prosthesis) of the cement has a greater than 95 percent probability of survival. Bone stresses are shown to be not much affected by the prosthesis design, except at the tip of the central peg or keel. It is concluded that a "pegged" anchorage system is superior for normal bone, whereas a "keeled" anchorage system is superior for RA bone.  相似文献   

7.
The estimation of muscle forces in musculoskeletal shoulder models is still controversial. Two different methods are widely used to solve the indeterminacy of the system: electromyography (EMG)-based methods and stress-based methods. The goal of this work was to evaluate the influence of these two methods on the prediction of muscle forces, glenohumeral load and joint stability after total shoulder arthroplasty. An EMG-based and a stress-based method were implemented into the same musculoskeletal shoulder model. The model replicated the glenohumeral joint after total shoulder arthroplasty. It contained the scapula, the humerus, the joint prosthesis, the rotator cuff muscles supraspinatus, subscapularis and infraspinatus and the middle, anterior and posterior deltoid muscles. A movement of abduction was simulated in the plane of the scapula. The EMG-based method replicated muscular activity of experimentally measured EMG. The stress-based method minimised a cost function based on muscle stresses. We compared muscle forces, joint reaction force, articular contact pressure and translation of the humeral head. The stress-based method predicted a lower force of the rotator cuff muscles. This was partly counter-balanced by a higher force of the middle part of the deltoid muscle. As a consequence, the stress-based method predicted a lower joint load (16% reduced) and a higher superior–inferior translation of the humeral head (increased by 1.2 mm). The EMG-based method has the advantage of replicating the observed cocontraction of stabilising muscles of the rotator cuff. This method is, however, limited to available EMG measurements. The stress-based method has thus an advantage of flexibility, but may overestimate glenohumeral subluxation.  相似文献   

8.
Functional adaptation of the femur has been investigated in several studies by embedding bone remodelling algorithms in finite element (FE) models, with simplifications often made to the representation of bone’s material symmetry and mechanical environment. An orthotropic strain-driven adaptation algorithm is proposed in order to predict the femur’s volumetric material property distribution and directionality of its internal structures within a continuum. The algorithm was applied to a FE model of the femur, with muscles, ligaments and joints included explicitly. Multiple load cases representing distinct frames of two activities of daily living (walking and stair climbing) were considered. It is hypothesised that low shear moduli occur in areas of bone that are simply loaded and high shear moduli in areas subjected to complex loading conditions. In addition, it is investigated whether material properties of different femoral regions are stimulated by different activities. The loading and boundary conditions were considered to provide a physiological mechanical environment. The resulting volumetric material property distribution and directionalities agreed with ex vivo imaging data for the whole femur. Regions where non-orthogonal trabecular crossing has been documented coincided with higher values of predicted shear moduli. The topological influence of the different activities modelled was analysed. The influence of stair climbing on the properties of the femoral neck region is highlighted. It is recommended that multiple load cases should be considered when modelling bone adaptation. The orthotropic model of the complete femur is released with this study.  相似文献   

9.
The study proposes a rigid-body biomechanical model of the trunk and whole upper limb including scapula and the test of this model with a kinematic method using a six-dimensional (6-D) electromagnetic motion capture (mocap) device. Large unconstrained natural trunk-assisted reaching movements were recorded in 7 healthy subjects. The 3-D positions of anatomical landmarks were measured and then compared to their estimation given by the biomechanical chain fed with joint angles (the direct kinematics). Thus, the prediction errors was attributed to the different joints and to the different simplifications introduced in the model. Large (approx. 4 cm) end-point prediction errors at the level of the hand were reduced (to approx. 2 cm) if translations of the scapula were taken into account. As a whole, the 6-D mocap seems to give accurate results, except for prono-supination. The direct kinematic model could be used as a virtual mannequin for other applications, such as computer animation or clinical and ergonomical evaluations.  相似文献   

