首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Light-harvesting capacities of photosystem I (PSI) and photosystemII (PSII) in a wild-type and three chlorophyll b-deficient mutantstrains of rice were determined by measuring the initial slopeof light-response curve of PSI and PSII electron transport andkinetics of light-induced redox changes of P-700 and QA, respectively.The light-harvesting capacity of PSI determined by the two methodswas only moderately reduced by chlorophyll b-deficiency. Analysisof the fluorescence induction that monitors time course of QAphotoreduction showed that both relative abundance and antennasize of PSIIa decrease with increasing deficiency of chlorophyllb and there is only PSII in chlorina 2 which totallylacks chlorophyll b. The numbers of antenna chlorophyll moleculesassociated with the mutant PSII centers were, therefore, threeto five times smaller than that of PSIIa in the wild type rice.Rates of PSII electron transport determined on the basis ofPSII centers in the three mutants were 60–70% of thatin the normal plant at all photon flux densities examined, indicatingthat substantial portions of the mutant PSII centers are inactivein electron transport. The initial slopes of light-responsecurves of PSII electron transport revealed that the functionalantenna sizes of the active populations of PSII centers in themutants correspond to about half that of PSII in the wild typerice. Thus, the numbers of chlorophyll molecules that serveas antenna of the oxygen-evolving PSII centers in the mutantsare significantly larger than those that are actually associatedwith each PSII center. It is proposed that the inactive PSIIserves as an antenna of the active PSII in the three chlorophyllb-deficient mutants of rice. In spite of the reduced antennasize of PSII, therefore, the total light-harvesting capacityof PSII approximately matches that of PSI in the mutants. (Received July 29, 1994; Accepted February 7, 1996)  相似文献   

2.
Absorption spectra and their fourth derivatives of chloroplastsisolated from 16 different rice chlorina mutants were determinedat liquid nitrogen temperature. The results suggest that Chlb is absent from 10 mutants labelled chlorina-1 to -10, while6 mutants named chlorina-11 to -16 contain low levels of Chlb. Low temperature fluorescence emission spectra indicate thata light-harvesting Chl a/b protein of photosystem I is presentin chlorina-11 to -16 but not in chlorina-1 to -10. Reinvestigationof Chl a/b ratios by a sensitive fluorescence method shows thatthe 16 mutants are divided into three groups different in thedegree of Chl b-deficiency; chlorina-1 to -10 totally lack Chlb (Type I), chlorina-11 to -13 have Chl a/b ratio of about 10(Type II-A) and chlorina-14 to -16 have the ratio of about 15(Type II-B). (Received June 6, 1985; Accepted August 6, 1985)  相似文献   

3.
Stoichiometries of photosystem I (PSI) and photosystem II (PSII)reaction centers in a cultivar of rice, Norin No. 8, and threechlorophyll b-deficient mutants derived from the cultivar wereinvestigated. Quantitation of PSI by photooxidation of P-700and chromatographic assay of vitamin K1 showed that, on thebasis of chlorophyll, the mutants have higher concentrationsof PSI than the wildtype rice. Greater increases were observedin the PSII contents measured by photoreduction of QA, bindingof a radioactive herbicide and atomic absorption spectroscopyof Mn. Consequently, the PSII to PSI ratio increased from 1.1–1.3in the wild-type rice to 1.8 in chlorina 2, which contains noChl b, and to 2.0–3.3 in chlorina 11 and chlorina 14,which have chlorophyll a/b ratios of 9 and 13, respectively.Measurement of oxygen evolution with saturating single-turnoverflashes revealed that, whereas at most 20% of PSII centers areinactive in oxygen evolution in the wildtype rice, the non-functionalPSII centers amount to about 50% in the three mutant strains.The fluorescence induction kinetics was also analyzed to estimateproportions of the inactive PSII in the mutants. The data obtainedsuggest that plants have an ability to adjust the stoichiometryof the two photosystems and the functional organization of PSIIin response to the genetically induced deficiency of chlorophyllb. (Received July 29, 1994; Accepted February 7, 1996)  相似文献   

