首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract : Prohormone convertase (PC) 2 plays an important role in the processing of neuropeptide precursors via the regulated secretory pathway in neuronal and endocrine tissues. PC2 interacts with 7B2, a neuroendocrine protein that is cleaved to a 21-kDa domain involved in proPC2 maturation and a carboxyl-terminal peptide (CT peptide) that represents a potent inhibitor of PC2 in vitro. A role for the CT peptide as an inhibitor in vivo has not yet been established. To study the involvement of the CT peptide in PC2-mediated cleavages in neuroendocrine cells, we constructed a mutant proenkephalin (PE) expression vector containing PE with its carboxyl-terminal peptide (peptide B) replaced with the 7B2 inhibitory CT peptide. This PECT chimera was stably transfected into two PC2-expressing cell lines, AtT-20/PC2 and Rin cells. Although recombinant PECT proved to be a potent (n M ) inhibitor of PC2 in vitro, cellular PC2-mediated cleavages of PE were not inhibited by the PECT chimera, nor was proopiomelanocortin cleavage (as assessed by adrenocorticotropin cleavage to α-melanocyte-stimulating hormone) inhibited further than in control cells expressing only the competitive substrate PE. Tests of stimulated secretion showed that both the CT peptide and the PE portion of the chimera were stored in regulated secretory granules of transfected clones. In both AtT-20/PC2 and Rin cells expressing the chimera, the CT peptide was substantially internally hydrolyzed, potentially accounting for the observed lack of inhibition. Taken together, our data suggest that overexpressed CT peptide derived from PECT is unable to inhibit PC2 in mature secretory granules, most likely due to its inactivation by PC2 or by other enzyme(s).  相似文献   

2.
Variants of the carboxyl-terminal KDEL sequence direct intracellular retention   总被引:13,自引:0,他引:13  
Soluble proteins which reside in the lumen of the endoplasmic reticulum share a common carboxyl-terminal tetrapeptide Lys-Asp-Glu-Leu (KDEL). Addition of the tetrapeptide to a normally secreted protein is both necessary and sufficient to cause retention in the endoplasmic reticulum. In order to characterize the critical residues in the KDEL signal, cDNAs encoding proneuropeptide Y (pro-NPY) with the 4-amino acid carboxyl-terminal extension KDEL or a series of KDEL variants were expressed in the AtT-20 cell line. AtT-20 cells, a mouse anterior pituitary corticotrope cell line, synthesize, process, and secrete the pro-ACTH/endorphin precursor. Since post-translational processing in AtT-20 cells has been extensively characterized, it provides a model system in which the processing of a foreign peptide precursor (pro-NPY) and the endogenous precursor (pro-ACTH/endorphin) can be compared. Altered cDNAs encoding pro-NPY with KDEL, DKEL, RDEL, KNEL, KDQL, or KDEA at the COOH terminus were used to generate stable AtT-20 cell lines. The processing of pro-NPY to neuropeptide Y and the carboxyl-terminal peptide was studied using sodium dodecyl sulfate-polyacrylamide gel electrophoresis, tryptic peptide mapping, and radiosequencing. Addition of the tetrapeptides KDEL, DKEL, RDEL, or KNEL to the COOH terminus of the neuropeptide Y precursor, a peptide hormone normally processed and secreted from neuronal cells, caused complete intracellular retention of the unprocessed prohormone in AtT-20 cells. However, KDQL and KDEA-extended pro-NPY molecules were processed and secreted like wild-type pro-NPY when expressed in AtT-20 cells. The secretion of proNPY-derived peptides in these cell lines paralleled secretion of endogenous pro-ACTH/endorphin-derived products under both basal and stimulated conditions. These mutagenesis studies demonstrate that variants of the KDEL retention signal can direct intracellular retention.  相似文献   

