首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Natural killer (NK) cells express killer cell inhibitory receptors (KIRs) that recognize polymorphic class I MHC molecules. In the present study, we analyze the modulatory effect of IL-2 alone or a combination of IL-12 with IL-18 on surface expression of killer cell immunoglobulin-like receptors KIR2DL1, KIR2DL2, and KIR3DL2 in NK cells. Thus, it was found that IL-2 causes a significant increase in the proportion of cells with given studied receptors. Stimulation by a mixture of IL-12 and IL-18 caused significant increase in the fraction of cells with the KIR2DL1 and KIR2DL2, however no significant change in the percentage of cells with KIR3DL2 receptor on their surface was observed. The results of the study show the presence of KIRs on both resting and activated NK cells, this may suggest that KIRs have also an important role in the regulatory processes after activation of this subpopulation of cells.  相似文献   

2.
Molecular interactions between killer immunoglobulin-like receptors (KIRs) and their MHC class I ligands play a central role in the regulation of natural killer (NK) cell responses to viral pathogens and tumors. Here we identify Mamu-A1*00201 (Mamu-A*02), a common MHC class I molecule in the rhesus macaque with a canonical Bw6 motif, as a ligand for Mamu-KIR3DL05. Mamu-A1*00201 tetramers folded with certain SIV peptides, but not others, directly stained primary NK cells and Jurkat cells expressing multiple allotypes of Mamu-KIR3DL05. Differences in binding avidity were associated with polymorphisms in the D0 and D1 domains of Mamu-KIR3DL05, whereas differences in peptide-selectivity mapped to the D1 domain. The reciprocal exchange of the third predicted MHC class I-contact loop of the D1 domain switched the specificity of two Mamu-KIR3DL05 allotypes for different Mamu-A1*00201-peptide complexes. Consistent with the function of an inhibitory KIR, incubation of lymphocytes from Mamu-KIR3DL05(+) macaques with target cells expressing Mamu-A1*00201 suppressed the degranulation of tetramer-positive NK cells. These observations reveal a previously unappreciated role for D1 polymorphisms in determining the selectivity of KIRs for MHC class I-bound peptides, and identify the first functional KIR-MHC class I interaction in the rhesus macaque. The modulation of KIR-MHC class I interactions by viral peptides has important implications to pathogenesis, since it suggests that the immunodeficiency viruses, and potentially other types of viruses and tumors, may acquire changes in epitopes that increase the affinity of certain MHC class I ligands for inhibitory KIRs to prevent the activation of specific NK cell subsets.  相似文献   

3.
Human natural killer cells and a subset of T cells express a repertoire of killer cell immunoglobulin receptors (KIRs) that recognize major histocompatibility complex (MHC) class I molecules. KIRs and T cell receptors (TCRs) bind in a peptide-dependent manner to overlapping regions of peptide-MHC class I complexes. KIRs with two immunoglobulin domains (KIR2Ds) recognize distinct subsets of HLA-C alleles. Here we use surface plasmon resonance to study the binding of soluble forms of KIR2DL1 and KIR2DL3 to several peptide-HLA-Cw7 complexes. KIR2DL3 bound to the HLA-Cw7 allele presenting the peptide RYRPGTVAL with a 1:1 stoichiometry and an affinity (K(d) approximately 7 microM at 25 degrees C) within the range of values measured for other cell-cell recognition molecules, including the TCR. Although KIR2DL1 is reported not to recognize the HLA-Cw7 allele in functional assays, it bound RYRPGTVAL/HLA-Cw7, albeit with a 10-20-fold lower affinity. TCR/peptide-MHC interactions are characterized by comparatively slow kinetics and unfavorable entropic changes (Willcox, B. E., Gao, G. F., Wyer, J. R. , Ladbury, J. E., Bell, J. I., Jakobsen, B. K., and van der Merwe, P. A. (1999) Immunity 10, 357-365), suggesting that binding is accompanied by conformational adjustments. In contrast, we show that KIR2DL3 binds RYRPGTVAL/HLA-Cw7 with fast kinetics and a favorable binding entropy, consistent with rigid body association. These results indicate that KIR/peptide-MHC class I interactions have properties typical of other cell-cell recognition molecules, and they highlight the unusual nature of TCR/peptide-MHC recognition.  相似文献   