4.
The analysis of FDMR spectra, recorded at multiple emission wavelengths, by a global decomposition technique, has allowed us to characterise the triplet populations associated with Photosystem I and Photosystem II of thylakoids in the green alga Chlamydomonas reinhardtii. Three triplet populations are observed at fluorescence emissions characteristic of Photosystem II, and their zero field splitting parameters have been determined. These are similar to the zero field parameters for the three Photosystem II triplets previously reported for spinach thylakoids, suggesting that they have a widespread occurrence in nature. None of these triplets have the zero field splitting parameters characteristic of the Photosystem II recombination triplet observed only under reducing conditions. Because these triplets are generated under non-reducing redox conditions, when the recombination triplet is undetectable, it is suggested that they may be involved in the photoinhibition of Photosystem II. At emission wavelengths characteristic of Photosystem I, three triplet populations are observed, two of which are attributed to the P700 recombination triplet frozen in two different conformations, based on the microwave-induced fluorescence emission spectra and the triplet minus singlet difference spectra. The third triplet population detected at Photosystem I emission wavelengths, which was previously unresolved, is proposed to originate from the antenna chlorophyll of the core or the unusually blue-shifted outer antenna complexes of this organism.  相似文献   

5.
Turnover, in the light, of apoproteins of light-harvesting chlorophylla/6-proteins for Photo-system I and II (LHC-I and LHC-II, respectively)was studied with the wild-type and three chlorophyll 6-deficientmutants of rice. (1) Synthesis of the 24 and 25 kDa apoproteinsof LHC-II and the 20 and 21 kDa apoproteins of LHC-I was examinedby incubating leaf segments with [35S]-methionine. The threerice mutants, chlorina 2, which totally lacks chlorophyll b,and chlorina 11 and 14, which are partially deficient in chlorophyllb, synthesized the apoproteins as rapidly as did the wild typerice. (2) Pulse-chase experiments showed that breakdown of theapoproteins proceeded slowly, such that only a small proportionof the newly synthesized apoproteins was lost during the 48h of the chase in normal rice leaves. By contrast, large fractionsof the labelled apoproteins were rapidly degraded within thefirst several hours of the chase period in the chlorina mutants.The greater the deficiency in chlorophyll b of the mutant, thelarger were the rate and extent of the protein breakdown. Thisresult indicates that chlorophyll b is needed to stabilize theapoproteins of LHC-II and LHC-I. (3) However, even in chlorina2, there were small fractions of the apoproteins with lifetimesas long as those of apoproteins in the wild-type rice, suggestingthat the newly synthesized apoproteins are partially protectedby a factor(s) other than chlorophyll b. (4) The rate of turnoverof the apoproteins was significantly reduced in the dark andstrongly inhibited by prior treatment of leaf segments withchloramphenicol. (Received November 24, 1988; Accepted March 17, 1989)  相似文献   

6.
The analysis of FDMR spectra, recorded at multiple emission wavelengths, by a global decomposition technique, has allowed us to characterise the triplet populations associated with Photosystem I and Photosystem II of thylakoids in the green alga Chlamydomonas reinhardtii. Three triplet populations are observed at fluorescence emissions characteristic of Photosystem II, and their zero field splitting parameters have been determined. These are similar to the zero field parameters for the three Photosystem II triplets previously reported for spinach thylakoids, suggesting that they have a widespread occurrence in nature. None of these triplets have the zero field splitting parameters characteristic of the Photosystem II recombination triplet observed only under reducing conditions. Because these triplets are generated under non-reducing redox conditions, when the recombination triplet is undetectable, it is suggested that they may be involved in the photoinhibition of Photosystem II. At emission wavelengths characteristic of Photosystem I, three triplet populations are observed, two of which are attributed to the P(700) recombination triplet frozen in two different conformations, based on the microwave-induced fluorescence emission spectra and the triplet minus singlet difference spectra. The third triplet population detected at Photosystem I emission wavelengths, which was previously unresolved, is proposed to originate from the antenna chlorophyll of the core or the unusually blue-shifted outer antenna complexes of this organism.  相似文献   

