首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three forms of feline immunodeficiency virus protease (FIV PR), the wild type (wt) and two single point mutants, V59I and Q99V, as well as human immunodeficiency virus type 1 protease (HIV-1 PR), were cocrystallized with the C2-symmetric inhibitor, TL-3. The mutants of FIV PR were designed to replace residues involved in enzyme-ligand interactions by the corresponding HIV-1 PR residues at the structurally equivalent position. TL-3 shows decreased (improved) inhibition constants with these FIV PR mutants relative to wt FIV PR. Despite similar modes of binding of the inhibitor to all PRs (from P3 to P3'), small differences are evident in the conformation of the Phe side chains of TL-3 at the P1 and P1' positions in the complexes with the mutated FIV PRs. The differences mimick the observed binding of TL-3 in HIV-1 PR and correlate with a significant improvement in the inhibition constants of TL-3 with the two mutant FIV PRs. Large differences between the HIV-1 and FIV PR complexes are evident in the binding modes of the carboxybenzyl groups of TL-3 at P4 and P4'. In HIV-1 PR:TL-3, these groups bind over the flap region, whereas in the FIV PR complexes, the rings are located along the major axis of the active site. A significant difference in the location of the flaps in this region of the HIV-1 and FIV PRs correlates with the observed conformational changes in the binding mode of the peptidomimetic inhibitor at the P4 and P4' positions. These findings provide a structural explanation of the observed Ki values for TL-3 with the different PRs and will further assist in the development of improved inhibitors.  相似文献   

2.
Mutations designed by analysis of the Rous sarcoma virus (RSV) and human immunodeficiency virus (HIV)-1 protease (PR) crystal structures were introduced into 1) the substrate binding pocket, 2) the substrate enclosing "flaps," and 3) surface loops of RSV PR. Each mutant PR was expressed in Escherichia coli. Changes in activity were detected by following cleavage of a truncated (NC-PR) precursor polypeptide in E. coli and cleavage of synthetic peptide substrates representing RSV and HIV-1 PR cleavage sites in vitro. Mutations in the substrate binding pocket exchanged amino acid residues located close to the substrate in the HIV-1 PR for structurally equivalent residues in the RSV PR. Changing histidine 65 to glycine (H65G) gave an inactive enzyme, while a double mutant R105P,G106V, as well as the triple mutant, H65G,R105P,G106V, produced enzymes which showed significant activity toward a substrate that represented a HIV-1 cleavage site. Mutating the catalytic aspartate (D37S) or an adjacent conserved alanine to threonine (A40T), produced inactive enzymes. In contrast, the substitution A40S was active, but showed a reduced rate of catalysis. Mutations in the flaps of conserved glycines (G69L, G70L) produced inactive PRs. Two extended RSV PR surface loops were shortened to the size found in HIV-1 PR and resulted in drastically reduced activity. These results have confirmed some of the basic predictions made from structural models but have also revealed unexpected roles and interactions in the protein.  相似文献   

3.
Beck ZQ  Lin YC  Elder JH 《Journal of virology》2001,75(19):9458-9469
We have used a random hexamer phage library to delineate similarities and differences between the substrate specificities of human immunodeficiency virus type 1 (HIV-1) and feline immunodeficiency virus (FIV) proteases (PRs). Peptide sequences were identified that were specifically cleaved by each protease, as well as sequences cleaved equally well by both enzymes. Based on amino acid distinctions within the P3-P3' region of substrates that appeared to correlate with these cleavage specificities, we prepared a series of synthetic peptides within the framework of a peptide sequence cleaved with essentially the same efficiency by both HIV-1 and FIV PRs, Ac-KSGVF/VVNGLVK-NH(2) (arrow denotes cleavage site). We used the resultant peptide set to assess the influence of specific amino acid substitutions on the cleavage characteristics of the two proteases. The findings show that when Asn is substituted for Val at the P2 position, HIV-1 PR cleaves the substrate at a much greater rate than does FIV PR. Likewise, Glu or Gln substituted for Val at the P2' position also yields peptides specifically susceptible to HIV-1 PR. In contrast, when Ser is substituted for Val at P1', FIV PR cleaves the substrate at a much higher rate than does HIV-1 PR. In addition, Asn or Gln at the P1 position, in combination with an appropriate P3 amino acid, Arg, also strongly favors cleavage by FIV PR over HIV PR. Structural analysis identified several protease residues likely to dictate the observed specificity differences. Interestingly, HIV PR Asp30 (Ile-35 in FIV PR), which influences specificity at the S2 and S2' subsites, and HIV-1 PR Pro-81 and Val-82 (Ile-98 and Gln-99 in FIV PR), which influence specificity at the S1 and S1' subsites, are residues which are often involved in development of drug resistance in HIV-1 protease. The peptide substrate KSGVF/VVNGK, cleaved by both PRs, was used as a template for the design of a reduced amide inhibitor, Ac-GSGVF Psi(CH(2)NH)VVNGL-NH(2.) This compound inhibited both FIV and HIV-1 PRs with approximately equal efficiency. These findings establish a molecular basis for distinctions in substrate specificity between human and feline lentivirus PRs and offer a framework for development of efficient broad-based inhibitors.  相似文献   