4.
Mutations within MHC class I-restricted epitopes have been studied in relation to T cell-mediated immune escape, but their impact on NK cells via interaction with killer Ig-like receptors (KIRs) during early HIV infection is poorly understood. In two patients acutely infected with HIV-1, we observed the appearance of a mutation within the B*57-restricted TW10 epitope (G9E) that did not facilitate strong escape from T cell recognition. The NK cell receptor KIR3DL1, carried by these patients, is known to recognize HLA-B*5703 and is associated with good control of HIV-1. Therefore, we tested whether the G9E mutation influenced the binding of HLA-B*5703 to soluble KIR3DL1 protein by surface plasmon resonance, and while the wild-type sequence and a second (T3N) variant were recognized, the G9E variant abrogated KIR3DL1 binding. We extended the study to determine the peptide sensitivity of KIR3DL1 interaction with epitopes carrying mutations near the C termini of TW10 and a second HLA-B*57-restricted epitope, IW9. Several amino acid changes interfered with KIR3DL1 binding, the most extreme of which included the G9E mutation commonly selected by HLA-B*57. Our results imply that during HIV-1 infection, some early-emerging variants could affect KIR-HLA interaction, with possible implications for immune recognition.  相似文献   

5.
Natural killer (NK) cells are circulating lymphocytes that play an important role in the control of viral infections and tumors. Their functions are regulated by several activating and inhibitory receptors. A subset of these receptors in human NK cells are the killer immunoglobulin-like receptors (KIRs), which interact with the highly polymorphic MHC class I molecules. One important function of NK cells is to detect cells that have down-regulated MHC expression (missing-self). Because MHC molecules have non polymorphic regions, their expression could have been monitored with a limited set of monomorphic receptors. Surprisingly, the KIR family has a remarkable genetic diversity, the function of which remains poorly understood. The mouse cytomegalovirus (MCMV) is able to evade NK cell responses by coding “decoy” molecules that mimic MHC class I. This interaction was suggested to have driven the evolution of novel NK cell receptors. Inspired by the MCMV system, we develop an agent-based model of a host population infected with viruses that are able to evolve MHC down-regulation and decoy molecules. Our simulations show that specific recognition of MHC class I molecules by inhibitory KIRs provides excellent protection against viruses evolving decoys, and that the diversity of inhibitory KIRs will subsequently evolve as a result of the required discrimination between host MHC molecules and decoy molecules.  相似文献   

6.
Tumor growth and dissemination depend partly on the reactivity of natural killer (NK) cells and T cells expressing NK-associated receptors. Their effector functions are regulated by an array of activating and inhibitory cell surface receptors with MHC class I ligand specificity, such as the killer immunoglobulin-like receptors (KIRs). Given the extensive genomic diversity of KIRs and their HLA ligands, it is reasonable to speculate that HLA, KIR gene variations and specific KIR-ligand combinations will have an impact on disease susceptibility and/or progression. Here, we discuss how KIR genotypes and KIR/HLA immunogenetic profiles may be involved in tumorigenesis, especially in malignant melanoma (MM). A hypothetical model of the impact of KIR/ligand combinations on immune responses in MM is proposed.  相似文献   

7.
Human NK cells use class I MHC-binding inhibitory receptors, such as the killer cell Ig-like receptor (KIR) family, to discriminate between normal and abnormal cells. Some tumors and virus-infected cells down-regulate class I MHC and thereby become targets of NK cells. Substantial evidence indicates that the mechanism of KIR-mediated inhibition involves recruitment of the protein tyrosine phosphatases, Src homology 2-containing protein tyrosine phosphatase-1 (SHP-1) and SHP-2, to two phosphorylated cytoplasmic immunoreceptor tyrosine-based inhibitory motifs (ITIMs). KIR2DL5 is a type II member of the KIR2D family with an atypical extracellular domain and an intracytoplasmic domain containing one typical ITIM and one atypical ITIM sequence. Although KIR2DL5 structure is expressed by approximately 50% of humans and is conserved among primate species, its function has not been determined. In the present study, we directly compared functional and biochemical properties of KIR2DL5, KIR3DL1 (a type I KIR with two ITIMs), and KIR2DL4 (the only other type II KIR, which has a single ITIM) in a human NK-like cell line. Our results show that KIR2DL5 is an inhibitory receptor that can recruit both SHP-1 and SHP-2, and its inhibitory capacity is more similar to that of the cytoplasmic domain of KIR2DL4 than KIR3DL1. Interestingly, inhibition of NK cell cytotoxicity by KIR2DL5 was blocked by dominant-negative SHP-2, but not dominant-negative SHP-1, whereas both dominant-negative phosphatases can block inhibition by KIR3DL1. Therefore, the cytoplasmic domains of type II KIRs (2DL4 and 2DL5) exhibit distinct inhibitory capacities when compared with type I KIRs (3DL1), due to alterations in the canonical ITIM sequences.  相似文献   

