首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 647 毫秒
1.
Microcystin-LR (MCLR) is a liver-specific toxin known as a tumour promoter in experimental animals. Its mechanisms of hepatotoxicity have been well documented; however, the mechanisms of other effects, in particular those related to its genotoxicity, are not well understood. In our previous studies, we showed that MCLR-induced DNA strand breaks are transiently present and that the damage is mediated by reactive oxygen species (ROS). In this study, we show that exposure of HepG2 cells to non-cytotoxic doses of MCLR-induced time-dependent alterations in the level of intracellular reduced glutathione (GSH). These comprised a rapid initial decrease followed by a gradual increase, reaching a maximum after 6 h of exposure, before returning to the control level after 8 h. During the first 4 h, expression of glutamate-cysteine ligase (GCL), the rate-limiting enzyme of GSH synthesis, increased, indicating an increased rate of de novo synthesis of GSH. The most important observation of this study, combined with the results of our previous studies is the correlation between the time course of alterations of intracellular GSH content and the formation and disappearance of MCLR-induced DNA damage. When the intracellular GSH level was reduced, MCLR-induced DNA damage was observed to increase. Later, when the level of intracellular GSH was normal or elevated, new DNA damage was not induced and existing damage was repaired. To confirm the role of GSH system in MCLR-induced genotoxicity, the intracellular GSH level was moderated by pre-treatment with buthionine-(S,R)-sulfoximine (BSO), a specific GSH synthesis inhibitor, and with N-acetylcysteine (NAC), a GSH precursor. Pre-treatment with BSO dramatically increased the susceptibility of HepG2 cells to MCLR-induced DNA damage, while pre-treatment with NAC almost completely prevented MCLR-induced DNA damage. Thus, intracellular GSH is shown to play a critical role in the cellular defence against MCLR-induced DNA damage in HepG2 cells.  相似文献   

2.
Hu C  Jiang L  Geng C  Zhang X  Cao J  Zhong L 《Mutation research》2008,652(1):88-94
Trichloroethylene (TCE) is an environmental and industrial pollutant whose hepatotoxicity has been demonstrated in experimental animals. However, the mechanisms of the effects, in particular those related to its genotoxicity in humans, are not well understood. The aim of this study was to assess the genotoxic effects of TCE and to identify and clarify the mechanisms, using human hepatoma HepG2 cells. Exposure of the cells to TCE caused significant increase of DNA migration in comet assay and of micronuclei (MN) frequencies at all tested concentrations (0.5-4mM), respectively, which suggests that TCE caused DNA strand breaks and chromosome damage. The involvement of lipid peroxidation in the genotoxic properties of TCE was confirmed by using immunoperoxidase staining for 8-hydroxydeoxyguanosine (8-OHdG) and by measuring levels of thiobarbituric acid-reactive substances (TBARS). To elucidate the role of glutathione (GSH) in these effects, the intracellular GSH level was modulated by pre-treatment with buthionine-(S,R)-sulfoximine (BSO), a specific GSH synthesis inhibitor, and by co-treatment with N-acetylcysteine (NAC), a GSH precursor. It was found that depletion of GSH in HepG2 cells with BSO dramatically increased the susceptibility of HepG2 cells to TCE-induced cytotoxicity and DNA damage, while when the intracellular GSH content was elevated by NAC, the DNA damage induced by TCE was almost completely prevented. These results indicate that TCE exerts genotoxic effects in HepG2 cells, probably through DNA damage by oxidative stress; GSH, as a main intracellular antioxidant, is responsible for cellular defense against TCE-induced DNA damage.  相似文献   

3.
Selenium is a widely studied dietary anticancer agent. Among various selenium compounds, the methylated forms appear to be particularly effective in cancer prevention. Intracellular glutathione (GSH) is known to be involved in the metabolism of many methylated forms of selenium. In this study, we investigated the role of intracellular GSH in methylseleninic acid (MSeA)-induced apoptosis in human hepatoma (HepG(2)) cells. MSeA was shown to deplete intracellular GSH rapidly, preceding the typical apoptotic changes such as DNA fragmentation as measured by the TUNEL assay. When the intracellular GSH concentration was enhanced using N-acetylcysteiene (NAC) (a GSH synthesis precursor) and decreased using buthionine sufoxamine (BSO) (a GSH synthesis inhibitor), NAC markedly augmented MSeA-induced apoptosis, while BSO significantly inhibited MSeA-induced apoptosis. Different from the effect of sodium selenite, there was no measurable superoxide radical level in MSeA-treated cells. These observations suggest that intracellular GSH mainly acts as a cofactor to facilitate MSeA-induced apoptosis, while its antioxidant function becomes largely irrelevant. It is thus postulated that some cancer cells, such as liver cancer cells with higher level of intracellular GSH, would be more susceptible to MSeA cytotoxicity.  相似文献   