10.
The actions of the intercostal and paraspinal muscles in stabilizing the human upper rib cage have been analyzed using a geometrically realistic mathematical model of the first six ribs, vertebrae, and associated musculature. The model suggests roles of the deep layers of erector spinae in stabilizing the vertebral column so that it can support the loads placed upon it by the ribs under physiological load. If we assume that the tension exerted by an intercostal muscle is proportional to its local thickness, the model predicts that the observed distribution of intercostal thickness is close to that which minimizes the stresses in ribs when the model is subjected to peak physiological load. The observed shape of the ribs are optimal to withstand the calculated pattern of loading along their length. These calculations raise the hypothesis that the arrangement of intercostal musculature and rib geometry result in an optimally light rib cage, which is capable of withstanding the loads placed upon it. The analysis of the mechanics of the entire model indicates that the geometrical simplifications made in Hamberger's model are not valid when applied to the rib cage.  相似文献   

11.
Previous curved muscle models have typically examined their robustness only under simple, single-plane static exertions. In addition, the empirical validation of curved muscle models through an entire lumbar spine has not been fully realized. The objective of this study was to empirically validate a personalized biologically-assisted curved muscle model during complex dynamic exertions. Twelve subjects performed a variety of complex lifting tasks as a function of load weight, load origin, and load height. Both a personalized curved muscle model as well as a straight-line muscle model were used to evaluate the model’s fidelity and prediction of three-dimensional spine tissue loads under different lifting conditions. The curved muscle model showed better model performance and different spinal loading patterns through an entire lumbar spine compared to the straight-line muscle model. The curved muscle model generally showed good fidelity regardless of lifting condition. The majority of the 600 lifting tasks resulted in a coefficient of determination (R2) greater than 0.8 with an average of 0.83, and the average absolute error less than 15% between measured and predicted dynamic spinal moments. As expected, increased load and asymmetry were generally found to significantly increase spinal loads, demonstrating the ability of the model to differentiate between experimental conditions. A curved muscle model would be useful to estimate precise spine tissue loads under realistic circumstances. This precise assessment tool could aid in understanding biomechanical causal pathways for low back pain.  相似文献   

12.
Stress analysis in the individual parts of the scapula under normal physiological conditions is necessary to understand the load transfer mechanism, its relation with morphology of bone and to analyse the deviations in stress patterns due to implantation of the glenoid. The purpose of this study was to obtain stress distribution in the scapula during abduction of the arm and to obtain a qualitative estimate of the function of coracoacromial ligament. An accurate three-dimensional (3D) finite element (FE) model of the natural scapula has been developed for this purpose, using computed tomography data and shell-solid modelling approach. The model was experimentally validated. A musculoskeletal shoulder model of forces that calculates all muscle, ligament and joint reaction forces, in six load cases (30-180 degrees) during unloaded humeral abduction was used as applied loading conditions for the 3D FE model. High tensile and compressive stresses (15-60 MPa) were generated in the thick bony ridges of the scapula, like the scapular spine, lateral border, glenoid and acromion. High compressive stresses (45-58 MPa) were evoked in the glenoid and at the connection of glenoid-scapular spine-infraspinous fossa. The stresses in the infraspinous fossa and supraspinous fossa were low (0.05-15 MPa). These results indicated that the transfer of major muscle and joint reaction take place predominantly through the thick bony ridges, whereas the fossa area act more as attachment sites of large muscles. During humeral abduction, coracoacromial ligament was stretched, and presumably will be under tension.  相似文献   