8.
The killing by natural killer (NK) cells is regulated by inhibitory, costimulatory, and activating receptors. The inhibitory receptors recognize mainly major histocompatibility complex (MHC) class I molecules, while the activating NK receptors recognize stress-induced ligands and viral products. Thus, changes in the expression of the various inhibitory and activating ligands will determine whether target cells will be killed or protected. Here, we demonstrate that after influenza virus infection the binding of the two NK inhibitory receptors, KIR2DL1 and the LIR1, to the infected cells is specifically increased. The increased binding occurs shortly after the influenza virus infection, prior to the increased recognition of the infected cells by the NK activating receptor, NKp46. We also elucidate the mechanism responsible for this effect and demonstrate that, after influenza virus infection, MHC class I proteins redistribute on the cell surface and accumulate in the lipid raft microdomains. Such redistribution allows better recognition by the NK inhibitory receptors and consequently increases resistance to NK cell attack. In contrast, T-cell activity was not influenced by the redistribution of MHC class I proteins. Thus, we present here a novel mechanism, developed by the influenza virus, of inhibition of NK cell cytotoxicity, through the reorganization of MHC class I proteins on the cell surface.  相似文献   

9.
NK cells are cytotoxic to virus-infected and tumor cells that have lost surface expression of class I MHC proteins. Target cell expression of class I MHC proteins inhibits NK cytotoxicity through binding to inhibitory NK receptors. In contrast, a similar family of activating NK receptors, characterized by the presence of a charged residue in their transmembrane portion and a truncated cytoplasmic tail, augment lysis by NK cells when ligated by an appropriate class I MHC protein. However, the class I MHC specificity of many of these activating NK receptors is still unknown. Here, we show enhanced lysis of HLA-Cw4 but not HLA-Cw6-expressing cells, by a subset of NK clones. This subset may express killer cell Ig-like receptor two-domain short tail number 4 (KIR2DS4), as suggested by staining with various mAb. It is still possible, however, that these clones may express receptors other than KIR2DS4 that might recognize HLA-Cw4. Binding of KIR2DS4-Ig fusion protein to cells expressing HLA-Cw4 but not to those expressing HLA-Cw6 was also observed. The binding of KIR2DS4-Ig to HLA-Cw4 is weaker than that of killer cell Ig-like receptor two-domain long tail number 1 (KIR2DL1)-Ig fusion protein; however, such weak recognition is capable of inhibiting lysis by an NK transfectant expressing a chimeric molecule of KIR2DS4 fused to the transmembrane and cytoplasmic portion of KIR2DL1. Residue alpha14 is shown to be important in the KIR2DS4 binding to HLA-Cw4. Implications of the role of the activating NK receptors in immunosurveillance are discussed.  相似文献   

10.
Natural killer (NK) cell responses in primates are regulated in part through interactions between two highly polymorphic molecules, the killer-cell immunoglobulin-like receptors (KIRs) on NK cells and their major histocompatibility complex (MHC) class I ligands on target cells. We previously reported that the binding of a common MHC class I molecule in the rhesus macaque, Mamu-A1*002, to the inhibitory receptor Mamu-KIR3DL05 is stabilized by certain simian immunodeficiency virus (SIV) peptides, but not by others. Here we investigated the functional implications of these interactions by testing SIV peptides bound by Mamu-A1*002 for the ability to modulate Mamu-KIR3DL05+ NK cell responses. Twenty-eight of 75 SIV peptides bound by Mamu-A1*002 suppressed the cytolytic activity of primary Mamu-KIR3DL05+ NK cells, including three immunodominant CD8+ T cell epitopes previously shown to stabilize Mamu-A1*002 tetramer binding to Mamu-KIR3DL05. Substitutions at C-terminal positions changed inhibitory peptides into disinhibitory peptides, and vice versa, without altering binding to Mamu-A1*002. The functional effects of these peptide variants on NK cell responses also corresponded to their effects on Mamu-A1*002 tetramer binding to Mamu-KIR3DL05. In assays with mixtures of inhibitory and disinhibitory peptides, low concentrations of inhibitory peptides dominated to suppress NK cell responses. Consistent with the inhibition of Mamu-KIR3DL05+ NK cells by viral epitopes presented by Mamu-A1*002, SIV replication was significantly higher in Mamu-A1*002+ CD4+ lymphocytes co-cultured with Mamu-KIR3DL05+ NK cells than with Mamu-KIR3DL05- NK cells. These results demonstrate that viral peptides can differentially affect NK cell responses by modulating MHC class I interactions with inhibitory KIRs, and provide a mechanism by which immunodeficiency viruses may evade NK cell responses.  相似文献   

