首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cathodic reduction of oxygen to hydrogen peroxide, the current efficiency for the production of H2O2 and the oxidation of veratryl alcohol with an in situ generated hydrogen peroxide‐lignin peroxidase complex were studied in this paper. The complex was prepared by utilizing a novel preparation technique in an electrochemical reactor. The oxidation of veratryl alcohol (VA; 3,4‐dimethoxybenzyl alcohol) was carried out with or without lignin peroxidase under an electric field. The redox properties of veratryl alcohol on a carbon electrode in the presence of lignin peroxidase have been investigated using cyclic voltammetry. The kinetics of veratryl alcohol oxidation in an electrochemical reactor were compared to the oxidation when hydrogen peroxide was supplied externally. Further, the oxidation of veratryl alcohol by lignin peroxidase was optimized in terms of enzyme dosage, pH, and electrical potential. The novel electroenzymatic method was found to be effective using in situ generated hydrogen peroxide for the oxidation of veratryl alcohol by lignin peroxidase.  相似文献   

2.
Electroenzymatic oxidation of veratryl alcohol by lignin peroxidase   总被引:5,自引:0,他引:5  
This paper reports the formation of veratraldehyde by electroenzymatic oxidation of veratryl alcohol (3,4-dimethoxybenzyl alcohol) hybridizing both electrochemical and enzymatic reactions and using lignin peroxidase. The novel electroenzymatic method was found to be effective for replacement of hydrogen peroxide by an electrochemical reactor, which is essential for enzyme activity of lignin peroxidase. The effects of operating parameters such as enzyme dosage, pH, and electric potential were investigated. Further, the kinetics of veratryl alcohol oxidation in an electrochemical reactor were compared to oxidation when hydrogen peroxide was supplied externally.  相似文献   

3.
Manganese peroxidase and lignin peroxidase are ligninolytic heme-containing enzymes secreted by the white-rot fungus Phanerochaete chrysosporium. Despite structural similarity, these peroxidases oxidize different substrates. Veratryl alcohol is a typical substrate for lignin peroxidase, while manganese peroxidase oxidizes chelated Mn2+. By a single mutation, S168W, we have added veratryl alcohol oxidase activity to recombinant manganese peroxidase expressed in Escherichia coli. The kcat for veratryl alcohol oxidation was 11 s-1, Km for veratryl alcohol approximately 0.49 mM, and Km for hydrogen peroxide approximately 25 microM at pH 2.3. The Km for veratryl alcohol was higher and Km for hydrogen peroxide was lower for this manganese peroxidase mutant compared to two recombinant lignin peroxidase isoenzymes. The mutant retained full manganese peroxidase activity and the kcat was approximately 2.6 x 10(2) s-1 at pH 4.3. Consistent with relative activities with respect to these substrates, Mn2+ strongly inhibited veratryl alcohol oxidation. The single productive mutation in manganese peroxidase suggested that this surface tryptophan residue (W171) in lignin peroxidase is involved in catalysis.  相似文献   

4.
Summary The effects of various parameters on Phanerochaete chrysosporium lignin peroxidase activity as obtained in ligninase assay based on the oxidation of veratryl alcohol were investigated. Marked differences in the ligninase activity were observed when the temperature and pH were varied within the ranges of 23 to 37°C and 2.5 to 4.0, respectively, reported to have been used by various research groups. Further, both veratryl alcohol, and hydrogen peroxide concentration had a significant effect on ligninase activity.  相似文献   

5.
Abstract Four major hemoproteins were purified by isoelectric focusing from an extracellular crude enzyme preparation, produced by the white rot fungus Phanerochaete chrysosporium under carbon-limited conditions. Both the crude enzyme and the purified proteins oxidised milled wood lignin, HCl-dioxane-extracted straw lignin and alkali straw lignin in the presence of hydrogen peroxide. The oxidation resulted mainly in further polymerisation of the lignins and was enhanced by addition of veratryl alcohol to the reaction mixture. Alkali straw lignin was also polymerised by horseradish peroxidase, although veratryl alcohol had no influence on this reaction.  相似文献   

6.
Neem hull waste (containing a high amount of lignin and other phenolic compounds) was used for lignin peroxidase production byPhanerochaete chrysosporum under solid-state fermentation conditions. Maximum decolorization achieved by partially purified lignin peroxidase was 80% for Porocion Brilliant Blue HGR, 83 for Ranocid Fast Blue, 70 for Acid Red 119 and 61 for Navidol Fast Black MSRL. The effects of different concentrations of veratryl alcohol, hydrogen peroxide, enzyme and dye on the efficiency of decolorization have been investigated. Maximum decolorization efficiency was observed at 0.2 and 0.4 mmol/L hydrogen peroxide, 2.5 mmol/L veratryl alcohol and pH 5.0 after a 1-h reaction, using 50 ppm of dyes and 9.96 mkat/L of enzyme.  相似文献   

