共查询到20条相似文献,搜索用时 211 毫秒
1.
Bojana
egura Tamara T. Lah Metka Filipi
《Mutation Research - Genetic Toxicology and Environmental Mutagenesis》2006,611(1-2):25-33
Microcystin-LR (MCLR) is a liver-specific toxin known as a tumour promoter in experimental animals. Its mechanisms of hepatotoxicity have been well documented; however, the mechanisms of other effects, in particular those related to its genotoxicity, are not well understood. In our previous studies, we showed that MCLR-induced DNA strand breaks are transiently present and that the damage is mediated by reactive oxygen species (ROS). In this study, we show that exposure of HepG2 cells to non-cytotoxic doses of MCLR-induced time-dependent alterations in the level of intracellular reduced glutathione (GSH). These comprised a rapid initial decrease followed by a gradual increase, reaching a maximum after 6 h of exposure, before returning to the control level after 8 h. During the first 4 h, expression of glutamate-cysteine ligase (GCL), the rate-limiting enzyme of GSH synthesis, increased, indicating an increased rate of de novo synthesis of GSH. The most important observation of this study, combined with the results of our previous studies is the correlation between the time course of alterations of intracellular GSH content and the formation and disappearance of MCLR-induced DNA damage. When the intracellular GSH level was reduced, MCLR-induced DNA damage was observed to increase. Later, when the level of intracellular GSH was normal or elevated, new DNA damage was not induced and existing damage was repaired. To confirm the role of GSH system in MCLR-induced genotoxicity, the intracellular GSH level was moderated by pre-treatment with buthionine-(S,R)-sulfoximine (BSO), a specific GSH synthesis inhibitor, and with N-acetylcysteine (NAC), a GSH precursor. Pre-treatment with BSO dramatically increased the susceptibility of HepG2 cells to MCLR-induced DNA damage, while pre-treatment with NAC almost completely prevented MCLR-induced DNA damage. Thus, intracellular GSH is shown to play a critical role in the cellular defence against MCLR-induced DNA damage in HepG2 cells. 相似文献
2.
This study evaluated the role of oxidative stress in acrolein-induced DNA damage, using HepG2 cells. Using the standard single cell gel electrophoresis (SCGE) assay, a significant dose-dependent increment in DNA migration was detected at lower concentrations of acrolein; but at the higher tested concentrations, a reduction in the migration was observed. Post-incubation with proteinase K significantly increased DNA migration in cells exposed to higher concentrations of acrolein. These results indicated that acrolein caused DNA strand breaks and DNA-protein crosslinks (DPC). To elucidate the oxidatively generated DNA damage mechanism, the 2,7-dichlorofluorescein diacetate (DCFH-DA) and o-phthalaldehyde (OPT) were used to monitor the levels of reactive oxygen species (ROS) and glutathione (GSH), respectively. The present study showed that acrolein induced the increased levels of ROS and depletion of GSH in HepG2 cells. Moreover, acrolein significantly caused 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodGuo) formation in HepG2 cells. These results demonstrate that the DNA damage induced by acrolein in HepG2 cells is related to the oxidative stress. 相似文献
3.
This study evaluated the role of oxidative stress in acrolein-induced DNA damage, using HepG2 cells. Using the standard single cell gel electrophoresis (SCGE) assay, a significant dose-dependent increment in DNA migration was detected at lower concentrations of acrolein; but at the higher tested concentrations, a reduction in the migration was observed. Post-incubation with proteinase K significantly increased DNA migration in cells exposed to higher concentrations of acrolein. These results indicated that acrolein caused DNA strand breaks and DNA-protein crosslinks (DPC). To elucidate the oxidatively generated DNA damage mechanism, the 2,7-dichlorofluorescein diacetate (DCFH-DA) and o-phthalaldehyde (OPT) were used to monitor the levels of reactive oxygen species (ROS) and glutathione (GSH), respectively. The present study showed that acrolein induced the increased levels of ROS and depletion of GSH in HepG2 cells. Moreover, acrolein significantly caused 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) formation in HepG2 cells. These results demonstrate that the DNA damage induced by acrolein in HepG2 cells is related to the oxidative stress. 相似文献
4.