11.
12.
Natural killer (NK) cells require interaction of inhibitory surface receptors with human leukocyte antigen (HLA) ligands during development to acquire functional competence in a process termed "licensing." The quantity of HLA required for this process is unknown. Two polymorphisms affecting HLA-C surface expression (rs9264942 and rs67384697) have recently been identified, and shown to influence progression of HIV infection. We typed a cohort of healthy donors for the two HLA-C-related polymorphisms, KIR2DL1 and KIR2DL3, and their respective HLA-C ligands and analyzed how HLA ligands influenced licensing status of killer cell immunoglobulin-like receptor (KIR)+ NK cells in terms of degranulation and cytokine production in response to HLA-deficient target cells. The presence of respective HLA class I ligands increased the function of KIR2DL1+ and KIR2DL3+ NK cells in a dose-dependent manner. In contrast, neither of the HLA-C-related polymorphisms nor the quantity of cell surface HLA-C had any significant effect on NK cell function. Interestingly, HLA-Cw7-an HLA-C allele with low surface expression-licensed KIR2DL3+ NK cells more strongly than any other KIR2DL3 ligand. The quantity of cell surface HLA-C does not appear to influence licensing of NK cells, and the HLA-C-related polymorphisms presumably influence HIV progression through factors unrelated to NK cell education.  相似文献   

13.
14.
Killer cell immunoglobulin-like receptor (KIR) 2DL4 is the only KIR member reported to be expressed by all human natural killer (NK) cells. It differs from other KIR members in both structure and function. Its specific interaction with HLA-G, a non-classical MHC class I molecule, has been suggested to play an important role in regulating NK cell-mediated cytotoxicity. However, this interaction is still in doubt. In addition, the soluble KIR2DL4 extracellular domain used in many studies was produced by eukaryotic expression, which is less efficient than prokaryotic expression. In this study, we describe a method of rapid production of a large amount of soluble KIR2DL4 extracellular domain based on a prokaryotic expression system. With this soluble KIR2DL4, we verified the interaction between KIR2DL4 and HLA-G1.  相似文献   

15.
Killer cell immunoglobulin-like receptor (KIR) 2DL4 is the only KIR member reported to be expressed by all human natural killer (NK) cells. It differs from other KIR members in both structure and function. Its specific interaction with HLA-G, a non-classical MHC class I molecule, has been suggested to play an important role in regulating NK cell-mediated cytotoxicity. However, this interaction is still in doubt. In addition, the soluble KIR2DL4 extracellular domain used in many studies was produced by eukaryotic expression, which is less efficient than prokaryotic expression. In this study, we describe a method of rapid production a large amount of soluble KIR2DL4 extracellular domain based on a prokaryotic expression system. With this soluble KIR2DL4, we verified the interaction between KIR2DL4 and HLA-G1.  相似文献   

16.
The engagement of natural killer cell immunoglobulin-like receptors (KIRs) with their target ligands, human leukocyte antigen (HLA) molecules, is a critical component of innate immunity. Structurally, KIRs typically have either two (D1-D2) or three (D0-D1-D2) extracellular immunoglobulin domains, with the D1 and D2 domain recognizing the α1 and α2 helices of HLA, respectively, whereas the D0 domain of the KIR3DLs binds a loop region flanking the α1 helix of the HLA molecule. KIR2DL4 is distinct from other KIRs (except KIR2DL5) in that it does not contain a D1 domain and instead has a D0-D2 arrangement. Functionally, KIR2DL4 is also atypical in that, unlike all other KIRs, KIR2DL4 has both activating and inhibitory signaling domains. Here, we determined the 2.8 Å crystal structure of the extracellular domains of KIR2DL4. Structurally, KIR2DL4 is reminiscent of other KIR2DL receptors, with the D0 and D2 adopting the C2-type immunoglobulin fold arranged with an acute elbow angle. However, KIR2DL4 self-associated via the D0 domain in a concentration-dependent manner and was observed as a tetramer in the crystal lattice by size exclusion chromatography, dynamic light scattering, analytical ultracentrifugation, and small angle x-ray scattering experiments. The assignment of residues in the D0 domain to forming the KIR2DL4 tetramer precludes an interaction with HLA akin to that observed for KIR3DL1. Accordingly, no interaction was observed to HLA by direct binding studies. Our data suggest that the unique functional properties of KIR2DL4 may be mediated by self-association of the receptor.  相似文献   