7.
Comparison of two assay procedures for lignin peroxidase   总被引:1,自引:0,他引:1  
The most widely accepted assay for detecting lignin peroxidase, based on the oxidation of veratryl alcohol to veratraldehyde, suffers from some drawbacks. At 310 nm, the wavelength at which the assay is performed, some other materials like lignins, quinonic compounds and aromatics also exhibit strong absorbance thus interfering with the estimation when present in the media. The present study reports the lignin peroxidase production by some white rot fungi under different nutritional conditions. The veratryl alcohol oxidation assay procedure for lignin peroxidase has been compared with another method based on the oxidation of the dye azure B involving absorbance measurements in the visible range. The latter method proved to be much more advantageous over the veratryl alcohol oxidation method, in media supplemented with malt extract, lignin preparations and agricultural residues. The enzyme production by veratryl alcohol assay could be detected only in mineral salts broth. By the azure B assay the enzyme activity was detected in all the media tested. The supplements gave varied response in different media. Veratryl alcohol enhanced the enzyme production in malt extract broth and mineral salts malt extract broth. Among the lignin preparations Indulin AT increased the lignin peroxidase titres from 2 to 20 fold in different fungi. Similarly, wheat straw supplemented in mineral salts broth and malt extract broth, separately, strongly stimulated the lignin peroxidase production. The above studies revealed that azure B assay may act as a substitute or equivalent method.  相似文献   

8.
Cloning of sucrase genes from Streptococcus mutans in bacteriophage lambda   总被引:4,自引:0,他引:4  
Abstract An extracellular peroxidase was purified by chromatofocusing column chromatography from the growth medium of ligninolytic cultures of the white-rot fungus Phanerochaete chrysosporium Burds BKM-1767. The enzyme was electrophoretically pure with an M r of 45 000–47 000. It contained an easily dissociable heme, and required Mn2+ ions for activity. In the presence of hydrogen peroxide and Mn2+ it oxidized compounds such as vanillylacetone, 2,6-dimethyloxyphenol, curcumin, syringic acid, guaiacol, syringaldazine, divanillylacetone, and coniferyl alcohol. It did not oxidize veratryl alcohol. In reactions requiring Mn2+ and O2, but not hydrogen peroxide, the enzyme oxidized glutathione, dithiothreitol, and NADPH with production of hydrogen peroxide. The hydrogen peroxide produced could be used as a co-substrate by ligninases such as those that oxidize veratryl alcohol, or by the peroxidase itself to oxidize lignin model compounds.  相似文献   

9.
Manganese and lignin peroxidase (MnP, LiP) activities were measured in straw extracts from cultures of Phanerochaete chrysosporium. Out of six MnP substrates, the MBTH/DMAB (3-methyl-2-benzothiazolinone hydrazone/3-(dimethylamino)benzoic acid), gave the highest MnP activity. Detection of LiP activity as veratryl alcohol oxidation was inhibited by phenols in the straw culture extracts. Appropriate levels of veratryl alcohol and peroxide (4 mM and 0.4 mM, respectively), and a restricted sample volume (not larger than 10%) were necessary to detect activity.  相似文献   

10.
Immobilised lignin peroxidase has been investigated using a flow system in the steady state and by flow injection analysis (FIA). In the steady state, the extreme sensitivity of the enzyme towards inactivation by H2O2 resulted in a stable response only in the presence of saturating levels of organic substrate and at very low (10 μM) peroxide concentrations. By contrast, the low contact time during FIA led to a stable response to injections of 100 μM H2O2. At higher peroxide concentrations a reproducible inactivation was observed, allowing a study of factors affecting both activity and stability. Lignin peroxidase substrates that undergo at least semi-reversible oxidation/reduction, including high-molecular-weight lignin fractions, could be detected by electrochemical reduction of the oxidation products. With this detection system it was possible to demonstrate the role of veratryl alcohol as mediator. This mediated oxidation of lignin functioned only when all components were present simultaneously, and was not observed when lignin was separated from the site of veratryl alcohol oxidation.  相似文献   

11.
Phanerochaete chrysosporium decolorized several polyaromatic azo dyes in ligninolytic culture. The oxidation rates of individual dyes depended on their structures. Veratryl alcohol stimulated azo dye oxidation by pure lignin peroxidase (ligninase, LiP) in vitro. Accumulation of compound II of lignin peroxidase, an oxidized form of the enzyme, was observed after short incubations with these azo substrates. When veratryl alcohol was also present, only the native form of lignin peroxidase was observed. Azo dyes acted as inhibitors of veratryl alcohol oxidation. After an azo dye had been degraded, the oxidation rates of veratryl alcohol recovered, confirming that these two compounds competed for ligninase during the catalytic cycle. Veratryl alcohol acts as a third substrate (with H2O2 and the azo dye) in the lignin peroxidase cycle during oxidations of azo dyes.  相似文献   