7.
8.
A chlorophyll a/b protein complex has been isolated from a resolved native photosystem I complex by mildly dissociating sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The chlorophyll a/b protein contains a single polypeptide of molecular weight 20 kilodaltons, and has a chlorophyll a/b ratio of 3.5 to 4.0. The visible absorbance spectrum of the chlorophyll a/b protein complex showed a maximum at 667 nanometers in the red region and a 77 K fluorescence emission maximum at 681 nanometers. Alternatively, by treatment of the native photosystem I complex with lithium dodecyl sulfate and Triton, the chlorophyll a/b protein complex could be isolated by chromatography on Sephadex G-75. Immunological assays using antibodies to the P700-chlorophyll a-protein and the photosystem II light-harvesting chlorophyll a/b protein show no cross-reaction between the photosystem I chlorophyll a/b protein and the other two chlorophyll-containing protein complexes.  相似文献   

9.
Kohorn BD  Tobin EM 《Plant physiology》1986,82(4):1172-1174
We have previously isolated and sequenced two genes encoding light-harvesting chlorophyll a/b-proteins (LHCP) from Lemna gibba. One of these, AB30, encodes a protein that is highly homologous to LHCP sequences reported from other species, but the second, AB19, encodes a protein that has a transit peptide and first 12 amino-terminal residues of the mature protein that are substantially different. Despite these differences, we can demonstrate that AB19 encoded protein synthesized in vitro can be imported into isolated chloroplasts, and we provide evidence that at least some of the imported molecules are assembled into the light-harvesting complex of photosystem II. Thus, our results are consistent with the possibility that there are two functional forms of LHCP.  相似文献   

10.
The effect of chlorophyll–protein complexes on the ultrastructure of chloroplasts was studied in the leaves of pea, the parent cultivar Torsdag and mutants chlorotica 2004 and 2014. The mutants were shown to accumulate 80 and 55% of chlorophyll, relative to the control, while the composition of the synthesized photosystem complexes was the same as in the parent cultivar Torsdag. The size of the light-harvesting antenna was similar to the control in the 2014 mutant but considerably increased (by 30%) in the 2004 mutant. These changes were due to a proportional decrease in the number of all complexes (by 40–45%) in the 2014 mutant. At the same time, the number of reaction center complexes of photosystem I (PS I) decreased by 50% while that of photosystem II (PS II) remained virtually constant in the 2004 mutant. A proportional decrease in the number of the PS I and PS II complexes in the chlorotica 2014 mutant was accompanied by a partial reduction of the entire chloroplast membrane system against the background of normal development of both granal and intergranal sites of thylakoids. Conversely, the loss of PS I reaction centers led mainly to the reduction of the intergranal sites of thylakoids in chloroplasts. This effect is attributed to the prevalence of PS I complexes in the intergranal thylakoids.  相似文献   

11.
A P700-chlorophyll a-protein complex, solubilized by the detergent Triton X-100, has been isolated by hydroxyl apatite column chromatography. The chlorophyll composition was determined by thin-layer chromatography and spectrofluorimetric analysis. This photosystem I reaction centre complex, prepared at pH 7, contained pheophytin a and P700 in a ratio of 2/1, high enough to account for a composition similar to that in the reaction centre of photosynthetic bacteria. Prepared at pH 9, the same ratio was 0.2/1, which excludes pheophytin a from having the same function as that of bacterio-pheophytin in the photosynthetic bacteria.  相似文献   

12.
State transitions are an important photosynthetic short-term response that allows energy distribution balancing between photosystems I (PSI) and II (PSII). In plants when PSII is preferentially excited compared with PSI (State II), part of the major light-harvesting complex LHCII migrates to PSI to form a PSI-LHCII supercomplex. So far, little is known about this complex, mainly due to purification problems. Here, a stable PSI-LHCII supercomplex is purified from Arabidopsis thaliana and maize (Zea mays) plants. It is demonstrated that LHCIIs loosely bound to PSII in State I are the trimers mainly involved in state transitions and become strongly bound to PSI in State II. Specific Lhcb1-3 isoforms are differently represented in the mobile LHCII compared with S and M trimers. Fluorescence analyses indicate that excitation energy migration from mobile LHCII to PSI is rapid and efficient, and the quantum yield of photochemical conversion of PSI-LHCII is substantially unaffected with respect to PSI, despite a sizable increase of the antenna size. An updated PSI-LHCII structural model suggests that the low-energy chlorophylls 611 and 612 in LHCII interact with the chlorophyll 11145 at the interface of PSI. In contrast with the common opinion, we suggest that the mobile pool of LHCII may be considered an intimate part of the PSI antenna system that is displaced to PSII in State I.  相似文献   