4.
Molecular models of Rous sarcoma virus (RSV) protease and 20 peptide substrates with single amino acid substitutions at positions from P4 to P3', where the scissile bond is between P1 and P1'. were built and compared with kinetic measurements. The unsubstituted peptide substrate. Pro-Ala-Val-Ser-Leu-Ala-Met-Thr, represents the NC-PR cleavage site of RSV protease. Models were built of two intermediates in the catalytic reaction, RSV protease with peptide substrate and with the tetrahedral intermediate. The energy minimization used an algorithm that increased the speed and eliminated a cutoff for nonbonded interactions. The calculated protease-substrate interaction energies showed correlation with the relative catalytic efficiency of peptide hydrolysis. The calculated interaction energies for the 8 RSV protease-substrate models with changes in P1 to P1' next to the scissile bond gave the highest correlation coefficient of 0.79 with the kinetic measurements, whereas all 20 substrates showed the lower, but still significant correlation of 0.46. Models of the tetrahedral reaction intermediates gave a correlation of 0.72 for the 8 substrates with changes next to the scissile bond, whereas a correlation coefficient of only 0.34 was observed for all 20 substrates. The differences between the energies calculated for the tetrahedral intermediate and the bound peptide gave the most significant correlation coefficients of 0.90 for models with changes in P1 and P1', and 0.56 for all substrates. These results are compared to those from similar calculations on HIV-1 protease and discussed in relation to the rate-limiting steps in the catalytic mechanism and the entropic contributions.  相似文献   

5.
Human T-cell leukemia virus type-1 (HTLV-1) is associated with a number of human diseases. Based on the therapeutic success of human immunodeficiency virus type 1 (HIV-1) PR inhibitors, the proteinase (PR) of HTLV-1 is a potential target for chemotherapy. To facilitate the design of potent inhibitors, the subsite specificity of HTLV-1 PR was characterized and compared to that of HIV-1 PR. Two sets of substrates were used that contained single amino-acid substitutions in peptides representing naturally occurring cleavage sites in HIV-1 and HTLV-1. The original HIV-1 matrix/capsid cleavage site substrate and most of its substituted peptides were not hydrolyzed by the HTLV-1 enzyme, except for those with hydrophobic residues at the P4 and P2 positions. On the other hand, most of the peptides representing the HTLV-1 capsid/nucleocapsid cleavage site were substrates of both enzymes. A large difference in the specificity of HTLV-1 and HIV-1 proteinases was demonstrated by kinetic measurements, particularly with regard to the S4 and S2 subsites, whereas the S1 subsite appeared to be more conserved. A molecular model of the HTLV-1 PR in complex with this substrate was built, based on the crystal structure of the S9 mutant of Rous sarcoma virus PR, in order to understand the molecular basis of the enzyme specificity. Based on the kinetics of shortened analogs of the HTLV-1 substrate and on analysis of the modeled complex of HTLV-1 PR with substrate, the substrate binding site of the HTLV-1 PR appeared to be more extended than that of HIV-1 PR. Kinetic results also suggested that the cleavage site between the capsid and nucleocapsid protein of HTLV-1 is evolutionarily optimized for rapid hydrolysis.  相似文献   