12.
A number of peroxidases, such as lignin peroxidase and manganese peroxidase have proved to be useful for industrial applications. Some studies on the effects of temperature and pH stability have been carried out. It is known that veratryl alcohol increases their stability in the range 28-50 degrees C and is oxidized, leading to veratryl aldehyde formation. Similar results with horseradish peroxidase (HRP) in the presence of cofactors were found, but the oxidation of veratryl alcohol in the absence of cofactors was extremely labile at acid pH and inactivated in a few minutes. Considering the growing industrial application of HRP, knowledge of its stability and denaturation kinetics is required. In this study, horseradish peroxidase pool (HRP-VI) and its isoenzymes HRP-VIII (acid) and HRP-IX (basic) have been shown to catalyze the oxidation of veratryl alcohol to veratryl aldehyde in the presence of hydrogen peroxide at pH 5.8 in the 35-45 degrees C range and in the absence of any cofactors. Heat and pH denaturation experiments in the presence and absence of veratryl alcohol incubation were conducted with HRP-VI and HRP-IX isoenzymes. HRP-IX was the most active isoenzyme acting on veratryl alcohol but HRP-VI was the most stable for the temperature range tested. At 35 degrees C the HRP pool presented decay constant (Kd) values of 5.5 x 10(-2) h(-1) and 1.4 10(-2) h(-1) in the absence and presence of veratryl alcohol, respectively, with an effective ratio of 3.9. These results present a new feature of peroxidases that opens one more interesting application of HRP to industrial processes.  相似文献   

13.
Summary A cultivation method using carrierbound mycelium was developed for the production of lignin-modifying enzymes by Phlebia radiata. Laccase and lignin peroxidase were produced in batch and semi-continuous cultivations. Laccase activity was clearly enhanced by veratryl alcohol. The presence of both veratryl alcohol and Tween 80 was required for lignin peroxidase production in submerged cultivations. During the course of the semi-continuous cultivations production of lignin peroxidase activity increased fourfold compared with static cultivations.  相似文献   

14.
Horseradish peroxidase has been shown to catalyze the oxidation of veratryl alcohol (3,4-dimethoxybenzyl alcohol) and benzyl alcohol to the respective aldehydes in the presence of reduced glutathione, MnCl2, and an organic acid metal chelator such as lactate. The oxidation is most likely the result of hydrogen abstraction from the benzylic carbon of the substrate alcohol leading to eventual disproportionation to the aldehyde product. An aromatic cation radical intermediate, as would be formed during the oxidation of veratryl alcohol in the lignin peroxidase-H2O2 system, is not formed during the horseradish peroxidase-catalyzed reaction. In addition to glutathione, dithiothreitol, L-cysteine, and beta-mercaptoethanol are capable of promoting veratryl alcohol oxidation. Non-thiol reductants, such as ascorbate or dihydroxyfumarate (known substrates of horseradish peroxidase), do not support oxidation of veratryl alcohol. Spectral evidence indicates that horseradish peroxidase compound II is formed during the oxidation reaction. Furthermore, electron spin resonance studies indicate that glutathione is oxidized to the thiyl radical. However, in the absence of Mn2+, the thiyl radical is unable to promote the oxidation of veratryl alcohol. In addition, Mn3+ is unable to promote the oxidation of veratryl alcohol in the absence of glutathione. These results suggest that the ultimate oxidant of veratryl alcohol is a Mn(3+)-GSH or Mn(2+)-GS. complex (where GS. is the glutathiyl radical).  相似文献   

15.
A Mn(2+)-binding site was created in the recombinant lignin peroxidase isozyme H8 from Phanerochaete chrysosporium. In fungal Mn peroxidase, the Mn-binding site is composed of Glu35, Glu39, and Asp179. We generated a similar site in lignin peroxidase by generating an anionic binding site. We generated three mutations: Asn182Asp, Asp183Lys, and Ala36Glu. Its activity, veratryl alcohol, and Mn(2+) oxidation were compared to those of native recombinant enzyme and to fungal Mn peroxidase isozyme H4, respectively. The mutated enzyme was able to oxidize Mn(2+) and still retain its ability to oxidize veratryl alcohol. Steady-state results indicate that the enzyme's ability to oxidize veratryl alcohol was lowered slightly. The K(m) for Mn(2+) was determined to be 1.57 mM and the k(cat) = 5.45 s(-1). These results indicate that the mutated lignin peroxidase is less effective in Mn(2+) oxidation that the wild type fungal enzyme. The pH optima of veratryl alcohol and Mn oxidation were altered by the mutation. They are one unit of pH value higher than those of recombinant H8 and wild type fungal Mn peroxidase isozyme H4.  相似文献   