4.
Ebselen, 2-phenyl-1,2-benzisoselenazol-3(2H)-one, is a synthetic seleno-organic compound with antioxidant capability. In the present study, we systematically examined the ability of ebselen to induce apoptosis in a human hepatoma cell line, HepG(2). Ebselen-induced apoptosis was evaluated by (i) TdT-mediated dUTP nick end labeling assay; (ii) analysis of sub-G1 cells; (iii) cell morphology, including cell size and granularity examination; and (iv) DNA gel electrophoresis. The results showed that ebselen was able to induce typical apoptosis in HepG(2) cells in a dose- and time-dependent manner. In order to explore the possible mechanisms involved in ebselen-induced apoptosis, the effect of ebselen on intracellular thiol concentrations including reduced glutathione (GSH) and protein thiols and the effect of N-acetylcysteine (NAC) and buthionine sulfoximine (BSO) pretreatment on ebselen-induced apoptosis were investigated. It was found that (i) ebselen rapidly depleted intracellular GSH and protein thiols, moreover, the depletion preceded the occurrence of apoptosis; (ii) NAC, a precursor of intracellular GSH synthesis, significantly alleviated ebselen-induced apoptosis; and (iii) BSO, a specific inhibitor of intracellular GSH synthesis, augmented ebselen-induced apoptosis significantly. Taken together, the present study demonstrates that ebselen is able to induce apoptosis in HepG(2) cells, most probably through rapid depletion of intracellular thiols.  相似文献   

5.
Raza H  John A 《PloS one》2012,7(4):e36325
We have previously reported that acetylsalicylic acid (aspirin, ASA) induces cell cycle arrest, oxidative stress and mitochondrial dysfunction in HepG2 cells. In the present study, we have further elucidated that altered glutathione (GSH)-redox metabolism in HepG2 cells play a critical role in ASA-induced cytotoxicity. Using selected doses and time point for ASA toxicity, we have demonstrated that when GSH synthesis is inhibited in HepG2 cells by buthionine sulfoximine (BSO), prior to ASA treatment, cytotoxicity of the drug is augmented. On the other hand, when GSH-depleted cells were treated with N-acetyl cysteine (NAC), cytotoxicity/apoptosis caused by ASA was attenuated with a significant recovery in oxidative stress, GSH homeostasis, DNA fragmentation and some of the mitochondrial functions. NAC treatment, however, had no significant effects on the drug-induced inhibition of mitochondrial aconitase activity and ATP synthesis in GSH-depleted cells. Our results have confirmed that aspirin increases apoptosis by increased reactive oxygen species production, loss of mitochondrial membrane potential and inhibition of mitochondrial respiratory functions. These effects were further amplified when GSH-depleted cells were treated with ASA. We have also shown that some of the effects of aspirin might be associated with reduced GSH homeostasis, as treatment of cells with NAC attenuated the effects of BSO and aspirin. Our results strongly suggest that GSH dependent redox homeostasis in HepG2 cells is critical in preserving mitochondrial functions and preventing oxidative stress associated complications caused by aspirin treatment.  相似文献   