6.
Highly purified, recombinant preparations of the virally encoded proteases from human immunodeficiency viruses (HIV) 1 and 2 have been compared relative to 1) their specificities toward non-viral protein and synthetic peptide substrates, and 2) their inhibition by several P1-P1' pseudodipeptidyl-modified substrate analogs. Hydrolysis of the Leu-Leu and Leu-Ala bonds in the Pseudomonas exotoxin derivative, Lys-PE40, is qualitatively the same for HIV-2 protease as published earlier for the HIV-1 enzyme (Tomasselli, A. G., Hui, J. O., Sawyer, T. K., Staples, D. J., FitzGerald, D. J., Chaudhary, V. K., Pastan, I., and Heinrikson, R. L. (1990) J. Biol. Chem. 265, 408-413). However, the rates of cleavage at these two sites are reversed for the HIV-2 protease which prefers the Leu-Ala bond. The kinetics of hydrolysis of this protein substrate by both enzymes are mirrored by those obtained from cleavage of model peptides. Hydrolysis by the two proteases of other synthetic peptides modeled after processing sites in HIV-1 and HIV-2 gag polyproteins and selected analogs thereof demonstrated differences, as well as similarities, in selectivity. For example, while the two proteases were nearly identical in their rates of cleavage of the Tyr-Pro bond in the HIV-1 gag fragment, Val-Ser-Gln-Asn-Tyr-Pro-Ile-Val, the HIV-1 protease showed a 64-fold enhancement over the HIV-2 enzyme in hydrolysis of a Tyr-Val bond in the same template. Accordingly, the HIV-2 protease appears to have a different specificity than the HIV-1 enzyme; it is better able to hydrolyze substrates with small amino acids in P1 and P1', but is variable in its rate of hydrolysis of peptides with bulky substituents in these positions. In addition to these comparisons of the two proteases with respect to substrate specificity, we present inhibitor structure-activity data for the HIV-2 protease. Relative to P1-P1' statine or Phe psi [CH2N]Pro-modified pseudopeptidyl inhibitors, compounds having Xaa psi[CH(OH)CH2]Yaa inserts were found to show significantly higher affinities to both enzymes, generally binding from 10 to 100 times stronger to HIV-1 protease than to the HIV-2 enzyme. Molecular modeling comparisons based upon the sequence homology of the two enzymes and x-ray crystal structures of HIV-1 protease suggest that most of the nonconservative amino acid replacements occur in regions well outside the catalytic cleft, while only subtle structural differences exist within the active site.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
The activity of the avian myeloblastosis virus (AMV) or the human immunodeficiency virus type 1 (HIV-1) protease on peptide substrates which represent cleavage sites found in the gag and gag-pol polyproteins of Rous sarcoma virus (RSV) and HIV-1 has been analyzed. Each protease efficiently processed cleavage site substrates found in their cognate polyprotein precursors. Additionally, in some instances heterologous activity was detected. The catalytic efficiency of the RSV protease on cognate substrates varied by as much as 30-fold. The least efficiently processed substrate, p2-p10, represents the cleavage site between the RSV p2 and p10 proteins. This peptide was inhibitory to the AMV as well as the HIV-1 and HIV-2 protease cleavage of other substrate peptides with Ki values in the 5-20 microM range. Molecular modeling of the RSV protease with the p2-p10 peptide docked in the substrate binding pocket and analysis of a series of single-amino acid-substituted p2-p10 peptide analogues suggested that this peptide is inhibitory because of the potential of a serine residue in the P1' position to interact with one of the catalytic aspartic acid residues. To open the binding pocket and allow rotational freedom for the serine in P1', there is a further requirement for either a glycine or a polar residue in P2' and/or a large amino acid residue in P3'. The amino acid residues in P1-P4 provide interactions for tight binding of the peptide in the substrate binding pocket.  相似文献   

8.
J Luban  C Lee    S P Goff 《Journal of virology》1993,67(6):3630-3634
We have expressed the human immunodeficiency virus type 1 (HIV-1) protease (PR) in bacteria as a Gag-PR polyprotein (J. Luban and S.P. Goff, J. Virol. 65:3203-3212, 1991). The protein displays enzymatic activity, cleaving the Gag polyprotein precursor Pr55gag to the expected products. The PR enzyme is only active as a dimer, and we hypothesized that PR activation might be used as an indicator of polyprotein multimerization. We constructed 25 linker insertion mutations throughout gag and assessed the PR activity of mutant Gag-PR polyproteins by the appearance of Gag cleavage products in bacterial lysates. All mutant constructs produced stable protein in bacteria. PR activity of the majority of the Gag-PR mutants was indistinguishable from that of the wild type. Six mutants, one with an insertion in the matrix (MA), four with insertions in the capsid (CA), and one with insertions in the nucleocapsid (NC), globally disrupted polyprotein processing. When PR was provided in trans on a separate plasmid, the Gag proteins were cleaved with wild-type efficiency. These results suggest that the gag mutations identified as disruptive of polyprotein processing did not conceal the scissile bonds of the polyprotein. Rather, the mutations prevented PR activation in the context of a Gag-PR polyprotein, perhaps by preventing polyprotein dimerization.  相似文献   