13.
Incubation of spinach chloroplast membranes for 90 minutes in the presence of 50 mm KCN and 100 mum HgCl(2) produces an inhibition of photosystem I activity which is stable to washing and to storage of the chloroplasts at -70 C. Subsequent exposure of these preparations to NH(2)OH and ethylenediaminetetraacetic acid destroys O(2) evolution and flow of electrons from water to oxidized p-phenylenediamine, but two types of phosphorylating cyclic electron flow can still be observed. In the presence of 3-(3,4-dichlorophenyl)-1,1'-dimethylurea, phenazinemethosulfate catalyzes ATP synthesis at a rate 60% that observed in uninhibited chloroplasts. C-Substituted p-phenylenediamines will also support low rates of photosystem I-catalyzed cyclic photophosphorylation, but p-phenylenediamine is completely inactive. When photosystem II is not inhibited, p-phenylenediamine will catalyze ATP synthesis at rates up to 90 mumol/hr.mg chlorophyll. This reaction is unaffected by anaerobiosis, and an action spectrum for ATP synthesis shows a peak at 640 nm. These results are interpreted as evidence for the existence of photosystem II-dependent cyclic photophosphorylation in these chloroplast preparations.  相似文献   

14.
We have compared the properties of a mutant of barley lacking Photosystem I (viridis-zb 63 ) with the corresponding wild type using modulated fluorescence measurements. The mutant showed two unexpected characteristics. Firstly, there was a slow decline in the fluorescence signal in the light which was dependent on the presence of O2 at concentrations similar to that in air; 2% O2 in N2 had no effect. The observed decline was mainly due to an increase in the non-photochemical quenching. Secondly, in the absence of O2, saturating light pulses caused a pronounced transient decrease in the fluorescence signal; a similar effect could also be observed in wild type plants when neither CO2 nor O2 was present.Abbreviations PPFD- photosynthetic photon flux density - qN- non-photochemical quenching of chlorophyll fluorescence - qp- photochemical quenching of chlorophyll fluorescence  相似文献   

15.
16.
We studied the difference in thermostability of photosystem Ⅱ (PSII) and leaf lipid composition between a T-DNA insertion mutant rice (Oryza sativa L.) VG28 and its wild type Zhonghuau. Native green gel and SDS-PAGE electrophoreses revealed that the mutant VG28 lacked all light-harvesting chlorophyll a/b protein complexes. Both the mutant and wild type were sensitive to high temperatures, and the maximal efficiency of PSII photochemistry (FJ Fm) and oxygen-evolving activity of PSII in leaves significantly decreased with increasing temperature. However, the PSII activity of the mutant was markedly more sensitive to high temperatures than that of the wild type. Lipid composition analysis showed that the mutant had less phosphatidylglycerol and sulfoquinovosyl diacylglycerol compared with the wild type. Fatty acid analysis revealed that the mutant had an obvious decrease in the content of 16:1t and a marked increase in the content of 18:3 compared with the wild type. The effects of lipid composition and unsaturation of membrane lipids on the thermostability of PSII are discussed.  相似文献   

17.
Lin  Zhi-Fang  Peng  Chang-Lian  Lin  Gui-Zhu  Ou  Zhi-Ying  Yang  Cheng-Wei  Zhang  Jing-Liu 《Photosynthetica》2003,41(1):61-67
Two yellow rice mutants VG28-1 and VG30-5 were obtained during the tissue culture process from a rice plant (cv. Zhonghua No.11 japonica) with inserted maize Ds transposon element. Absorption spectra and pigment composition showed that two mutants had no chlorophyll (Chl) b and lower Chl a content in comparison to the wild type (WT). Net photosynthetic rate (P N), total electron transport rate (JF), photochemical quenching (qp), quantum yield of PS2 dependent non-cyclic electron transport (PS2), fraction of Prate, and leaf area were lower but Fv/Fm and apparent quantum yield (AQY) remained at similar levels as in the WT plant. Xanthophyll cycle pool size (V+A+Z) on a Chl basis, and de-epoxidation state were enhanced in the mutants. The mutants had larger amounts of soluble protein and ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO), especially the small subunit of RuBPCO, than WT. The characteristics of two rice mutants differed somewhat from the other common Chl b-less mutants originating from mutagenic agent treatments.  相似文献   