6.
It is well known that glutathione, the major intracellular antioxidant, is closely involved in the metabolism and bioactivity of selenium. In the present study, glutathione was demonstrated to play a dual role on selenite (Se)-induced oxidative stress and apoptosis in human hepatoma HepG(2) cells. The experiment was carried out in two different modes to modulate intracellular reduced glutathione (GSH) content. In Mode A (pretreatment), cells were pretreated with N-acetylcysteine (NAC), buthionine sulfoximine (BSO), or GSH prior to Se exposure. In Mode B (simultaneous treatment), cells were treated with Se and NAC, BSO, or GSH simultaneously. It was found that Se-induced oxidative stress and apoptosis are closely related to the intracellular level of GSH. Both the increase and depletion of GSH content significantly enhanced Se-induced oxidative stress and apoptosis in HepG(2) cells. Results from this study clearly demonstrated that GSH has a dual role in the effects of Se on cancer cells: (i) GSH acts as a pro-oxidant, facilitating Se-induced oxidative stress, and (ii) GSH acts as an antioxidant, protecting against Se-induced oxidative stress and apoptosis. Understanding such a unique association between GSH and Se may help to explain the controversy in the literature over the complex relationship between selenium and glutathione, and ultimately the capability of selenium to prevent cancer.  相似文献   

7.
Glutathione (GSH) and its precursor cysteine (Cys) are both known to react within any cells with oxidative species and thus play an important role in cellular defense mechanisms against oxidative stress. In melanocytes, these are also important precursors of melanogenesis by reacting non-enzymatically with l-dopaquinone to form the sulfur-containing pheomelanin. Our aim was to assess pigment role in the cellular radioprotection mechanism using a human melanoma cell model of mixed-type melanin under GSH depletion to obtain a radiosensitizing effect. The latter has been achieved either by Cys deprivation or GSH specific depletion. We first compared cell survival of Cys-deprived and GSH-depleted cells vs. control cells. Cys deprivation was achieved by decreasing Cys concentration in the culture medium for 24 h. In this condition, no toxicity was observed, Cys and GSH levels decreased, melanogenesis switched to a higher eumelanin synthesis and cells were significantly more resistant to 10-Gy dose of ionizing radiations than untreated cells. Glutathione depletion was achieved with the gamma-glutamylcysteine synthetase inhibitor buthionine-S-sulfoximine (BSO) for 24 h at 50 microM, a concentration yielding no toxicity. In this condition, intracellular GSH level decreased but no change in pigmentation was observed and cells were slightly but significantly more sensitive to radiation than the control. We then compared DNA radio-induced damages by Comet assay in control cells, cells treated as above and cells with stimulated pigmentation by increasing Tyr concentration in the medium. Our results showed that, when intracellular eumelanin content increased, DNA damage decreased. By contrast, DNA damage increased in cells treated with BSO alone. It is concluded that increasing the intracellular eumelanin content by the melanin precursor Tyr or by favoring the Pheo- to Eumelanin switch, compensates for the loss of the two intracellular radioprotectors that are GSH and Cys.  相似文献   

8.
cis-Diaminedichloroplatinum(II), commonly known as cisplatin, treatment of mice for 24-96, 30 h and 10 days caused the development of chromosomal aberrations in bone marrow cells as well as in Dalton's lymphoma (DL) cells, micronuclei (MN) in bone marrow cells and abnormalities in sperm heads, and it indicates the genotoxic potential of cisplatin in the host. Cisplatin exerts differential effects on the chromosomes of the bone marrow and tumor cells. Combination treatment of cisplatin with L-buthionine(S,R)-sulfoximine (BSO), an inhibitor of glutathione (GSH) synthesis, enhanced these cisplatin-induced genotoxic effects, but supplementing glutathione level with cysteine, its precursor, reduced the cisplatin-induced genotoxicity. The reduction in cellular glutathione level may facilitate increased intracellular accumulation and binding of drug to DNA to enhance the frequency of genotoxicity parameters. These findings support the possible involvement of glutathione as an important intracellular protective agent and suggest that differences in its levels may be one of the factors in the varying sensitivity of cells to cisplatin-induced genotoxic effects in the mice bearing ascites Dalton's lymphoma.  相似文献   