9.
D Herschlag 《Biochemistry》1992,31(5):1386-1399
J1/2 of the Tetrahymena ribozyme, a sequence of three A residues, connects the RNA-binding site to the catalytic core. Addition or deletion of bases from J1/2 improves turnover and substrate specificity in the site-specific endonuclease reaction catalyzed by this ribozyme: G2CCCUCUA5 (S) + G in-equilibrium G2CCCUCU (P) + GA5. These paradoxical enhancements are caused by decreased affinity of the ribozyme for S and P [Young, B., Herschlag, D., & Cech, T.R. (1991) Cell 67, 1007]. An additional property of these mutant ribozymes, decreased fidelity of RNA cleavage, is now analyzed. (Fidelity is the ability to cleave at the correct phosphodiester bond within a particular RNA substrate.) Introduction of deoxy residues to give "chimeric" ribo/deoxyribooligonucleotides changes the positions of incorrect cleavage. Previous work indicated that S is bound to the ribozyme by both base pairing and teritary interactions involving 2'-hydroxyl groups of S. The data herein strongly suggest that the P1 duplex, which consists of S base-paired with the 5' exon binding site of the ribozyme, can dock into tertiary interactions in different registers; different 2'-hydroxyl groups of S plug into tertiary contacts with the ribozyme in the different registers. It is concluded that the mutations decrease fidelity by increasing the probability of docking out of register relative to docking in the normal register, thereby giving cleavage at different positions along S. These data also show that the contribution of J1/2 to the teritiary interactions is indirect, not direct. Thus, a structural role of the nonconserved J1/2 is indicated: this sequence positions S to optimize tertiary binding interactions and to ensure cleavage at the phosphodiester bond corresponding to the 5' splice site. Substitution of sulfur for the nonbridging pro-RP oxygen atom at the normal cleavage site has no effect on (kcat/Km)S but decreases the fraction of cleavage at the normal site in reactions catalyzed by the -3A mutant ribozyme, which has all three A residues of J1/2 removed. Thus, the ribozyme chooses where to cleave S after rate-limiting binding of S, indicating that docking can change after binding and suggesting that the ribozyme could act processively. Indeed, it is shown that the +2A ribozyme cleaves at one position along an RNA substrate and then, before releasing that RNA product, cleaves it again.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
The p12 region of the Moloney murine leukemia virus (M-MuLV) Gag protein contains a PPPY motif important for efficient virion assembly and release. To probe the function of the PPPY motif, a series of insertions of homologous and heterologous motifs from other retroviruses were introduced at various positions in a mutant gag gene lacking the PPPY motif. The assembly defects of the PPPY deletion mutant could be rescued by insertion of a wild-type PPPY motif and flanking sequences at several ectopic positions in the Gag protein. The late assembly domain (L-domain) of Rous sarcoma virus (RSV) or human immunodeficiency virus type 1 (HIV-1) could also fully or partially restore M-MuLV assembly when introduced into matrix, p12, or nucleocapsid domains of the mutant M-MuLV Gag protein lacking the PPPY motif. Strikingly, mutant viruses carrying the RSV or the HIV-1 L-domain at the original location of the deleted PPPY motif were replication competent in rodent cells. These data suggest that the PPPY motif of M-MuLV acts in a partially position-independent manner and is functionally interchangeable with L-domains of other retroviruses. Electron microscopy studies revealed that deletion of the entire p12 region resulted in the formation of tube-like rather than spherical particles. Remarkably, the PPPY deletion mutant formed chain structures composed of multiple viral particles linked on the cell surface. Many of the mutants with heterologous L-domains released virions with wild-type morphology.  相似文献   