18.
The functional role of a chlorophyll ab complex associated with Photosystem I (PS I) has been studied. The rate constant for P-700 photooxidation, KP-700, which under light-limiting conditions is directly proportional to the size of the functional light-harvesting antenna, has been measured in two PS I preparations, one of which contains the chlorophyll ab complex and the other lacking the complex. KP-700 for the former preparation is half of that of the preparation which has the chlorophyll ab complex present. This difference reflects a decrease in the functional light-harvesting antenna in the PS I complex devoid of the chlorophyll ab complex. Experiments involving reconstitution of the chlorophyll ab complex with the antenna-depleted PS I preparation indicate a substantial recovery of the KP-700 rate. These results demonstrate that the chlorophyll ab complex functions as a light-harvesting antenna in PS I.  相似文献   

19.
W.L. Butler  M. Kitajima 《BBA》1975,396(1):72-85
A model for the photochemical apparatus of photosynthesis is presented which accounts for the fluorescence properties of Photosystem II and Photosystem I as well as energy transfer between the two photosystems. The model was tested by measuring at ?196 °C fluorescence induction curves at 690 and 730 nm in the absence and presence of 5 mM MgCl2 which presumably changes the distribution of excitation energy between the two photosystems. The equations describing the fluorescence properties involve terms for the distribution of absorbed quanta, α, being the fraction distributed to Photosystem I, and β, the fraction to Photosystem II, and a term for the rate constant for energy transfer from Photosystem II to Photosystem I,kT(II→I). The data, analyzed within the context of the model, permit a direct comparison of α andkT(II→I) in the absence (?) and presence (+) of Mg2+:α/?α+= 1.2andk/?T(II→I)k+T(II→I)= 1.9. If the criterion thatα + β = 1 is applied absolute values can be calculated: in the presence of Mg2+,a+ = 0.27 and the yield of energy transfer,φ+T(II→I) varied from 0.065 when the Photosystem II reaction centers were all open to 0.23 when they were closed. In the absence of Mg2+? = 0.32 andφT(II→I) varied from 0.12 to 0.28.The data were also analyzed assuming that two types of energy transfer could be distinguished; a transfer from the light-harvseting chlorophyll of Photosystem II to Photosystem I,kT(II→I), and a transfer from the reaction centers of Photosystem II to Photosystem I,kt(II→I). In that caseα/?α+= 1.3,k/?T(II→I)k+T(II→I)= 1.3 andk/?t(II→I)k+(tII→I)= 3.0. It was concluded, however, that both of these types of energy transfer are different manifestations of a single energy transfer process.  相似文献   

20.
Sickle erythrocytes exhibit abnormal morphology and membrane mechanics under deoxygenated conditions due to the polymerization of hemoglobin S. We employed dissipative particle dynamics to extend a validated multiscale model of red blood cells (RBCs) to represent different sickle cell morphologies based on a simulated annealing procedure and experimental observations. We quantified cell distortion using asphericity and elliptical shape factors, and the results were consistent with a medical image analysis. We then studied the rheology and dynamics of sickle RBC suspensions under constant shear and in a tube. In shear flow, the transition from shear-thinning to shear-independent flow revealed a profound effect of cell membrane stiffening during deoxygenation, with granular RBC shapes leading to the greatest viscosity. In tube flow, the increase of flow resistance by granular RBCs was also greater than the resistance of blood flow with sickle-shape RBCs. However, no occlusion was observed in a straight tube under any conditions unless an adhesive dynamics model was explicitly incorporated into simulations that partially trapped sickle RBCs, which led to full occlusion in some cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号