16.
The biodegradation of anthracene-9, 10-diethanol by the ligninolytic fungus Phanerochaete chrysosporium, previously though to involve singlet oxygen, is shown to be catalyzed by lignin peroxidases. Veratryl alcohol stimulated the enzymatic degradation of anthracenediethanol, and anthracenediethanol inhibited enzymatic oxidation of veratryl alcohol. Competition for oxidation by lignin peroxidase is suggested as the mechanism of the inhibition of lignin biodegradation by anthracenediethanol and related anthracene derivatives.Abbreviations ADE anthracene-9,10-diethanol - AES anthracene-9,10-bisethanesulfonic acid - DHP dehydrogenative polymerizate - DMF N,N-dimethylformamide - EPX 9,10-endoperoxide of ADE - PMR proton magnetic resonance  相似文献   

17.
Several aromatic compounds increased initial lignin degradation rates in cultures of Phanerochaete chrysosporium. This activation was connected to increased H2O2 production and glucose oxidation rates. Veratryl alcohol, a natural secondary metabolite of P. chrysosporium, also activated the lignin-degrading system. In the presence of added veratryl alcohol the ligninolytic system appeared 6–8 h earlier than in reference cultures. This effect was only seen when lignin was added after the primary growth was completed because lignin itself also caused earlier appearance of the degradative system. In cultures which received no added lignin or veratryl alcohol the ligninolytic activity only appeared once the alcohol started to accumulate. The degradation patterns of veratryl alcohol and lignin were similar. The activity levels of lignin degradation and glucose oxidation could be regulated by veratryl alcohol concentration. It is suggested that either veratryl alcohol itself or a metabolite derived from it is actually responsible for the low levels of ligninolytic activity in glucose grown cultures.  相似文献   

18.
A M Cancel  A B Orth    M Tien 《Applied microbiology》1993,59(9):2909-2913
Phanerochaete chrysosporium is a white rot fungus which secretes a family of lignin-degrading enzymes under nutrient limitation. In this work, we investigated the roles of veratryl alcohol and lignin in the ligninolytic system of P. chrysosporium BKM-F-1767 cultures grown under nitrogen-limited conditions. Cultures supplemented with 0.4 to 2 mM veratryl alcohol showed increased lignin peroxidase activity. Addition of veratryl alcohol had no effect on Mn-dependent peroxidase activity and inhibited glyoxal oxidase activity. Azure-casein analysis of acidic proteases in the extracellular fluid showed that protease activity decreased during the early stages of secondary metabolism while lignin peroxidase activity was at its peak, suggesting that proteolysis was not involved in the regulation of lignin peroxidase activity during early secondary metabolism. In cultures supplemented with lignin or veratryl alcohol, no induction of mRNA coding for lignin peroxidase H2 or H8 was observed. Veratryl alcohol protected lignin peroxidase isozymes H2 and H8 from inactivation by H2O2. We conclude that veratryl alcohol acts as a stabilizer of lignin peroxidase activity and not as an inducer of lignin peroxidase synthesis.  相似文献   

19.
Manganese peroxidase (MnP) production in the white-rot basidiomycete Physisporinus rivulosus T241i was studied. Separate MnP isoforms were produced in carbon-limited liquid media supplemented with Mn2+, veratryl alcohol, or sawdust. The isoforms had different pH ranges for the oxidation of Mn2+ and 2,6-dimethoxyphenol. Although lignin degradation by white-rot fungi is often triggered by nitrogen depletion, MnPs of P. rivulosus were efficiently produced also in the presence of high-nutrient nitrogen, especially in cultures supplemented with veratryl alcohol. Two MnP encoding genes, mnpA and mnpB, were identified, and their corresponding cDNAs were characterized. Structurally, the genes showed marked dissimilarity, and the expression of the two genes implicated quantitative variation and differential regulation in response to manganese, veratryl alcohol, or sawdust. The variability in regulation and properties of the isoforms may widen the operating range for efficient lignin degradation by P. rivulosus.  相似文献   

20.
《Journal of biotechnology》1995,39(2):175-179
The degradation pathway of vanillyl and veratryl alcohol by Lentinus edodes extracellular enzymes was studied. In both cases several products of side chain oxidation and aromatic ring cleavage were isolated and characterized. We have observed that the products from veratryl alcohol degradation by Lentinus edodes are quite different from those isolated from incubations with other white-rot fungi which have veraraldehyde as the major product, in fact, this compound is not produced as final metabolite in L. edodes incubations. This behaviour could explain the apparent absence of lignin peroxidase and veratryl alcohol oxidase activities in L. edodes cultures, since such activities are usually measured by monitoring veratraldehyde formation during the veratryl alcohol oxidation; thus, it is suggested that additional assay methods should be developed, with preferably direct observation of aromatic ring oxidation products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号