11.
HIV-1 develops resistance to protease inhibitors predominantly by selecting mutations in the protease gene. Studies of resistant mutants of HIV-1 protease with single amino acid substitutions have shown a range of independent effects on specificity, inhibition, and stability. Four double mutants, K45I/L90M, K45I/V82S, D30N/V82S, and N88D/L90M were selected for analysis on the basis of observations of increased or decreased stability or enzymatic activity for the respective single mutants. The double mutants were assayed for catalysis, inhibition, and stability. Crystal structures were analyzed for the double mutants at resolutions of 2.2-1.2 A to determine the associated molecular changes. Sequence-dependent changes in protease-inhibitor interactions were observed in the crystal structures. Mutations D30N, K45I, and V82S showed altered interactions with inhibitor residues at P2/P2', P3/P3'/P4/P4', and P1/P1', respectively. One of the conformations of Met90 in K45I/L90M has an unfavorably close contact with the carbonyl oxygen of Asp25, as observed previously in the L90M single mutant. The observed catalytic efficiency and inhibition for the double mutants depended on the specific substrate or inhibitor. In particular, large variation in cleavage of p6(pol)-PR substrate was observed, which is likely to result in defects in the maturation of the protease from the Gag-Pol precursor and hence viral replication. Three of the double mutants showed values for stability that were intermediate between the values observed for the respective single mutants. D30N/V82S mutant showed lower stability than either of the two individual mutations, which is possibly due to concerted changes in the central P2-P2' and S2-S2' sites. The complex effects of combining mutations are discussed.  相似文献   

12.
Saquinavir is a widely used HIV-1 protease inhibitor drug for AIDS therapy. Its effectiveness, however, has been hindered by the emergence of resistant mutations, a common problem for inhibitor drugs that target HIV-1 viral enzymes. Three HIV-1 protease mutant species, G48V, L90M, and G48V/L90M double mutant, are associated in vivo with saquinavir resistance by the enzyme (Jacobsen et al., 1996). Kinetic studies on these mutants demonstrate a 13.5-, 3-, and 419-fold increase in Ki values, respectively, compared to the wild-type enzyme (Ermolieff J, Lin X, Tang J, 1997, Biochemistry 36:12364-12370). To gain an understanding of how these mutations modulate inhibitor binding, we have solved the HIV-1 protease crystal structure of the G48V/L90M double mutant in complex with saquinavir at 2.6 A resolution. This mutant complex is compared with that of the wild-type enzyme bound to the same inhibitor (Krohn A, Redshaw S, Richie JC, Graves BJ, Hatada MH, 1991, J Med Chem 34:3340-3342). Our analysis shows that to accommodate a valine side chain at position 48, the inhibitor moves away from the protease, resulting in the formation of larger gaps between the inhibitor P3 subsite and the flap region of the enzyme. Other subsites also demonstrate reduced inhibitor interaction due to an overall change of inhibitor conformation. The new methionine side chain at position 90 has van der Waals interactions with main-chain atoms of the active site residues resulting in a decrease in the volume and the structural flexibility of S1/S1' substrate binding pockets. Indirect interactions between the mutant methionine side chain and the substrate scissile bond or the isostere part of the inhibitor may differ from those of the wild-type enzyme and therefore may facilitate catalysis by the resistant mutant.  相似文献   