HepG2 human hepatoma cells express multiple cytokine genes 总被引:5,自引:0,他引:5
Stonāns I Stonāne E Russwurm S Deigner HP Böhm KJ Wiederhold M Jäger L Reinhart K 《Cytokine》1999,11(2):151-156
Although cytokines are known to be involved in the regulation of a variety of hepatocellular functions, hepatocytes themselves are generally considered only targets but not producers of these important mediators. In order to investigate whether cells of hepatocellular linages are a potential source of various regulatory cytokines we have estimated the multiple cytokine gene expression in the culture of well differentiated human HepG2 hepatoma cells using RT-PCR. Our findings demonstrate that HepG2 cells express mRNAs for interferon gamma (IFN-gamma), tumour necrosis factor alpha (TNF-alpha), transforming growth factor beta (TGF-beta), macrophage colony-stimulating factor (M-CSF), oncostatin-M (OSM), intercellular adhesion molecule (ICAM-1), interleukin 4 (IL-4), IL-5, IL-7, IL-10, IL-11, IL-12 and IL-6 receptor (IL-6R). At the same time the expression of IL-1, IL-2, IL-3, IL-6, CD40 ligand and IL-2R genes was not detected. It was concluded that hepatocytes are potential producers of a variety of cytokines, some of them being able to regulate hepatocellular functions directly, while others are important regulators of leukocyte activity. Thus, on the one hand, hepatocytes may express autoregulatory cytokines and on the other hand, influence the functions of other liver cells like Kupffer, Ito or endothelial cells. Due to their large amount, liver parenchymal cells could be an important source of sytemically acting pro- and anti-inflammatory and other regulatory cytokines. 相似文献
5.
This study identifies interactions between transport of the aromatic amino acid l-tryptophan (Trp) and thyroid hormones (TH) in HepG2 human hepatoma cells. The major portion of Trp uptake in HepG2 cells occurs via the NEM-sensitive amino acid transport System L2 (consistent with hepatic LAT3 expression), with a smaller aromatic-AA selective System T (MCT10) component. LAT3 and MCT10 mRNA were both detected in HepG2 cells. Uptake of TH does not involve System L2, but a significant portion of T3 uptake is mediated by System T, alongside a taurocholate-sensitive organic anion transporter. T4 uptake into HepG2 cells appears to be mediated principally by organic anion/monocarboxylate transporters, with smaller contributions by System T and receptor-mediated endocytosis. TH–Trp transport interactions in liver cells centre on System T which, due to a perivenous localisation alongside deiodinase 1, may impact on hepatic T3 generation and release. 相似文献
6.
In this study, the alkaline version of the comet assay has been used to determine the effect of beta-carotene supplementation (10 microM) on peroxide-initiated free radical-mediated DNA damage in human HepG2 hepatoma cells. In supplemented cells, beta-carotene failed to afford any protection against hydrogen peroxide-induced DNA strand breaks. Indeed, levels of strand breaks in supplemented cells were significantly higher than in cells exposed to hydrogen peroxide alone, especially after a long incubation period. In contrast, beta-carotene afforded significant levels of protection against DNA strand breaks when cells were treated with tert-butyl hydroperoxide. In this case, the level of protection increased as supplementation continued. 相似文献
7.
Hydroquinone (HQ) is used as an antioxidant in rubber industry and as a developing agent in photography. HQ is also an intermediate in the manufacture of rubber, food antioxidant and monomer inhibitor. However, the mechanisms of the effects, in particular those related to its genotoxicity in humans, are not well understood. The aim of this study was to assess the genotoxic effects of HQ and to identify and clarify the mechanisms, using human hepatoma HepG2 cells. DNA strand breaks and DNA-protein crosslinks (DPC) were measured by the proteinase K-modified alkaline single cell gel electrophoresis (SCGE) assays. Using the SCGE assay, a significant dose-dependent increment in DNA migration was detected at concentrations of HQ (6.25-25 microM); but at the higher tested concentrations (50 microM), a reduction in the migration compared to the maximum migration at 25 microM was observed. Post-incubation with proteinase K significantly increased DNA migration in cells exposed to higher concentrations of HQ (50 microM). A significant increase of the frequency of micronuclei was found in the range from 12.5 to 50 microM in the micronucleus test (MNT). The data suggested that HQ caused DNA strand breaks, DPC and chromosome breaks. To elucidate the oxidative DNA damage mechanism, the 2,7-dichlorofluorescein diacetate (DCFH-DA) and o-phthalaldehyde (OPT) were chosen to monitor the levels of reactive oxygen species (ROS) and glutathione (GSH), respectively. The present study showed that HQ induced the increased levels of ROS and depletion of GSH in HepG2 cells, the doses being 25-50 and 6.25-50 microM, respectively. Moreover, HQ significantly caused 8-hydroxydeoxyguanosine (8-OHdG) formation in HepG2 cells at concentrations from 12.5 to 50 microM. All these results demonstrate that HQ exerts genotoxic effects in HepG2 cells, probably through DNA damage by oxidative stress. GSH, as a main intracellular antioxidant, is responsible for cellular defense against HQ-induced DNA damage. 相似文献
8.