13.
By birth in the acromioclavicular joint the acromial end of the clavicle is osseous, and the acromion of the scapula is cartilaginous. The most intensive formation of the relief and configuration of the articular surfaces of the joint occurs from 1 to 3 years of age. In mature persons the form of the articular surface of the acromial end of the clavicle is often oval and that of the acromion of the scapula--ellipsoid. In newborns the areas of the articular surfaces are nearly equal. The area of the articular surface of the acromial end of the clavicle is significantly more than that of the acromion of the scapula during the periods from 1 to 3, from 13 to 17 and from 21 to 30 years of age. The articular cleft is revealed in the roentgenograms by 17 years of age, when synostosis process of the acromion of the scapula is completed. The thickness of the articular cartilage at different poles of the articular surfaces from birth up to 70 years of age is not equal and therefore it is possible to judge about nonequivalent functional loading on different areas of the articular cartilage. The articular cartilage of the acromial end of the clavicle from birth to 16 years of age is hyaline, after 17 years of age, they acquire the structure of the fibrous cartilage. In the articular cartilage of the acromion of the scapula, this rearrangement is realized more slowly: its fibrous structure is revealed after 23-24 years of age. Involutional changes in the joint are revealed during the fourth decade.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The parameters that describe the soft tissue structures are among the most important anatomical parameters for subject-specific biomechanical modelling. In this paper, we study one of the soft tissue parameters, namely muscle attachment sites. Two new methods are proposed for transformation of the muscle attachment sites of any reference scapula to any destination scapula based on four palpable bony landmarks. The proposed methods as well as one previously proposed method have been applied for transformation of muscle attachment sites of one reference scapula to seven other scapulae. The transformation errors are compared among the three methods. Both proposed methods yield significantly less (p < 0.05) prediction error as compared to the currently available method. Furthermore, we investigate whether there exists a reference scapula that performs significantly better than other scapulae when used for transformation of muscle attachment sites. Seven different scapulae were used as reference scapula and their resulting transformation errors were compared with each other. In the considered statistical population, no such a thing as an ideal scapula was found. There was, however, one outlier scapula that performed significantly worse than the other scapulae when used as a reference. The effect of perturbations in both muscle attachment sites and other muscle properties is studied by comparing muscle force predictions of a musculoskeletal model between perturbed and non-perturbed versions of the model. It is found that 10 mm variations in muscle attachments have more significant effect on muscle force predictions than 10% variations in any of the other four analysed muscle properties.  相似文献   

15.
An EMG-assisted, low-back, lifting model is presented which simulates spinal loading as a function of dynamic, asymmetric, lifting exertions. The purpose of this study has been to develop a model which overcomes the limitations of previous models including static or isokinetic mechanics, inaccurate predictions of muscle coactivity, static interpretation of myoelectric activity, and physiologically unrealistic or variable muscle force per unit area. The present model predicts individual muscle forces from processed EMG data, normalized as a function of trunk angle and asymmetry, and modified to account for muscle length and velocity artifacts. The normalized EMGs are combined with muscle cross-sectional area and intrinsic strength capacity as determined on a per subject basis, to represent tensile force amplitudes. Dynamic internal and external force vectors are employed to predict trunk moments, spinal compression, lateral and anterior shear forces. Data from 20 subjects performing a total of 2160 exertions showed good agreement between predicted and measured values under all trunk angle, asymmetry, velocity, and acceleration conditions. The design represents a significant step toward accurate, fully dynamic modeling of the low-back in multiple dimensions. The benefits of such a model are the insights provided into the effects of motion induced, muscle co-activity on spinal loading in multiple dimensions.  相似文献   

16.
It is always recommended to use more implants for supporting a prosthesis in the immediate loading condition than in the classical two-stage treatment procedure. By means of the finite element (FE) method, the influence of the number of implants used in immediately loaded fixed partial prosthesis (FPP) on the load distribution was investigated, considering the abutment geometry. Two 3D FE models were studied employing four implants to support a FPP in the premaxilla. One model was designed with straight abutments and the other with 20°-angled abutments. The results concerning implant displacements, stresses and strains were compared with those of two implant-supported FPPs, obtained in a previous study. A noticeable reduction in the determined biomechanical bone loading was observed with the use of more implants in supporting an immediately loaded prosthesis. This study confirms that the use of additional numbers of implants in an immediately loaded prosthesis is highly recommended.  相似文献   