9.
We compared the DNA damaging potency of acrylamide (AA) and its metabolite glycidamide (GA) in the comet assay in cell systems differing with respect to species origin and cytochrome P450-depended monooxygenase (CYP2E1) expression (V79, Caco-2, primary rat hepatocytes). Only after 24 h incubation in the highest concentration of AA (6 mM) a slight but significant increase in DNA damage was observed in V79 and Caco-2 cells. In primary rat hepatocytes, however, expressing substantial amounts of CYP2E1, no induction of DNA strand breaks was found. At the end of the incubation time period (24 h), still 67+/-19% of the CYP2E1 protein was detected by Western blotting. Direct treatment with GA resulted in a significant increase in DNA damage in V79 cells and primary rat hepatocytes at concentrations > or =100 microM (24 h). Caco-2 cells were found to be less sensitive, exhibiting an increase in DNA strand breaks at concentrations > or 300 microM GA. These data confirm the higher genotoxic potential of GA compared to AA but also indicate that high expression of CYP2E1 per se is not necessarily associated with increased genotoxicity of AA. We, therefore, investigated whether the intracellular glutathione (GSH) level might be a critical determinant for the genotoxicity of AA in cells with different CYP2E1 status. Depletion of intracellular GSH by dl-buthionine-[S,R]-sulfoxime (BSO) in rat hepatocytes and V79 cells resulted in a significant induction of DNA strand breaks after incubation with 1 mM AA. However, at higher concentrations (> or =1.25 mM) a strong increase in cytotoxicity, resulting in a severe loss of viability, was observed. In summary, the DNA strand breaking effect of AA appeared not to be directly correlated with the CYP2E1 status of the cells. Depletion of GSH is associated with an increase in AA genotoxicity but seems also to lead to a substantial enhancement of cytotoxicity.  相似文献   

10.
We compared the DNA damaging potency of acrylamide (AA) and its metabolite glycidamide (GA) in the comet assay in cell systems differing with respect to species origin and cytochrome P450-depended monooxygenase (CYP2E1) expression (V79, Caco-2, primary rat hepatocytes). Only after 24 h incubation in the highest concentration of AA (6 mM) a slight but significant increase in DNA damage was observed in V79 and Caco-2 cells. In primary rat hepatocytes, however, expressing substantial amounts of CYP2E1, no induction of DNA strand breaks was found. At the end of the incubation time period (24 h), still 67 ± 19% of the CYP2E1 protein was detected by Western blotting. Direct treatment with GA resulted in a significant increase in DNA damage in V79 cells and primary rat hepatocytes at concentrations ≥100 μM (24 h). Caco-2 cells were found to be less sensitive, exhibiting an increase in DNA strand breaks at concentrations ≥300 μM GA. These data confirm the higher genotoxic potential of GA compared to AA but also indicate that high expression of CYP2E1 per se is not necessarily associated with increased genotoxicity of AA. We, therefore, investigated whether the intracellular glutathione (GSH) level might be a critical determinant for the genotoxicity of AA in cells with different CYP2E1 status. Depletion of intracellular GSH by DL-buthionine-[S,R]-sulfoxime (BSO) in rat hepatocytes and V79 cells resulted in a significant induction of DNA strand breaks after incubation with 1 mM AA. However, at higher concentrations (≥1.25 mM) a strong increase in cytotoxicity, resulting in a severe loss of viability, was observed. In summary, the DNA strand breaking effect of AA appeared not to be directly correlated with the CYP2E1 status of the cells. Depletion of GSH is associated with an increase in AA genotoxicity but seems also to lead to a substantial enhancement of cytotoxicity.  相似文献   

11.
As we reported previously, GADD153 is upregulated in colon cancer cells exposed to curcumin. In the present study, we ascertained the involvement of glutathione and certain sulfhydryl enzymes associated with signal transduction in mediating the effect of curcumin on GADD153. Curcumin-induced GADD153 gene upregulation was attenuated by reduced glutathione (GSH) or N-acetylcysteine (NAC) and potentiated by the glutathione synthesis inhibitor, L-buthionine-(S,R)-sulfoximine (BSO). Additionally, GSH and NAC decreased the intracellular content of curcumin. Conversely, curcumin decreased intracellular glutathione and also increased the formation of reactive oxygen species (ROS) in cells, but either GSH or NAC prevented both of these effects of curcumin. In affecting the thiol redox status, curcumin caused activation of certain sulfhydryl enzymes involved in signal transduction linked to GADD153 expression. Curcumin increased the expression of the phosphorylated forms of PTK, PDK1, and PKC-delta, which was attenuated by either GSH or NAC and potentiated by BSO. Furthermore, selective inhibitors of PI3K and PKC-delta attenuated curcumin-induced GADD153 upregulation. Collectively, these findings suggest that a regulatory thiol redox-sensitive signaling cascade exists in the molecular pathway leading to induction of GADD153 expression as caused by curcumin.  相似文献   