17.
Hao L  Nei M 《Gene》2005,347(2):149-159
The gene family of killer cell immunoglobulin-like receptors (KIRs) in primates provides the first line of defense against virus infection and tumor transformation. Interacting with MHC class I molecules, KIRs can regulate the cytotoxic activity of natural killer (NK) cells and distinguish the tumor and virus infected cells from normal body cells. Phylogenetic analysis and comparison of domain structures identified three major groups of KIR genes (group I, II, and III genes). These groups of KIR genes, generated by a series of gene duplications, have acquired different MHC-binding specificity. Inference of ancestral KIR sequences suggested that the functional divergence of group I genes from group II genes occurred by positive selection at the MHC-binding sites after duplication. Our evolutionary study has shown that group I genes diverged from group II genes about 17 million years ago (Mya) apparently after separation of hominoids from Old World (OW) monkeys. Around the same time, gene duplication generating the class I MHC-C locus appears to have occurred. These findings suggest that KIR and MHC class I genes have coevolved as an interacting system. The KIR gene family has experienced a rapid expansion in primate species. The rate of expansion of this gene family seems to be one of the highest among all hominoid gene families. The KIR gene family is also subject to birth-and-death evolution.  相似文献   

18.
Accumulating evidence suggests an important role for Natural Killer (NK) cells in the control of HIV-1 infection. Recently, it was shown that NK cell-mediated immune pressure can result in the selection of HIV-1 escape mutations. A potential mechanism for this NK cell escape is the selection of HLA class I-presented HIV-1 epitopes that allow for the engagement of inhibitory killer cell immunoglobulin-like receptors (KIRs), notably KIR2DL2. We therefore investigated the consequences of sequence variations within HLA-Cw*0102-restricted epitopes on the interaction of HLA-Cw*0102 with KIR2DL2 using a large panel of overlapping HIV-1 p24 Gag peptides. 217 decameric peptides spanning the HIV-1 p24 Gag consensus sequence were screened for HLA-Cw*0102 stabilization by co-incubation with Cw*0102(+)/TAP-deficient T2 cells using a flow cytometry-based assay. KIR2DL2 binding was assessed using a KIR2DL2-IgG fusion construct. Function of KIR2DL2(+) NK cells was flow cytometrically analyzed by measuring degranulation of primary NK cells after co-incubation with peptide-pulsed T2 cells. We identified 11 peptides stabilizing HLA-Cw*0102 on the surface of T2 cells. However, only one peptide (p24 Gag209–218 AAEWDRLHPV) allowed for binding of KIR2DL2. Notably, functional analysis showed a significant inhibition of KIR2DL2(+) NK cells in the presence of p24 Gag209–218-pulsed T2 cells, while degranulation of KIR2DL2(−) NK cells was not affected. Moreover, we demonstrated that sequence variations in position 7 of this epitope observed frequently in naturally occurring HIV-1 sequences can modulate binding to KIR2DL2. Our results show that the majority of HIV-1 p24 Gag peptides stabilizing HLA-Cw*0102 do not allow for binding of KIR2DL2, but identified one HLA-Cw*0102-presented peptide (p24 Gag209–218) that was recognized by the inhibitory NK cell receptor KIR2DL2 leading to functional inhibition of KIR2DL2-expressing NK cells. Engagement of KIR2DL2 might protect virus-infected cells from NK cell-mediated lysis and selections of sequence polymorphisms that increase avidity to KIR2DL2 might provide a mechanism for HIV-1 to escape NK cell-mediated immune pressure.  相似文献   

19.
20.
MHC class I molecules and KIRs in human history, health and survival   总被引:1,自引:0,他引:1  
MHC class I molecules are ligands for the killer-cell immunoglobulin-like receptors (KIRs), which are expressed by natural killer cells and T cells. The interactions between these molecules contribute to both innate and adaptive immunity. KIRs and MHC class I molecules are encoded by unlinked polymorphic gene families that distinguish all but the most related individuals. Combinations of MHC class I and KIR variants influence resistance to infections, susceptibility to autoimmune diseases and complications of pregnancy, as well as outcome after haematopoietic stem-cell transplantation. Such correlations raise the possibility that interplay between KIR and MHC class I polymorphisms has facilitated human survival in the presence of epidemic infections and has influenced both reproduction and population growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号