17.
It is always recommended to use more implants for supporting a prosthesis in the immediate loading condition than in the classical two-stage treatment procedure. By means of the finite element (FE) method, the influence of the number of implants used in immediately loaded fixed partial prosthesis (FPP) on the load distribution was investigated, considering the abutment geometry. Two 3D FE models were studied employing four implants to support a FPP in the premaxilla. One model was designed with straight abutments and the other with 20°-angled abutments. The results concerning implant displacements, stresses and strains were compared with those of two implant-supported FPPs, obtained in a previous study. A noticeable reduction in the determined biomechanical bone loading was observed with the use of more implants in supporting an immediately loaded prosthesis. This study confirms that the use of additional numbers of implants in an immediately loaded prosthesis is highly recommended.  相似文献   

18.
The movements of the humerus, the clavicle, and the scapula are not completely independent. The coupled pattern of movement of these bones is called the shoulder rhythm. To date, multiple studies have focused on providing regression-based 3-D shoulder rhythms, in which the orientations of the clavicle and the scapula are estimated by the orientation of the humerus. In this study, six existing regression-based shoulder rhythms were evaluated by an independent dataset in terms of their predictability. The datasets include the measured orientations of the humerus, the clavicle, and the scapula of 14 participants over 118 different upper arm postures. The predicted orientations of the clavicle and the scapula were derived from applying those regression-based shoulder rhythms to the humerus orientation. The results indicated that none of those regression-based shoulder rhythms provides consistently more accurate results than the others. For all the joint angles and all the shoulder rhythms, the RMSE are all greater than 5°. Among those shoulder rhythms, the scapula lateral/medial rotation has the strongest correlation between the predicted and the measured angles, while the other thoracoclavicular and thoracoscapular bone orientation angles only showed a weak to moderate correlation. Since the regression-based shoulder rhythm has been adopted for shoulder biomechanical models to estimate shoulder muscle activities and structure loads, there needs to be further investigation on how the predicted error from the shoulder rhythm affects the output of the biomechanical model.  相似文献   

19.
An electron microscopical and histochemical investigation of bioptates obtained from the external broad femoral muscle of 74 sportsmen-skaters has been performed. Structural adaptation of the muscles to speed loadings and to endurance loadings has been analysed taking into consideration contents of muscle fibers (MF) of various type. Peculiarities in ultrastructural organization of the skeletal MF in the sprinter- and stayer-skaters, who undergo training according to a special program, are described; the character of the muscle changes is also followed in the sportsmen who undergo training according to the program that does not correspond to the contents of their MF. Lesions in the latter up to the necrotic ones are mostly found in the muscles of the stayer-skaters, as well as in the sprinters trained according to the stayer program. Presence of essential destructive alterations of the muscles in the skaters, especially in those whose contents of slow muscles do not correspond to their specialization, demonstrates, evidently, the fact that the given physical loading is not adequate to the functional or potential possibilities of the organism.  相似文献   

20.
Physical disfigurement and functional impairments associated with facial trauma are a challenge to a prosthodontist, because even novel sophisticated surgical reconstructive techniques fail to provide adequate support for dental resection prosthesis. Therefore, different endosseous implants are often used as prosthesis-supporting elements. Manufacturers of dental implants have recently presented mini dental implants (MDIs) with diameter of only 1.8-2.4 mm. These implants allow very suitable prosthetic solutions within the range of their indications due to good osseointegration success rates, simple surgical technique, and immediate loading possibility. In this report, a case was presented for prosthetic rehabilitation including implantation of two Sendax type (IMTEC, Ardmore, Oklahoma, USA) MDIs in mental region, to obtain better retention and stability of the mandibular resection prosthesis and to improve function, phonation and aesthetics. The use of these implants, among aforementioned preferences, is also very cost-effective, so this implantation possibility should be taken into consideration during prosthetic treatment planning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号