12.
Potassium bromate (KBrO3, PB) is a by-product of ozone used as disinfectant in drinking water. And PB is also a widely used food additive. However, there is little known about its adverse effects, in particular those related to its genotoxicity in humans. The aim of this study was to investigate the genotoxic effects of PB and the underlying mechanisms, using human hepatoma cell line, HepG2. Exposure of the cells to PB caused a significant increase of DNA migration in single cell gel electrophoresis (SCGE) assay and micronuclei (MN) frequencies in micronucleus test (MNT) at all tested concentrations (1.56–12.5 mM and 0.12–1 mM), which suggested that PB-mediated DNA strand breaks and chromosome damage. To indicate the role of antioxidant in those effects, DNA migration was monitored by pre-treatment with hydroxytyrosol (HT) as an antioxidant in SCGE assay. It was found that DNA migration with pre-treatment of HT was dramatically decreased. To elucidate the genotoxicity mechanisms, the study monitored the levels of reactive oxygen species (ROS), glutathione (GSH) and 8-hydroxydeoxyguanosine (8-OHdG). PB was shown to induce ROS production (12.5 mM), GSH depletion (1.56–12.5 mM) and 8-OHdG formation (6.25–12.5 mM) in HepG2 cells. Moreover, lysosomal membrane stability and mitochondrial membrane potential were further studied for the mechanisms of PB-induced genotoxicity. A significant increase was found in the range of 6.25–12.5 mM in lysosomal membrane stability assay. However, under these PB concentrations, we were not able to detect the changes of mitochondrial membrane potential. These results suggest that PB exerts oxidative stress and genotoxic effects in HepG2 cells, possibly through the mechanisms of lysosomal damage, an earlier event preceding the oxidative DNA damage.  相似文献   

13.
Reduced glutathione (GSH) is the most powerful intracellular antioxidant and also involved in viral infections. The pathogenesis of dengue virus (DV) infection has not been completely clarified. This study investigated the relationship between DV serotype 2 (DV2) infections and host intracellular GSH content. Results showed infection with DV2 resulted in a decrease in intracellular GSH, which caused NF-κB activation and increased DV2 production. Supplemental GSH significantly inhibited activation of NF-κB, resulting in a decreased production of DV2 in HepG2 cells. Furthermore, high activity of NF-κB and increased production of DV2 was observed in HepG2 cells treated with buthionine sulfoximine (BSO), an inhibitor of GSH synthesis. In conclusion, DV2 infection could reduce host intracellular GSH concentration and benefited from this process. Supplemental GSH could inhibit viral production, indicating GSH might be valuable in the prevention and treatment of DV2 infection.  相似文献   

14.
Glutathione (GSH) the most abundant nonprotein thiol, is involved in the maintenance of the cellular redox state. In this capacity it may influence lymphocyte responsiveness to various stimuli. We have investigated the requirement of GSH during the activation and proliferation of PBMC. The intracellular GSH content of PBMC was altered by continuous culture or pretreatment with buthionine-S,R-sulfoximine (BSO), a specific and irreversible inhibitor of GSH synthesis. Initial experiments demonstrated that the addition of BSO at the initiation of culture, or shortly thereafter (6 hr), inhibited DNA synthesis and produced a simultaneous decrease in intracellular GSH. It was necessary that the BSO be present in the culture for at least 24 hr prior to the initiation of DNA synthesis for maximal inhibition. Cell cycle analysis revealed that BSO did not affect the entry and progression of PBMC through G1 of the cell cycle, however, entry into S-phase was inhibited in a dose-dependent fashion. These results were further substantiated by the inability of BSO to inhibit IL-2 production and expression of the IL-2R. In addition the timely expression of the transferrin receptor by BSO-treated cells indicated that the block occurred at the G1/S transition. The influence of GSH on early activation events was determined by BSO pretreatments. Lowering the intracellular GSH level of PBMC to less than 10% of the initial content prior to mitogenic stimulation did not impair the ability of these cells to produce IL-2 and express IL-2R, indicating that GSH may not be involved in the generation and response to early activation signals. Furthermore, the removal of BSO from these cultures rapidly reversed its inhibitory effects on DNA and GSH synthesis. In the course of these studies we also observed a modest (17%) albeit consistent increase during activation in the total thiol levels of GSH-depleted PBMC. These thiols may have a key role in the activation process. These data support our hypothesis that GSH is required for lymphocyte proliferation and that additional thiols are involved during the activation process.  相似文献   

