首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The beta1-adrenergic receptor (beta1AR) is known to be localized to synapses and to modulate synaptic plasticity in many brain regions, but the molecular mechanisms determining beta1AR subcellular localization are not fully understood. Using overlay and pull-down techniques, we found that the beta1AR carboxyl terminus associates with MAGI-2 (membrane-associated guanylate kinase inverted-2), a protein also known as S-SCAM (synaptic scaffolding molecule). MAGI-2 is a multidomain scaffolding protein that contains nine potential protein-protein interaction modules, including 6 PDZ domains, 2 WW domains, and a guanylate kinase-like domain. The beta1AR carboxyl terminus binds with high affinity to the first PDZ domain of MAGI-2, with the last few amino acids of the beta1AR carboxyl terminus being the key determinants of the interaction. In cells, the association of full-length beta1AR with MAGI-2 occurs constitutively and is enhanced by agonist stimulation of the receptor, as assessed by both co-immunoprecipitation experiments and immunofluorescence co-localization studies. Agonist-induced internalization of the beta1AR is markedly increased by co-expression with MAGI-2. Strikingly, this result is the opposite of the effect of co-expression with PSD-95, a previously reported binding partner of the beta1AR. Further cellular experiments revealed that MAGI-2 has no effect on beta1AR oligomerization but does promote association of beta1AR with the cytoplasmic signaling protein beta-catenin, a known MAGI-2 binding partner. These data reveal that MAGI-2 is a specific beta1AR binding partner that modulates beta1AR function and facilitates the physical association of the beta1AR with intracellular proteins involved in signal transduction and synaptic regulation.  相似文献   

2.
G protein-coupled receptors such as the beta1-adrenergic receptor (beta1AR) must be trafficked to the plasma membrane in order to bind with their extracellular ligands and regulate cellular physiology. By using glutathione S-transferase pull-down techniques, we found that the beta1AR carboxyl terminus directly interacts with the cystic fibrosis transmembrane conductance regulator-associated ligand (CAL; also known as PIST, GOPC, and FIG), a protein known to be primarily localized to the Golgi apparatus. CAL contains two predicted coiled-coil domains and one PSD-95/Discs-large/ZO-1 homology (PDZ) domain. The beta1AR carboxyl terminus (CT) binds to the PDZ domain of CAL, with the last few amino acids (ESKV) of the beta1AR-CT being the key determinants for the interaction. Mutation of the terminal valine residue resulted in markedly reduced association of the beta1AR-CT with CAL. Numerous other mutations to the ESKV motif also impaired the beta1AR-CT/CAL interaction, suggesting that this motif is close to optimal for association with the CAL PDZ domain. In cells, full-length beta1AR robustly associates with CAL, and this interaction is abolished by mutation of the terminal valine to alanine of the receptor (V477A), as determined by co-immunoprecipitation experiments and immunofluorescence co-localization studies. Consistent with observations that CAL is a Golgi-associated protein, overexpression of CAL reduces surface expression of beta1AR. Interaction with CAL promotes retention of beta1AR within the cell, whereas PSD-95, another beta1AR-associated PDZ domain-containing protein, competitively blocks beta1AR association with CAL and promotes receptor trafficking to the cell surface. These data reveal that CAL, a novel beta1AR-binding partner, modulates beta1AR intracellular trafficking, thereby revealing a new mechanism of regulation for beta1AR anterograde trafficking through the endoplasmic reticulum-Golgi complex to the plasma membrane.  相似文献   

3.
Many G protein-coupled receptors possess carboxyl-terminal motifs ideal for interaction with PDZ scaffold proteins, which can control receptor trafficking and signaling in a cell-specific manner. To gain a panoramic view of beta1-adrenergic receptor (beta AR) interactions with PDZ scaffolds, the beta1AR carboxyl terminus was screened against a newly developed proteomic array of PDZ domains. These screens confirmed beta1AR associations with several previously identified PDZ partners, such as PSD-95, MAGI-2, GIPC, and CAL. Moreover, two novel beta1AR-interacting proteins, SAP97 and MAGI-3, were also identified. The beta1AR carboxyl terminus was found to bind specifically to the first PDZ domain of MAGI-3, with the last four amino acids (E-S-K-V) of beta1AR being the key determinants of the interaction. Full-length beta1AR robustly associated with full-length MAGI-3 in cells, and this association was abolished by mutation of the beta1AR terminal valine residue to alanine (V477A), as determined by co-immunoprecipitation experiments and immunofluorescence co-localization studies. MAGI-3 co-expression with beta1AR profoundly impaired beta1AR-mediated ERK1/2 activation but had no apparent effect on beta1AR-mediated cyclic AMP generation or agonist-promoted beta1AR internalization. These findings revealed that the interaction of MAGI-3 with beta1AR can selectively regulate specific aspects of receptor signaling. Moreover, the screens of the PDZ domain proteomic array provide a comprehensive view of beta1AR interactions with PDZ scaffolds, thereby shedding light on the molecular mechanisms by which beta1 AR signaling and trafficking can be regulated in a cell-specific manner.  相似文献   

