首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The best studied role of ubiquitination is to mark proteins for destruction by the proteasome but, in addition, it has recently been shown to promote macromolecular assembly and function, and alter protein function, thus playing a regulatory role distinct from protein degradation. Deubiquinating enzymes, the ubiquitin-processing proteases (ubps) and the ubiquitin carboxy-terminal hydrolases (uchs), remove ubiquitin from ubiquitinated substrates. We show here that the creB gene involved in carbon catabolite repression in Aspergillus nidulans encodes a functional member of the novel subfamily of the ubp family defined by the human homologue UBH1, thus implicating ubiquitination in the process of carbon catabolite repression. Members of the novel subfamily of ubps that include CreB are widespread amongst eukaryotes, with homologues present in mammals, nematodes, Drosophila and Arabidopsis, but mutations in the genes have only been identified in A. nidulans. From phenotypes of the A. nidulans mutants it is probable that this subfamily is involved in complex regulatory pathways. Mutations in the gene encoding the WD40 repeat protein CreC result in an identical phenotype, implicating both genes in this pathway.  相似文献   

2.
Mutations in the acrB gene, which were originally selected through their resistance to acriflavine, also result in reduced growth on a range of sole carbon sources, including fructose, cellobiose, raffinose, and starch, and reduced utilization of omega-amino acids, including GABA and beta-alanine, as sole carbon and nitrogen sources. The acrB2 mutation suppresses the phenotypic effects of mutations in the creB gene that encodes a regulatory deubiquitinating enzyme, and in the creC gene that encodes a WD40-repeat-containing protein. Thus AcrB interacts with a regulatory network controlling carbon source utilization that involves ubiquitination and deubiquitination. The acrB gene was cloned and physically analyzed, and it encodes a novel protein that contains three putative transmembrane domains and a coiled-coil region. AcrB may play a role in the ubiquitination aspect of this regulatory network.  相似文献   

3.
In Aspergillus nidulans, it is known that creB encodes a deubiquitinating enzyme that forms a complex with the WD40 motif containing protein encoded by creC, that mutations in these genes lead to altered carbon source utilization and that the creD34 mutation suppresses the phenotypic effects of mutations in creC and creB. Therefore, creD was characterized in order to dissect the regulatory network that involves the CreB-CreC deubiquitination complex. CreD contains arrestin domains and PY motifs and is highly similar to the Rod1p and Rog3p proteins from Saccharomyces cerevisiae. An additional gene was identified in the A. nidulans genome that also encodes an arrestin and PY motif-containing protein, which we have designated apyA, and thus two similar proteins also exist in A. nidulans. In S. cerevisiae, Rod1p and Rog3p interact with the ubiquitin ligase Rsp5p, and so the A. nidulans homologue of Rsp5p was identified, and the gene encoding this HECT ubiquitin ligase was designated hulA. CreD and ApyA were tested for protein-protein interactions with HulA via the bacterial two-hybrid system, and ApyA showed strong interaction, and CreD showed weak interaction, with HulA in this system.  相似文献   

4.
5.
The major regulatory protein in carbon repression in Aspergillus nidulans is CreA. Strains constitutively over-expressing creA show normal responses to carbon repression, indicating that auto-regulation of creA is not essential for CreA-mediated regulation. In these strains, high levels of CreA are present whether cells are grown in repressing or derepressing conditions, indicating large-scale degradation of CreA does not play a key role. CreA is located in the nucleus and cytoplasm in cells when grown in either repressing or derepressing conditions, and absence of CreB, CreD or AcrB does not affect either the localisation or amount of CreA. Therefore, CreA must require some modification or interaction to act as a repressor. Deletion analysis indicates that a region of CreA thought to be important for repression in Trichoderma reesei and Sclerotina sclerotiorum CreA homologues is not critical for function in Aspergillus nidulans.  相似文献   

6.
The major regulatory protein in carbon repression in Aspergillus nidulans is CreA. Strains constitutively over-expressing creA show normal responses to carbon repression, indicating that auto-regulation of creA is not essential for CreA-mediated regulation. In these strains, high levels of CreA are present whether cells are grown in repressing or derepressing conditions, indicating large-scale degradation of CreA does not play a key role. CreA is located in the nucleus and cytoplasm in cells when grown in either repressing or derepressing conditions, and absence of CreB, CreD or AcrB does not affect either the localisation or amount of CreA. Therefore, CreA must require some modification or interaction to act as a repressor. Deletion analysis indicates that a region of CreA thought to be important for repression in Trichoderma reesei and Sclerotina sclerotiorum CreA homologues is not critical for function in Aspergillus nidulans.  相似文献   