13.
X Wu  H Liu  H Xiao  J A Conway    J C Kappes 《Journal of virology》1996,70(6):3378-3384
The human immunodeficiency virus type I (HIV-1) Vpr and HIV-2 Vpx proteins package into virions through interactions with their cognate Gag polyprotein precursor. The targeting properties of Vpr and Vpx have been exploited to incorporate foreign proteins into virions by expression as heterologous fusion molecules (X. Wu, H.-M. Liu, H. Xiao, J. Kim, P. Seshaiah, G. Natsoulis, J. D. Boeke, B. H. Hahn, and J. C. Kappes, J. Virol. 69:3389-3398, 1995). To explore the possibility of utilizing Vpx and Vpr to target dominant negative mutants of the HIV Pol proteins into virions, we fused HIV-2 Vpx with an enzymatically defective protease (PR) mutant. Using a vector system to facilitate transient coexpression with HIV provirus, Vpx-PR-mutant (VpxPR(M)) fusion protein was expressed and packaged efficiently into HIV-2 and simian immunodeficiency virus virions. Immunoblot analysis of purified virions demonstrated that the packaging of VpxPR(M) interfered with the processing of the Gag and Gag/Pol precursor proteins, similar to that of a well-characterized active-site PR inhibitor. The incomplete processing of Gag and Gag/Pol was consistent with a 25-fold reduction in virion infectivity. The coexpression of a packaging defective VpxPR(M) fusion protein with HIV-2 provirus produced virions with fully processed Gag protein, similar to wild-type virions. Importantly, virions trans complemented with a Vpx-chloramphenicol acetyltransferase fusion protein were normal with respect to the processing of Gag protein and the ability to infect and replicate in vitro. These results indicate that VpxPR(M) specifically inhibited the function of the viral protease and provide for the first time proof of principle that the incorporation of foreign proteins into virions via fusion with Vpx can inhibit HIV replication. The use of accessory proteins as vehicles to deliver deleterious proteins to virions, including dominant negative mutants of Pol proteins, may provide new opportunities for application of gene therapy-based antiretroviral strategies. The ability to package PR by expression in trans, independent of the Gag/Pol precursor, also represents a novel approach that may be exploited to study the function of the Pol proteins.  相似文献   

14.
Because, in vivo , the HIV-1 PR (HIV-1 protease) present a high mutation rate we performed a comparative study of the energetic behaviors of the wild type HIV-1 PR and four type of mutants: Val82/Asn; Val82/Asp; Gln7/Lys, Leu33/Ile, Leu63/Ile; Ala71/Thr, Val82/Ala. We suggest that the energetic fluctuation (electrostatic, van der Waals and torsion energy) of the mutants and the solvent accessible surface (SAS) values can be useful to explain the viral resistance process developed by HIV-1 PR. The number and localization of enzyme mutations induce important modifications of the van der Waals and torsional energy, while the electrostatic energy has an insignificant fluctuation. We showed that the viral resistance can be explored if the solvent accessible surfaces of the active site for the mutant structures are calculated. In this paper we have obtained the solvent accessible surface for a group of 15 mutants (11 mutants obtained by Protein Data Bank (PDB) file, 4 mutants modeled by CHARMM software) and for the wild type HIV-1 PR). Our study try to show that the number and localization of the mutations are factors which induce the HIV-1 PR viral resistance. The larger solvent accessible surface could be recorded for the point mutant Val 82/Phe.  相似文献   

15.
16.
17.
Kinetic analysis and modeling studies of HIV-1 and HIV-2 proteinases were carried out using the oligopeptide substrate [formula: see text] and its analogs containing single amino acid substitutions in P3-P3' positions. The two proteinases acted similarly on the substrates except those having certain hydrophobic amino acids at P2, P1, P2', and P3' positions (Ala, Leu, Met, Phe). Various amino acids seemed to be acceptable at P3 and P3' positions, while the P2 and P2' positions seemed to be more restrictive. Polar uncharged residues resulted in relatively good binding at P3 and P2 positions, while at P2' and P3' positions they gave very high Km values, indicating substantial differences in the respective S and S' subsites of the enzyme. Lys prevented substrate hydrolysis at any of the P2-P2' positions. The large differences for subsite preference at P2 and P2' positions seem to be at least partially due to the different internal interactions of P2 residue with P1', and P2' residue with P1. As expected on the basis of amino acid frequency in the naturally occurring cleavage sites, hydrophobic residues at P1 position resulted in cleavable peptides, while polar and beta-branched amino acids prevented hydrolysis. On the other hand, changing the P1' Pro to other amino acids prevented substrate hydrolysis, even if the substituted amino acid had produced a good substrate in other oligopeptides representing naturally occurring cleavage sites. The results suggest that the subsite specificity of the HIV proteinases may strongly depend on the sequence context of the substrate.  相似文献   