4.
We previously reported that the beta(1)-adrenergic receptor (beta(1)AR) associates with PSD-95 through a PDZ domain-mediated interaction, by which PSD-95 modulates beta(1)AR function and facilitates the physical association of beta(1)AR with other synaptic proteins such as N-methyl-d-aspartate receptors. Here we demonstrate that beta(1)AR association with PSD-95 is regulated by G protein-coupled receptor kinase 5 (GRK5). When beta(1)AR and PSD-95 were coexpressed with either GRK2 or GRK5 in COS-7 cells, GRK5 alone dramatically decreased the association of beta(1)AR with PSD-95, although GRK2 and GRK5 both could be co-immunoprecipitated with beta(1)AR and both could enhance receptor phosphorylation in vivo. Increasing expression of GRK5 in the cells led to further decreased beta(1)AR association with PSD-95. Stimulation with the beta(1)AR agonist isoproterenol further decreased PSD-95 binding to beta(1)AR. In addition, GRK5 protein kinase activity was required for this regulatory effect since a kinase-inactive GRK5 mutant had no effect on PSD-95 binding to beta(1)AR. Moreover, the regulatory effect of GRK5 on beta(1)AR association with PSD-95 was observed only when GRK5 was expressed together with the receptor, but not when GRK5 was coexpressed with PSD-95. Thus, we propose that GRK5 regulates beta(1)AR association with PSD-95 through phosphorylation of beta(1)AR. Regulation of protein association through receptor phosphorylation may be a general mechanism used by G protein-coupled receptors that associate via PDZ domain-mediated protein/protein interactions.  相似文献   

5.
Beta(1) and beta(2) adrenergic receptors (AR) regulate the intrinsic contraction rate in neonatal mouse cardiac myocytes through distinct signaling pathways. It has been shown that stimulation of beta(1)ARs leads to a protein kinase A-dependent increase in contraction rate. In contrast, stimulation of beta(2)ARs has a biphasic effect on contraction rate, with an initial protein kinase A-independent increase followed by a sustained decrease that is blocked by pertussis toxin. The beta(2)AR undergoes agonist-induced endocytosis in cardiac myocytes while the beta(1)AR remains on the cell surface. It has been shown that a PDZ domain binding motif at the carboxyl terminus of beta(1)AR interacts with the postsynaptic density protein PSD-95 when both are expressed in HEK293 cells. We found that mutation of this PDZ binding motif in the beta(1)AR (beta(1)AR-PDZ) enabled agonist-induced internalization in cardiac myocytes. Moreover, stimulation of beta(1)AR-PDZ had a biphasic effect on the myocyte contraction rate similar to that observed following stimulation of the beta(2)AR. The secondary decrease in the contraction rate was mediated by G(i) and could be blocked by pertussis toxin. Furthermore, a non-selective endocytosis inhibitor, concanavalin A, inhibited the internalization of wild type beta(2)AR and the mutated beta(1)AR-PDZ, and blocked the coupling of both receptors to G(i). Finally, treating myocytes with a membrane-permeable peptide representing beta(1)AR PDZ motif caused the endogenous beta(1)AR to behave like beta(1)AR-PDZ. These studies suggest that association of the beta(1)AR with PSD-95 or a related protein dictates signaling specificity by retaining the receptor at the cell surface and preventing interaction with G(i).  相似文献   