7.
Expression of many microbial genes required for the utilisation of less favoured carbon sources is carbon catabolite repressed in the presence of a preferred carbon source such as D-glucose. In Aspergillus nidulans, creC mutants show derepression in the presence of D-glucose of some, but not all, systems normally subject to carbon catabolite repression. These mutants also fail to grow on some carbon sources, and show minor morphological impairment and altered sensitivity to toxic compounds including molybdate and acriflavin. The pleiotropic nature of the phenotype suggests a role for the creC gene product in the carbon regulatory cascade. The creC gene was cloned and found to encode a protein which contains five WD40 motifs. The sequence changes in three mutant alleles were found to lead to production of truncated proteins which lack one or more of the WD40 repeats. The similarity of the phenotypes conferred by these alleles implies that these alleles represent loss of function alleles. Deletion analysis also showed that at least the most C-terminal WD40 motif is required for function. The CreC protein is highly conserved relative to the Schizosaccharomyces pombe protein Yde3 – whose function is unknown – and human and mouse DMR-N9, which may be associated with myotonic dystrophy. Received: 1 July 1999 / Accepted: 31 January 2000  相似文献   

8.
Expression of many microbial genes required for the utilisation of less favoured carbon sources is carbon catabolite repressed in the presence of a preferred carbon source such as D-glucose. In Aspergillus nidulans, creC mutants show derepression in the presence of D-glucose of some, but not all, systems normally subject to carbon catabolite repression. These mutants also fail to grow on some carbon sources, and show minor morphological impairment and altered sensitivity to toxic compounds including molybdate and acriflavin. The pleiotropic nature of the phenotype suggests a role for the creC gene product in the carbon regulatory cascade. The creC gene was cloned and found to encode a protein which contains five WD40 motifs. The sequence changes in three mutant alleles were found to lead to production of truncated proteins which lack one or more of the WD40 repeats. The similarity of the phenotypes conferred by these alleles implies that these alleles represent loss of function alleles. Deletion analysis also showed that at least the most C-terminal WD40 motif is required for function. The CreC protein is highly conserved relative to the Schizosaccharomyces pombe protein Yde3 – whose function is unknown – and human and mouse DMR-N9, which may be associated with myotonic dystrophy.  相似文献   

9.
10.
Carbon catabolite repression of the gnt operon of Bacillus subtilis is mediated by the catabolite control protein CcpA and by HPr, a phosphocarrier protein of the phosphotransferase system. ATP-dependent phosphorylation of HPr at Ser-46 is required for carbon catabolite repression as ptsH1 mutants in which Ser-46 of HPr is replaced with an unphosphorylatable alanyl residue are resistant to carbon catabolite repression. We here demonstrate that mutation of His-15 of HPr, the site of phosphoenolpyruvate-dependent phosphorylation, also prevents carbon catabolite repression of the gnt operon. A strain which expressed two mutant HPrs (one in which Ser-46 is replaced by Ala [S46A HPr] and one in which His-15 is replaced by Ala [H15A HPr]) on the chromosome was barely sensitive to carbon catabolite repression, although the H15A mutant HPr can be phosphorylated at Ser-46 by the ATP-dependent HPr kinase in vitro and in vivo. The S46D mutant HPr which structurally resembles seryl-phosphorylated HPr has a repressive effect on gnt expression even in the absence of a repressing sugar. By contrast, the doubly mutated H15E,S46D HPr, which resembles the doubly phosphorylated HPr because of the negative charges introduced by the mutations at both phosphorylation sites, had no such effect. In vitro assays substantiated these findings and demonstrated that in contrast to the wild-type seryl-phosphorylated HPr and the S46D mutant HPr, seryl-phosphorylated H15A mutant HPr and H15E,S46D doubly mutated HPr did not interact with CcpA. These results suggest that His-15 of HPr is important for carbon catabolite repression and that either mutation or phosphorylation at His-15 can prevent carbon catabolite repression.  相似文献   

11.
12.
A glucose kinase (glkA) mutant of Streptomyces coelicolor A3(2) M145 was selected by the ability to grow in the presence of the nonmetabolizable glucose analog 2-deoxyglucose. In this glkA mutant, carbon catabolite repression of glycerol kinase and agarase was relieved on several carbon sources tested, even though most of these carbon sources are not metabolized via glucose kinase. This suggests that catabolite repression is not regulated by the flux through glucose kinase and that the protein itself has a regulatory role in carbon catabolite repression. A 10-fold overproduction of glucose kinase also results in relief of catabolite repression, suggesting that excess glucose kinase can titrate the repressing signal away. This could be achieved directly by competition of excess glucose kinase with its repressing form for binding sites on DNA promoter regions or indirectly by competition for binding of another regulatory protein.  相似文献   