9.
Rypka M Cervenková K Uherková L Poczatková H Bogdanová K Veselý J 《Biomedical papers of the Medical Faculty of the University Palacky, Olomouc, Czechoslovakia》2005,149(2):251-256
The effects of non-esterified fatty acids (NEFA) and hormone dehydroepiandrosterone (DHEA) on the levels of mRNAs of protein kinase C (PKC) -delta and -epsilon isoforms and those of liver fatty acid binding protein (L-FABP) were investigated in the human hepatoma HepG2 cell line. The cells were kept in low-serum, low-albumin medium during experiments. Low FA levels (100 microM) and time intervals of 4 h and 20 h were used. In these conditions, the saturated (palmitic, stearic) and monounsaturated (oleic) acids rather selectively stimulated PKC-epsilon mRNA levels. Unexpectedly, we found that these acids also suppressed liver fatty-acid binding protein (L-FABP) mRNA levels. DHEA in pharmacological doses (100 microM) produced a significant increase in PKC-delta and -epsilon mRNA levels. Although molecular mechanisms underlying the identified changes have not been investigated in this paper, our findings emphasize that NEFA-induced modulation of mRNA levels of key signalling components represent an additional mechanism for how the ambient NEFA can influence metabolic homeostasis in cells. 相似文献
10.
P Briata R Gherzi L Adezati R Cordera 《Biochemical and biophysical research communications》1989,160(3):1415-1420
Glucose is known to affect mRNA levels of several genes. In order to investigate possible effects of glucose on insulin receptor mRNA levels, we cultured human hepatoma cells (HepG2) in two different culture media: DMEM containing 100 mg/dl glucose and DMEM containing 450 mg/dl glucose. Insulin receptor mRNA levels and insulin binding activity were reduced in HepG2 cultured at lower glucose concentrations. These data suggest that glucose affects insulin receptor gene expression. 相似文献
11.
目的:鉴定肝癌细胞系HepG2中survivin异构体(survivin variant,SVV variant)并构建其真核表达栽体.方法:提取HepG2细胞总RNA,根据Gen-Bank内survivin 3个异构体核苷酸序列设计3条引物对其进行鉴定;设计含有BamH I和Xho I双酶切位点的SVV-3引物,逆转录聚合酶链反应(RT-PCR)扩增SVV-3完整编码区,扩增产物用BamHI和XhoI双酶切后定向克隆到真核细胞表达栽体pcDNA3.1中,序列测定进行鉴定.结果:HepG2细胞表达SVV-3、1,SVV-3表达尤为丰富.对SVV-3克隆测序,与Gen-Bank报道完全一致.结论:成功鉴定出HepG2表达SVV-3、1,构建了SVV-3真核表达载体. 相似文献
12.
Cheng JS Lee KC Wang JL Tseng LL Chou KJ Tang KY Jan CR 《The Chinese journal of physiology》2000,43(4):165-169
The effect of histamine on intracellular free Ca2+ levels ([Ca2+]i) in HA22/VGH human hepatoma cells were evaluated using fura-2 as a fluorescent Ca2+ dye. Histamine (0.2-5 microM) increased [Ca2+]i in a concentration-dependent manner with an EC50 value of about 1 microM. The [Ca2+]i response comprised an initial rise, a slow decay, and a sustained phase. Extracellular Ca2+ removal inhibited 50% of the [Ca2+]i signal. In Ca2+-free medium, after cells were treated with 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor), 5 microM histamine failed to increase [Ca2+]i. After pretreatment with 5 microM histamine in Ca2+-free medium for 4 min, addition of 3 mM Ca2+ induced a [Ca2+]i increase of a magnitude 7-fold greater than control. Histamine (5 microM)-induced intracellular Ca2+ release was abolished by inhibiting phospholipase C with 2 microM 1-(6-((17beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione (U73122), and by 5 microM pyrilamine but was not altered by 50 microM cimetidine. Together, this study shows that histamine induced [Ca2+]i increases in human hepatoma cells by stimulating H1, but not H2, histamine receptors. The [Ca2+]i signal was caused by Ca2+ release from thapsigargin-sensitive endoplasmic reticulum in an inositol 1,4,5-trisphosphate-dependent manner, accompanied by Ca2+ entry. 相似文献
13.