15.
Treatment for 2 h with 200 microM cadmium chloride, followed by recovery, caused apoptosis and induced heat-shock protein 70 (HSP70) expression in U-937 promonocytic cells. However, pre-incubation with the GSH depleting agent L-buthionine-[S,R]-sulfoximine (BSO, 1 mM for 24 h) caused necrosis instead of apoptosis and failed to induce HSP70 expression. This failure was a consequence of necrosis instead of GSH depletion, since BSO allowed or even potentiated HSP70 induction when used in combination with heat shock (2 h at 42.5 degrees C) or with 50 microM cadmium, which caused apoptosis. The administration of N-acetyl-L-cysteine (NAC) at the beginning of recovery after BSO/200 microM cadmium treatment prevented the execution of necrosis and restored the execution of apoptosis, but did not restore HSP70 induction, indicating that the inhibition by BSO of HSP70 expression is an early regulated event. This contrasted with the capacity of NAC to prevent the alterations caused by BSO/200 microM cadmium in other proteins, namely the suppression of Bax expression and the increase in Bcl-2 and HSP-60 expression. Finally, it was observed that treatment with 200 microM cadmium rapidly increased the HSP70 mRNA level and stimulated heat-shock factor 1 (HSF1) trimerization and binding, and that these effects were prevented by pre-incubation with BSO. Taken together, these results indicate that the stress response is compatible with apoptosis but not with necrosis in cadmium-treated promonocytic cells. The suppression of the stress response is specifically due to the early inhibition of HSF1 activation.  相似文献   

16.
Liver conservation for transplantation is usually made at 2-4 degrees C. We studied the effect of rewarming to 37 degrees C for up to 3 h of rat hepatocytes kept at 4 degrees C for 20 h, modulating intracellular glutathione (GSH) concentration either with a GSH precursor (N-acetyl-L-cysteine, NAC), or with GSH depleting agents (diethylmaleate and buthionine sulfoximine, DEM/BSO). Untreated hepatocytes showed time-dependent production of reactive oxygen species (ROS), lipid peroxidation, chromatin condensation and membrane blebbing, decrease in GSH concentration, and protein sulfhydryl groups. Fluorochromatization with Propidium Iodide (PI) and Annexin V (AnxV) of cells rewarmed for 1 h caused an increase of AnxV-positive cells without PI staining and any observed lactate dehydrogenase leakage. TUNEL and DNA-laddering tests were negative for all times and treatments, indicating that apoptosis may occur without DNA fragmentation. Cold preservation and rewarming in the presence of NAC induced a significant improvement in the morphology, less oxidative stress and apoptosis. Conversely, DEM/BSO caused a marked deterioration of morphology, increase of oxidative stress and apoptosis. These results suggested that marked changes in GSH status might play a critical role in triggering apoptosis during cold preservation of isolated rat hepatocytes. NAC, added before rewarming, might represent a therapeutic approach for preventing the early events of apoptosis during cold storage.  相似文献   

17.
Hydroquinone (HQ) is a chemical used as a reducing agent, antioxidant, polymerization inhibitor, and chemical intermediate. It has a minor use as a bleaching agent in dermatologic preparations. HQ also occurs as a main metabolite of benzene. In the present study, HQ-induced apoptosis was evaluated by cell morphology changes, determination of phosphatidylserine (PS) externalization and analysis of sub-G1 cells. The effect of HQ on intracellular thiol concentration, including glutathione and protein thiol, and the effect of N-acetylcysteine (NAC) and buthionine sulfoximine (BSO) pretreatment on HQ-induced apoptosis were investigated. The results showed that HQ was able to induce typical apoptosis in HEK293 cells (human embryonic kidney cells) in a dose-dependent manner. Intracellular thiol, including glutathione and protein thiol, was decreased following treatment with HQ. NAC, a precursor of intracellular GSH synthesis, significantly inhibited HQ-induced apoptosis. However, BSO, a specific inhibitor of intracellular GSH synthesis, enhanced HQ-induced apoptosis significantly. Taken together, the present study demonstrates that HQ is able to induce apoptosis in HEK293 cells, most probably through depletion of intracellular thiol. The results also suggest that, at least in HEK293 cells, the control of intracellular redox homeostasis has a central role in the regulation of cell death induced by HQ.  相似文献   

18.