6.
Beta1-adrenergic receptors, expressed at high levels in the human heart, have a carboxyl-terminal ESKV motif that can directly interact with PDZ domain-containing proteins. Using the beta1-adrenergic receptor carboxyl terminus as bait, we identified the novel beta1-adrenergic receptor-binding partner GIPC in a yeast two-hybrid screen of a human heart cDNA library. Here we demonstrate that the PDZ domain-containing protein, GIPC, co-immunoprecipitates with the beta1-adrenergic receptor in COS-7 cells. Essential for this interaction is the Ser residue of the beta1-adrenergic receptor carboxyl-terminal ESKV motif. Our data also demonstrate that beta1-adrenergic receptor stimulation activates the mitogen-activated protein kinase, ERK1/2. beta1-adrenergic receptor-mediated ERK1/2 activation was inhibited by pertussis toxin, implicating Gi, and was substantially decreased by the expression of GIPC. Expression of GIPC had no observable effect on beta1-adrenergic receptor sequestration or receptor-mediated cAMP accumulation. This GIPC effect was specific for the beta1-adrenergic receptor and was dependent on an intact PDZ binding motif. These data suggest that GIPC can regulate beta1-adrenergic receptor-stimulated, Gi-mediated, ERK activation while having no effect on receptor internalization or Gs-mediated cAMP signaling.  相似文献   

7.
Beta(1)- and beta(2)-adrenergic receptors (beta(1)AR and beta(2)AR) are co-expressed in numerous tissues where they play a central role in the responses of various organs to sympathetic stimulation. Although the two receptor subtypes share some signaling pathways, each has been shown to have specific signaling and regulatory properties. Given the recent recognition that many G protein-coupled receptors can form homo- and heterodimers, the present study was undertaken to determine whether the beta(1)AR and beta(2)AR can form dimers in cells and, if so, to investigate the potential functional consequences of such heterodimerization. Using co-immunoprecipitation and bioluminescence resonance energy transfer, we show that beta(1)AR and beta(2)AR can form heterodimers in HEK 293 cells co-expressing the two receptors. Functionally, beta-adrenergic stimulated adenylyl cyclase activity was found to be identical in cells expressing beta(1)AR, beta(2)AR, or both receptors at similar levels, indicating that heterodimerization did not affect this signaling pathway. When considering ERK1/2 MAPK activity, a significant agonist-promoted activation was detected in beta(2)AR- but not beta(1)AR-expressing cells. Similarly to what was observed in cells expressing the beta(1)AR alone, no beta-adrenergic stimulated ERK1/2 phosphorylation was observed in cells co-expressing the two receptors. A similar inhibition of agonist-promoted internalization of the beta(2)AR was observed upon co-expression of the beta(1)AR, which by itself internalized to a lesser extent. Taken together, our data suggest that heterodimerization between beta(1)AR and beta(2)AR inhibits the agonist-promoted internalization of the beta(2)AR and its ability to activate the ERK1/2 MAPK signaling pathway.  相似文献   

8.
9.
Beta-arrestin mediates desensitization and internalization of beta-adrenergic receptors (betaARs), but also acts as a scaffold protein in extracellular signal-regulated kinase (ERK) cascade. Thus, we have examined the role of beta-arrestin2 in the betaAR-mediated ERK signaling pathways. Isoproterenol stimulation equally activated cytoplasmic and nuclear ERK in COS-7 cells expressing beta1AR or beta2AR. However, the activity of nuclear ERK was enhanced by co-expression of beta-arrestin2 in beta2AR-but not beta1AR-expressing cells. Pertussis toxin treatment and blockade of Gbetagamma action inhibited beta-arrestin2-enhanced nuclear activation of ERK, suggesting that beta-arrestin2 promotes nuclear ERK localization in a Gbetagamma dependent mechanism upon receptor stimulation. beta2AR containing the carboxyl terminal region of beta1AR lost the beta-arrestin2-promoted nuclear translocation. As the carboxyl terminal region is important for beta-arrestin binding, these results demonstrate that recruitment of beta-arrestin2 to carboxyl terminal region of beta2AR is important for ERK localization to the nucleus.  相似文献   

10.
Insulin receptor substrate of 53 kDa links postsynaptic shank to PSD-95   总被引:2,自引:0,他引:2  
The insulin receptor substrate of 53 kDa (IRSp53) is a target of the small GTPase cdc42 which is strongly enriched in the postsynaptic density of excitatory synapses. IRSp53 interacts with the postsynaptic shank1 scaffolding molecule in a cdc42 regulated manner. The functional significance of the cdc42/IRSp53 pathway in postsynaptic sites is however, unclear. Here we identify PSD-95 as a second synaptic interaction partner of IRSp53. Interaction is mediated by a C-terminal PDZ binding motif in IRSp53 and the second PDZ domain of PSD-95. In HEK cells, overexpressed IRSp53 induces filopodia and targets PSD-95 into these processes. Immunoprecipitation and immunocytochemistry experiments demonstrate that the interaction occurs at postsynaptic sites in the brain. By virtue of its PDZ-binding and SH3 domains, IRSp53 is capable of inducing the formation of a triple complex (shank1/IRSp53/PSD-95).  相似文献   