13.
A mutation causing resistance to carbon catabolite repression in gene HEX2, mutant allele hex2-3, causes an extreme sensitivity to maltose when in combination with the genes necessary for maltose metabolism. This provided a convenient system for the selective isolation of mutations in genes specifically required for maltose metabolism and other genes involved in general carbon catabolite repression. In addition to reversion of the hex2-3 allele, mutations in three other genes were detected. These genes were called CAT1, CAT3, and MUR1 and in a mutated form abolished maltose inhibition caused by mutant allele hex2-3. Mutant alleles cat1 and cat3 also restored normal repression in the presence of the hex2-3 allele. Segregants having only mutant alleles cat1 or cat3 were obtained by tetrad analysis. These segregants could not grow on nonfermentable carbon sources. Mutant alleles of gene CAT1 were allelic to a mutant allele cat1-1 previously isolated (Zimmermann et al., Mol. Gen. Genet. 151:95-103). Such mutants prevented derepression not only of the maltose catabolizing system, the selected property, but also of glyoxylate shunt and gluconeogenic enzymes. However, respiratory activities and invertase formation were not affected under derepressing conditions. cat3 mutants had the same phenotypic properties as cat1 mutants. This showed that carbon metabolism in yeast cells is under a very complex and ramified control of repressing and derepressing genes, which are interdependent.  相似文献   

14.
Abstract β-Glucosidase in Aspergillus nídulans was found to be both intracellular and extracellular. The intracellular β-glucosidase was synthesized after the exhaustion of carbon source in the medium. The extracellular enzyme appeared with autolysis of the mycelium. Biosynthesis of β-glucosidase was not induced by various carbohydrates but repressed to varying extents in the presence of glucose, glycerol, and 2-deoxyglucose. This repression was not relieved by addition of cAMP. The repression was relieved much more by mutations in the creA gene than by one in the creC gene. Thus, β-glucosidase synthesis in A. nidulans is subject to carbon catabolite repression.  相似文献   

15.
Aspergillus nidulans rcoA encodes a member of the WD repeat family of proteins. The RcoA protein shares sequence similarity with other members of this protein family, including the Saccharomyces cerevisiae Tup1p and Neurospora crassa RCO1. Tup1p is involved in negative regulation of an array of functions including carbon catabolite repression. RCO1 functions in regulating pleiotropic developmental processes, but not carbon catabolite repression. In A. nidulans, deletion of rcoA (DeltarcoA), a recessive mutation, resulted in gross defects in vegetative growth, asexual spore production and sterigmatocystin (ST) biosynthesis. Expression of the asexual and ST pathway-specific regulatory genes, brlA and aflR, respectively, but not the signal transduction genes (i.e. flbA, fluG or fadA) regulating brlA and aflR expression was delayed (brlA) or eliminated (aflR) in a DeltarcoA strain. Overexpression of aflR in a DeltarcoA strain could not rescue normal expression of downstream targets of AflR. CreA-dependent carbon catabolite repression of starch and ethanol utilization was only weakly affected in a DeltarcoA strain. The strong role of RcoA in development, vegetative growth and ST production, compared with a relatively weak role in carbon catabolite repression, is similar to the role of RCO1 in N. crassa.  相似文献   

16.
In Aspergillus nidulans there are three NAD(+)-dependent alcohol dehydrogenases (ADHs) that are capable of utilizing ethanol as a substrate. ADHI is the physiological enzyme of ethanol catabolism and ADHIII is induced under conditions of anaerobiosis. The physiological role of ADHII (structural gene alcB) is unknown. We have measured beta-galactosidase in a transformant with an alcB::lacZ fusion and have shown that alcB is maximally expressed under conditions of carbon starvation. The behavior of the alcB::lacZ transformant suggests a hierarchy of repressing carbon sources characteristic of repression by the general carbon catabolite repressor protein, CreA, but in a creA(d)30 background the transformant shows only partial derepression of beta-galactosidase on 1% glucose compared to the creA+ strain. Our results suggest that, in addition to carbon catabolite repression acting via CreA, a CreA-independent mechanism is involved in induction of alcB on carbon starvation.  相似文献   

17.
18.
19.
In Pseudomonas aeruginosa, the catabolite repression control (Crc) protein repressed the formation of the blue pigment pyocyanin in response to a preferred carbon source (succinate) by interacting with phzM mRNA, which encodes a key enzyme in pyocyanin biosynthesis. Crc bound to an extended imperfect recognition sequence that was interrupted by the AUG translation initiation codon.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号