14.
The effect of NPC-14686, a potential anti-inflammatory drug, on cytosolic free Ca(2+) levels ([Ca(2+)](i)) in HA22/VGH human hepatoma cells was explored by using fura-2 as a fluorescent Ca(2+) indicator. NPC-14686 at concentrations above 10 microM increased [Ca(2+)](i) in a concentration-dependent manner with an EC(50) value of 100 microM. The Ca(2+) signal was reduced by removing extracellular Ca(2+) or by 10 microM nifedipine and was not changed by verapamil or diltiazem. Pretreatment with 1 microM thapsigargin (an endoplasmic reticulum Ca(2+) pump inhibitor) to deplete the endoplasmic reticulum Ca(2+) abolished 200 microM NPC-14686-induced Ca(2+) release; and conversely pretreatment with NPC-14686 abolished thapsigargin-induced Ca(2+) release. The Ca(2+) release induced by 200 microM NPC-14686 was not changed by inhibiting phospholipase C with 2 microM U73122. Together, the results suggest that in human hepatoma cells, NPC-14686 induced a [Ca(2+)](i) increase by causing store Ca(2+) release from the endoplasmic reticulum in an phospholipase C-independent manner, and by inducing nifedipine-sensitive Ca(2+) influx. 相似文献
15.
16.
研究了灵芝肽(GLP)在体外对人肝癌HepG2细胞凋亡的影响,并初步探讨了其作用机制。结果显示,透射电镜下可见细胞染色质浓缩、聚集于核边缘成块状,形成典型的凋亡小体;GLP使HepG2细胞阻滞于G0/G1期,随着GLP浓度升高,其G0/G1期的细胞比例随之增加;同时细胞的早期、晚期和总的凋亡率亦均随之增加,存在剂量-效应关系;Western blotting检测结果显示,抑制凋亡基因bcl-2和survivin表达下调,而促凋亡基因p53表达上调,并且都存在剂量依赖性;细胞凋亡的关键蛋白酶caspase-3被激活,并且caspase-3酶活性与GLP浓度亦有剂量依赖性。提示GLP体外可诱导人肝癌HepG2细胞凋亡,其作用机制可能与bcl-2和survivin表达下调、p53表达上调及Caspase-3被激活有关。 相似文献
17.
Expression of adhesion molecules may play an important role in the interaction of tumor cells with vascular endothelial cells during tumor invasion and metastasis. In this study, the adhesive force of human hepatoma HepG2 cells to human umbilical vein endothelial cells (HUVECs) was investigated using a micropipette aspiration technique. Expression of an adhesion molecule, E-selectin, was also observed by immunofluorescence microscopy. In particular, the adhesive force after stimulation of HUVECs with recombinant human interleukin-1beta (rhIL-1beta) was examined. The results demonstrated that the adhesive force of HepG2 cells to stimulated HUVECs is significantly higher than that of unstimulated control cells, and that immunofluorescence of E-selectin in stimulated HUVECs showed a higher fluorescent intensity compared to control cells. Moreover, addition of monoclonal anti-human E-selectin decreased the adhesive force of HepG2 cells to stimulated HUVECs by 50%. These results suggest that endothelial E-selectin may be a main mediator of carcinoma metastasis of malignant tumor through blood circulation, possibly increasing the adhesive force of human hepatoma HepG2 cells to HUVECs in the early stage of metastases. 相似文献
18.