11.
beta- and alpha(2)-adrenergic receptors are known to exhibit substantial cross-talk and mutual regulation in tissues where they are expressed together. We have found that the beta(1)-adrenergic receptor (beta(1)AR) and alpha(2A)-adrenergic receptor (alpha(2A)AR) heterodimerize when coexpressed in cells. Immunoprecipitation studies with differentially tagged beta(1)AR and alpha(2A)AR expressed in HEK-293 cells revealed robust co-immunoprecipitation of the two receptors. Moreover, agonist stimulation of alpha(2A)AR was found to induce substantial internalization of coexpressed beta(1)AR, providing further evidence for a physical association between the two receptors in a cellular environment. Ligand binding assays examining displacement of [(3)H]dihydroalprenolol binding to the beta(1)AR by various ligands revealed that beta(1)AR pharmacological properties were significantly altered when the receptor was coexpressed with alpha(2A)AR. Finally, beta(1)AR/alpha(2A)AR heterodimerization was found to be markedly enhanced by a beta(1)AR point mutation (N15A) that blocks N-linked glycosylation of the beta(1)AR as well as by point mutations (N10A/N14A) that block N-linked glycosylation of the alpha(2A)AR. These data reveal an interaction between beta(1)AR and alpha(2A)AR that is regulated by glycosylation and that may play a key role in cross-talk and mutual regulation between these receptors.  相似文献   

12.
gamma-Aminobutyric acid, type B (GABA(B)) receptors are heterodimeric G protein-coupled receptors that mediate slow inhibitory synaptic transmission in the central nervous system. To identify novel interacting partners that might regulate GABA(B) receptor (GABA(B)R) functionality, we screened the GABA(B)R2 carboxyl terminus against a recently created proteomic array of 96 distinct PDZ (PSD-95/Dlg/ZO-1 homology) domains. The screen identified three specific PDZ domains that exhibit interactions with GABA(B)R2: Mupp1 PDZ13, PAPIN PDZ1, and Erbin PDZ. Biochemical analysis confirmed that full-length Mupp1 and PAPIN interact with GABA(B)R2 in cells. Disruption of the GABA(B)R2 interaction with PDZ scaffolds by a point mutation to the carboxyl terminus of the receptor dramatically decreased receptor stability and attenuated the duration of GABA(B) receptor signaling. The effects of mutating the GABA(B)R2 carboxyl terminus on receptor stability and signaling were mimicked by small interference RNA knockdown of endogenous Mupp1. These findings reveal that GABA(B) receptor stability and signaling can be modulated via GABA(B)R2 interactions with the PDZ scaffold protein Mupp1, which may contribute to cell-specific regulation of GABA(B) receptors in the central nervous system.  相似文献   

13.
Shiina T  Nagao T  Kurose H 《Life sciences》2001,68(19-20):2251-2257
It has been reported that beta-arrestin is essential for the internalization of many G protein-coupled receptors. Since beta1-adrenergic receptor (beta1AR) shows the resistance to agonist-induced internalization, we examine the interaction of beta-arrestin with beta1AR with three different approaches: translocation of beta-arrestin to the plasma membrane, direct binding of in vitro translated beta-arrestin to intracellular domains of beta1- and beta2ARs, inhibition of beta1- and beta2AR-stimulated adenylyl cyclase activities by beta-arrestin. The enhanced green fluorescent protein (EGFP)-tagged beta-arrestin 2 (beta-arrestin 2-GFP) translocates to and stays at the plasma membrane by beta2AR stimulation. Beta-arrestin 2-GFP also translocates to the plasma membrane upon beta1AR stimulation. However, it returns to the cytoplasm 10 - 30 min after agonist stimulation. The amount of beta-arrestin bound to the third intracellular loop and the carboxyl tail of beta1AR is lower than that of beta2AR. The fusion protein of beta-arrestin 1 with glutathione-S-transferase inhibits the beta1- and beta2AR-stimulated adenylyl cyclase activities. However, inhibition of the beta1AR-stimulated activity requires a higher amount of the fusion protein than that of the beta2AR-stimulated activity. These results suggest that affinity of beta1AR for beta-arrestins is lower than that of beta2AR, and explains the resistance to agonist-induced internalization. This conclusion is further supported by the finding that beta-arrestin can induce internalization of beta1AR when beta-arrestin 1 fused to the carboxyl tail of beta1AR.  相似文献   