Background  

Multidrug resistance mediated by the multidrug resistance-associated protein 1 (MRP1) decreases cellular drug accumulation. The exact mechanism of MRP1 involved multidrug resistance has not been clarified yet, though glutathione (GSH) is likely to have a role for the resistance to occur. N-acetylcysteine (NAC) is a pro-glutathione drug. DL-Buthionine (S,R)-sulfoximine (BSO) is an inhibitor of GSH synthesis. The aim of our study was to investigate the effect of NAC and BSO on MRP1-mediated vincristine resistance in Human Embryonic Kidney (HEK293) and its MRP1 transfected 293MRP cells. Human Embryonic Kidney (HEK293) cells were transfected with a plasmid encoding whole MRP1 gene. Both cells were incubated with vincristine in the presence or absence of NAC and/or BSO. The viability of both cells was determined under different incubation conditions. GSH, Glutathione S-Transferase (GST) and glutathione peroxidase (GPx) levels were measured in the cell extracts obtained from both cells incubated with different drugs.  相似文献   

19.
The chemoprotective effect of hydroxytyrosol (HT), a strong antioxidant compound from extra virgin olive oil, against acrylamide (AA)-induced genotoxicity was investigated in a human hepatoma cell line, HepG2. The micronucleus test (MNT) assay was used to monitor genotoxicity. In MNT, we found that HT at all tested concentrations (12.5-50 microM) significantly reduced the micronuclei frequencies in a concentration-dependent manner caused by AA. In order to clarify the underlying mechanisms we measured the intracellular reactive oxygen species (ROS) formation using 2,7-dichlorofluorescein diacetate (DCFH-DA) as a fluorescent probe. Intracellular glutathione (GSH) level was estimated by fluorometric methods. The rate-limiting enzyme in GSH synthesis is gamma-glutamylcysteine synthetase (gamma-GCS) and gamma-GCS was measured using Western blotting. The results showed that HT significantly concentration-dependent reduced the genotoxicity caused by AA. Furthermore, HT was able to reduce intracellular ROS formation and attenuate GSH depletion caused by AA in a concentration-dependent manner. It was also found that HT enhanced the expression of gamma-GCS in HepG2 cells treated with 10 mM AA using immunoblotting in a concentration-dependent manner. The results showed that HT reduced the AA-induced genotoxicity by decreasing the ROS level and increasing the GSH level. The data strongly suggest that HT have significant protective ability against AA-induced genotoxicity in vitro.  相似文献   

20.
We treated four hepatocellular carcinoma cell lines, HLE, HLF, HuH7, and HepG2 with ATO and demonstrated that arsenic trioxide (ATO) at low doses (1--3 muM) induced a concentration-dependent suppression of cell growth in HLE, HLF, and HuH7. HLE cells underwent apoptosis at 2 microM ATO, which was executed by the activation of caspase-3 through the mitochondrial pathway mediated by caspase-8 activation and Bid truncation. When these cell lines were exposed to ATO in combination with l-S,R-buthionine sulfoximine (BSO) which inhibits GSH synthesis, a synergistic growth suppression was induced, even in HepG2 showing a lower sensitivity to ATO than other cell lines tested. The intracellular GSH levels after the treatment with ATO plus BSO were considerably decreased in HLE cells compared with those after the treatment with ATO or BSO alone. The production of reactive oxygen species (ROS) which was examined by 2' ,7' -dichlorodihydrofluorescein diacetate, increased significantly after the treatment with ATO plus BSO in HLE cells. These findings indicate that ATO at low concentrations induces growth inhibition and apoptosis, and furthermore that the ATO-BSO combination treatment enhances apoptosis through increased production of ROS in hepatocellular carcinoma cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号