Whiteman M Rose P Siau JL Cheung NS Tan GS Halliwell B Armstrong JS 《Free radical biology & medicine》2005,38(12):1571-1584
Liver cirrhosis is often preceded by overt signs of hepatitis, including parenchymal cell inflammation and infiltration of polymorphonuclear (PMN) leukocytes. Activated PMNs release both reactive oxygen species and reactive halogen species, including hypochlorous acid (HOCl), which are known to be significantly cytotoxic due to their oxidizing potential. Because the role of mitochondria in the hepatotoxicity attributed to HOCl has not been elucidated, we investigated the effects of HOCl on mitochondrial function in the human hepatoma HepG2 cell line, human fetal liver cells, and isolated rat liver mitochondria. We show here that HOCl induced mitochondrial dysfunction, and apoptosis was dependent on the induction of the mitochondrial permeability transition (MPT), because HOCl induced mitochondrial swelling and collapse of the mitochondrial membrane potential with the concomitant release of cytochrome c. These biochemical events were inhibited by the classical MPT inhibitor cyclosporin A (CSA). Cell death induced by HOCl exhibited several classical hallmarks of apoptosis, including annexin V labeling, caspase activation, chromatin condensation, and cell body shrinkage. The induction of apoptosis by HOCl was further supported by the finding that CSA and caspase inhibitors prevented cell death. For the first time, these results show that HOCl activates the MPT, which leads to the induction of apoptosis and provides a novel insight into the mechanisms of HOCl-mediated cell death at sites of chronic inflammation. 相似文献
19.
Iron may populate distinct hepatocellular iron pools that differentially regulate expression of proteins such as ferritin and transferrin receptor (TfR) through iron-regulatory mRNA-binding proteins (IRPs), and may additionally regulate uptake and accumulation of non-transferrin-bound iron (NTBI). We examined iron-regulatory protein (IRP) binding activity and ferritin/TfR expression in human hepatoma (HepG2) cells exposed to iron at different levels for different periods. Several iron-dependent RNA-binding activities were identified, but only IRP increased with beta-mercaptoethanol. With exposures between 0 and 20 microg/ml iron, decreases in IRP binding accompanied large changes in TfR and ferritin expression, while chelation of residual iron with deferoxamine (DFO) caused a large increase in IRP binding with little additional effect on TfR or ferritin expression. Cellular iron content increased beyond 4 days of exposure to iron at 20 microg/ml, when IRP binding, TfR, and ferritin had all reached stable levels. However, iron content of the cells plateaued by 7 days, or decreased with 24 h exposure to very high concentrations (>50 microg/ml) of iron. These results indicate that iron-replete HepG2 cells exhibit a narrow range of maximal responsiveness of the IRP-regulatory mechanism, whose functional response is blunted both by excessive iron exposure and by removal of iron from a chelatable pool. HepG2 cells are able to limit iron accumulation upon higher or prolonged exposure to NTBI, apparently independent of the IRP mechanism. 相似文献
20.
Bioluminescence‐based cytotoxicity assay for simultaneous evaluation of cell viability and membrane damage in human hepatoma HepG2 cells 下载免费PDF全文
Katsuhiro Uno Kazutoshi Murotomi Yasuhiro Kazuki Mitsuo Oshimura Yoshihiro Nakajima 《Luminescence》2018,33(3):616-624
We have developed a bioluminescence‐based non‐destructive cytotoxicity assay in which cell viability and membrane damage are simultaneously evaluated using Emerald luciferase (ELuc) and endoplasmic reticulum (ER)‐targeted copepod luciferase (GLuc‐KDEL), respectively, by using multi‐integrase mouse artificial chromosome (MI‐MAC) vector. We have demonstrated that the time‐dependent concentration response curves of ELuc luminescence intensity and WST‐1 assay, and GLuc‐KDEL luminescence intensity and lactate dehydrogenase (LDH) activity in the culture medium accompanied by cytotoxicity show good agreement in toxicant‐treated ELuc‐ and GLuc‐KDEL‐expressing HepG2 stable cell lines. We have clarified that the increase of GLuc‐KDEL luminescence intensity in the culture medium reflects the type of cell death, including necrosis and late apoptosis, but not early apoptosis. We have also uncovered a strong correlation between GLuc‐KDEL luminescence intensity in the culture medium and the extracellular release of high mobility group box 1 (HMGB1), a representative damage‐associated molecular pattern (DAMP) molecule. The bioluminescence measurement assay using ELuc and GLuc‐KDEL developed in this study can simultaneously monitor cell viability and membrane damage, respectively, and the increase of GLuc‐KDEL luminescence intensity in the culture medium accompanied by the increase of cytotoxicity is an index of necrosis and late apoptosis associated with the extracellular release of DAMP molecules. 相似文献