14.
The beta(1)-adrenergic receptor (beta(1)AR) shows the resistance to agonist-induced internalization. As beta-arrestin is important for internalization, we examine the interaction of beta-arrestin with beta(1)AR with three different methods: intracellular trafficking of beta-arrestin, binding of in vitro translated beta-arrestin to intracellular domains of beta(1)- and beta(2)ARs, and inhibition of betaAR-stimulated adenylyl cyclase activities by beta-arrestin. The green fluorescent protein-tagged beta-arrestin 2 translocates to and stays at the plasma membrane by beta(2)AR stimulation. Although green fluorescent protein-tagged beta-arrestin 2 also translocates to the plasma membrane, it returns to the cytoplasm 10-30 min after beta(1)AR stimulation. The binding of in vitro translated beta-arrestin 1 and beta-arrestin 2 to the third intracellular loop and the carboxyl tail of beta(1)AR is lower than that of beta(2)AR. The fusion protein of beta-arrestin 1 with glutathione S-transferase inhibits the beta(1)- and beta(2)AR-stimulated adenylyl cyclase activities, although inhibition of the beta(1)AR-stimulated activity requires a higher concentration of the fusion protein than that of the beta(2)AR-stimulated activity. These results suggest that weak interaction of beta(1)AR with beta-arrestins explains the resistance to agonist-induced internalization. This is further supported by the finding that beta-arrestin can induce internalization of beta(1)AR when beta-arrestin 1 does not dissociate from beta(1)AR by fusing to the carboxyl tail of beta(1)AR.  相似文献   

15.
Platelet-derived growth factor (PDGF) is a potent mitogen for many cell types. The PDGF receptor (PDGFR) is a receptor tyrosine kinase that mediates the mitogenic effects of PDGF by binding to and/or phosphorylating a variety of intracellular signaling proteins upon PDGF-induced receptor dimerization. We show here that the Na(+)/H(+) exchanger regulatory factor (NHERF; also known as EBP50), a protein not previously known to interact with the PDGFR, binds to the PDGFR carboxyl terminus (PDGFR-CT) with high affinity via a PDZ (PSD-95/Dlg/Z0-1 homology) domain-mediated interaction and potentiates PDGFR autophosphorylation and extracellular signal-regulated kinase (ERK) activation in cells. A point-mutated version of the PDGFR, with the terminal leucine changed to alanine (L1106A), cannot bind NHERF in vitro and is markedly impaired relative to the wild-type receptor with regard to PDGF-induced autophosphorylation and activation of ERK in cells. NHERF potentiation of PDGFR signaling depends on the capacity of NHERF to oligomerize. NHERF oligomerizes in vitro when bound with PDGFR-CT, and a truncated version of the first NHERF PDZ domain that can bind PDGFR-CT but which does not oligomerize reduces PDGFR tyrosine kinase activity when transiently overexpressed in cells. PDGFR activity in cells can also be regulated in a NHERF-dependent fashion by stimulation of the beta(2)-adrenergic receptor, a known cellular binding partner for NHERF. These findings reveal that NHERF can directly bind to the PDGFR and potentiate PDGFR activity, thus elucidating both a novel mechanism by which PDGFR activity can be regulated and a new cellular role for the PDZ domain-containing adapter protein NHERF.  相似文献   

16.
Using the yeast two hybrid system we have identified a novel protein termed somatostatin receptor interacting protein (SSTRIP) from human brain which interacts with the rat somatostatin receptor subtype 2. Interaction with the receptor C-terminus is mediated by a PSD-95/discs large/ZO-1 (PDZ) domain which exhibits high similarity to the PDZ domain of cortactin binding protein 1 (CortBP1). SSTRIP and CortBP1 define a novel family of multidomain proteins containing ankyrin repeats, SH3- and SH3 binding regions and a sterile alpha motif (SAM domain) in addition to the PDZ domain. Both SSTRIP and CortBP1 can be co-immunoprecipitated with the somatostatin receptor when co-expressed in HEK cells. Interestingly, co-localization of SSTR2 and CortBP1 at the plasma membrane is increased when SSTR2 is stimulated by agonists.  相似文献   