18.
The specificity of the p15 proteinase of myeloblastosis-associated virus (MAV) was tested with nonviral high molecular weight substrates and with synthetic peptides. Peptides with sequences spanning known cleavage sites in viral polyproteins of Rous sarcoma virus (RSV) and avian leukemia viruses, as well as in BSA and HSA, were synthesized, and the rate of their cleavage by the MAV proteinase was compared. Synthetic peptides require for successful cleavage at least 4 residues at the N-terminal side and 3 residues at the C-terminal side. The proteinase shows a preference for hydrophobic residues with bulky side chains (Met, Tyr, Phe) in P3, although Arg and Gln can also be accepted. Small hydrophobic residues are required in P2 and P2', and large hydrophobic residues (Tyr, Met, Phe/p-nitro-Phe) are preferred in both P1 and P1'. The difference between the specificity of the p15 proteinase and that of the HIV-1 proteinase mostly pertains to position P2' of the substrate, where bulkier side chains are accepted by the HIV-1 proteinase (Richards et al., 1990). A good chromogenic substrate for the MAV and RSV proteinases was developed and used to further characterize the MAV proteinase activity with respect to ionic strength and pH. The activity of the proteinase is strongly dependent on ionic strength and pH. Both the kcat and Km values contribute to a higher cleavage efficiency at higher salt concentrations and show a bell-shaped pH dependence curve with a sharp maximum at pH 5.5 (kcat) and 6.5 (Km).  相似文献   

19.
We have reconstituted concerted human immunodeficiency virus type 1 (HIV-1) integration with specially designed mini-donor DNA, a supercoiled plasmid acceptor, purified bacterial-derived HIV-1 integrase (IN), and host HMG-I(Y) protein (Hindmarsh, P., Ridky, T., Reeves, R., Andrake, M., Skalka, A. M., and Leis, J. (1999) J. Virol. 73, 2994-3003). Integration in this system is dependent upon the mini donor DNA having IN recognition sequences at both ends and the reaction products have all of the features associated with integration of viral DNA in vivo. Using this system, we explored the relationship between the HIV-1 U3 and U5 IN recognition sequences by analyzing substrates that contain either two U3 or two U5 terminal sequences. Both substrates caused severe defects to integration but with different effects on the mechanism indicating that the U3 and the U5 sequences are both required for concerted DNA integration. We have also used the reconstituted system to compare the mechanism of integration catalyzed by HIV-1 to that of avian sarcoma virus by analyzing the effect of defined mutations introduced into U3 or U5 ends of the respective wild type DNA substrates. Despite sequence differences between avian sarcoma virus and HIV-1 IN and their recognition sequences, the consequences of analogous base pair substitutions at the same relative positions of the respective IN recognition sequences were very similar. This highlights the common mechanism of integration shared by these two different viruses.  相似文献   

20.
P450 monooxygenases from microorganisms, similar to those of eukaryotic mitochondria, display a rather narrow substrate specificity. For native P450 BM-3, no other substrates than fatty acids or an indolyl-fatty acid derivative have been reported (Li, Q.S., Schwaneberg, U., Fischer, P., Schmid, R.D., 2000. Directed evolution of the fatty-acid hydroxylase P450BM-3 into an indole-hydroxylating catalyst. Chem. Eur. J. 6 (9), 1531-1536). Engineering the substrate specificity of Bacillus megaterium cytochrome P-450 BM3: hydroxylation of alkyl trimethylammonium compounds. Biochem. J. 327, 537-544). We thus were quite surprised to observe, in the course of our investigations on the rational evolution of this enzyme towards mutants, capable of hydroxylating shorter-chain fatty acids, that a triple mutant P450 BM-3 (Phe87Val, Leu188-Gln, Ala74Gly, BM-3 mutant) could efficiently hydroxylate indole, leading to the formation of indigo and indirubin (Li, Q.S., Schwaneberg, U., Fischer, P., Schmid, R.D., 2000. Directed evolution of the fatty-acid hydroxylase P450BM-3 into an indole-hydroxylating catalyst. Chem. Eur. J. 6 (9), 1531-1536). Indole is not oxidized by the wild-type enzyme; it lacks the carboxylate group by which the proper fatty acid substrates are supposed to be bound at the active site of the native enzyme, via hydrogen bonds to the charged amino acid residues Arg47 and Tyr51. Our attempts to predict the putative binding mode of indole to P450 BM-3 or the triple mutant by molecular dynamics simulations did not provide any useful clue. Encouraged by the unexpected activity of the triple mutant towards indole, we investigated in a preliminary, but systematic manner several alkanes, alicyclic, aromatic, and heterocyclic compounds, all of which are unaffected by the native enzyme, for their potential as substrates. We here report that this triple mutant indeed is capable to hydroxylate a respectable range of other substrates, all of which bear little or no resemblance to the fatty acid substrates of the native enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号