17.
18.
Tech is a RhoA guanine nucleotide exchange factor (GEF) that is highly enriched in hippocampal and cortical neurons. To help define its function, we have conducted studies aimed at identifying partner proteins that bind to its C-terminal PDZ ligand motif. Yeast two hybrid studies using the Tech C-terminal segment as bait identified MUPP1, a protein that contains 13 PDZ domains and has been localized to the post-synaptic compartment, as a candidate partner protein for Tech. Co-transfection of Tech and MUPP1 in human embryonic kidney 293 cells confirmed that these full-length proteins interact in a PDZ-dependent fashion. Furthermore, we confirmed that endogenous Tech co-precipitates with MUPP1, but not PSD-95, from hippocampal and cortical extracts prepared from rat brain. In addition, immunostaining of primary cortical cultures revealed co-localization of MUPP1 and Tech puncta in the vicinity of synapses. In assessing which PDZ domains of MUPP1 mediate binding to Tech, we found that Tech can bind to either PDZ domain 10 or 13 of MUPP1 as mutation of both these domains is needed to disrupt their interaction. Taken together, these findings demonstrate that Tech binds to MUPP1 and suggest that it regulates RhoA signaling pathways in the vicinity of synapses.  相似文献   

19.
The molecular mechanisms underlying the protein assembly at synaptic junctions are thought to be important for neural functions. PSD-95, one of the major postsynaptic density proteins, is composed of three PDZ domains (PDZ1, PDZ2, and PDZ3), an SH3 domain, and a GK (guanylate kinase ) domain. It binds to the N-methyl-D-aspartate glutamate receptor NR2 subunit or to the Shaker-type K(+) channel, Kv1.4, via the PDZ1 or PDZ2 domain, whereas PDZ3 binds to distinct partners. The intramolecular interaction of these multiple domains has been implicated in efficient protein clustering. We introduced missense and deletion mutations into PDZ1 (PDZ1mDelta) and/or PDZ2 (PDZ2mDelta) of the full-length PSD-95 to disrupt the association of each domain with the target proteins, while preserving the overall structure. The ion channel clustering activities of the PSD-95 mutants were analyzed in COS-1 cells coexpressing each mutant and Kv1.4. The mutant bearing the dysfunctional PDZ2 (PSD-95:1-2mDelta) showed significantly reduced clustering efficiency, whereas the mutant with the dysfunctional PDZ1 (PSD-95:1mDelta-2) exhibited activity comparable with the wild-type activity. Furthermore, we also examined the requirements for the position of PDZ2 in full-length PSD-95 by constructing a series of PDZ1-PDZ2 inversion mutants. Surprisingly, the clustering activity of PSD-95:2-1mDelta was severely defective. Taken together, these findings show that PDZ2, which is endowed with the highest affinity for Kv1.4, is required for efficient ligand binding. In addition, the ligand binding at the position of the second PDZ domain in full-length PSD-95 is prerequisite for efficient and typical cluster formation. This study suggests that the correct placement of the multiple domains in the full-length PSD-95 protein is necessary for the optimal protein activity.  相似文献   

20.
In the last few years, significant experimental evidence has accumulated showing that many G protein coupled receptors (GPCRs) are structurally and perhaps functionally homodimers. Recently, a number of studies have demonstrated that many GPCRs, notably GABA(B), somatostatin, and delta and kappa opioid receptors form heterodimers, as well. Based on these observations, we undertook a pharmacological and functional analysis of HEK 293 cells transiently transfected with the beta1AR or beta2AR or with both subtypes together. High-affinity binding for subtype-specific ligands (betaxolol and xamoterol for the beta1AR, and ICI 118,551 and procaterol for the beta2AR) was detected in cells expressing the cognate receptors alone with values similar to those reported in the literature. However, a significant portion of these high-affinity interactions were lost when both receptors were expressed together while nonspecific ligands (propranolol and isoproterenol) retained their normal affinities. When competition assays were performed with each subtype-specific ligand in the presence of a constant concentration of the other subtype-specific ligand, the high-affinity binding site was rescued, suggesting that the two receptor subtypes were interacting in a fashion consistent with positive cooperativity. Our data suggest that the beta1AR and beta2AR can form heterodimers and that these receptors have altered pharmacological properties from the receptor homodimers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号