3.
Pancreatic polypeptide (PP) is initially synthesized as a larger precursor that requires post-translational processing to produce the biologically active hexatriacontapeptide. These steps include tryptic cleavage at paired basic residues, their subsequent removal by a carboxypeptidase B-like enzyme, and formation of a carboxyl-terminal amide moiety via the action of peptidyl-glycyl alpha-amidating monooxygenase. To examine these reactions further, we utilized the pZIPneo(SVX) retroviral vector to express a cDNA clone encoding human PP in several cell lines including a fibroblast line (psi-2), two endocrine cell lines known to produce amidated peptides (AtT-20 and PC12), and two lines that do not ordinarily produce amidated peptides (RIN5-f and GH3). Transfected psi-2 cells produced an unprocessed precursor of PP that appeared to be secreted constitutively with little remaining in intracellular stores. No post-translational processing of the PP precursor was evident in these cells. By contrast, all 4 endocrine-derived cell lines, regardless of the nature of their endogenous products, were capable of expressing fully processed and carboxyl-terminally amidated PP. Moreover, these lines had the ability to store the processed products. Our results support the notion that post-translational processing of peptide hormone precursors requires storage in secretory granules that contain the appropriate processing enzymes. Furthermore, enzymes such as peptidyl-glycyl alpha-amidating monooxygenase that are required for processing peptides may be a common feature of endocrine-derived cells regardless of the requirement for their activity to process endogenous products.  相似文献   

4.
A recombinant plasmid containing the human proenkephalin gene ligated to pBR322 was introduced into a mouse pituitary cell line (AtT-20D16v) that normally expresses pro-opiomelanocortin but not proenkephalin. The plasmid was introduced by co-transformation with the G418-selectable plasmid, pRSVneo. Stable transformants were isolated and analyzed for the presence of the human proenkephalin gene. AtT-20 transformants which had one or more copies of the human proenkephalin gene integrated stably into the mouse chromosomal DNA expressed a 1.45 kb mRNA identical in size to human proenkephalin mRNA. Primer extension analysis indicated that the human proenkephalin gene was accurately and efficiently transcribed from its own promoter. AtT-20 transformants that expressed the 1.45 kb human proenkephalin mRNA also expressed proenkephalin protein and cleaved the protein to form free Met-enkephalin. This is of particular interest because these cells do not cleave all of the available pairs of basic amino acids in the endogenous protein, pro-opiomelanocortin, the precursor to ACTH, beta-endorphin and melanocyte stimulating hormones. The release of both ACTH and Met-enkephalin from these cells is stimulated by corticotropin releasing factor, a natural secretagogue for ACTH, indicating that the two classes of peptide share a related secretory pathway.  相似文献   

5.
We have investigated the sorting and processing of the amphibian precursor prepro-dermorphin in mammalian cells. Dermorphin, a D-alanine-containing peptide with potent opioid activity, has been isolated from the skin of the frog Phyllomedusa sauvagei. The maturation of this peptide from the precursor involves several posttranslational steps. Recombinant vaccinia viruses were used to infect AtT-20, PC12, and HeLa cells to study the sorting and processing of prepro-dermorphin. While this precursor was not processed in any of the examined cell lines, AtT-20 cells were able to process approximately 40% of a chimeric precursor consisting of the first 241 amino acids of prepro-enkephalin fused to a carboxy-terminal part of pro-dermorphin. By immunogold-EM, we could show that the chimeric protein, but not pro-dermorphin, was sorted to dense-core secretion granules. The processing products could be released upon stimulation by 8-Br-cAMP. We conclude that the pro-enkephalin part of the fusion protein contains the information for targeting to the regulated pathway of secretion, while this sorting information is missing in pro-dermorphin. This indicates that sorting mechanisms may differ between amphibian and mammalian cells.  相似文献   

6.
An expression vector was constructed that placed the cDNA for human neuropeptide Y (NPY) under the control of the mouse metallothionein promoter and was used to transfect the AtT-20 mouse anterior pituitary corticotrope cell line. AtT-20 cells normally process the pro-ACTH/endorphin precursor but do not produce detectable levels of NPY. The resulting AtT-20/NPY cell line (Mt.NPY1a) was used to study the ability of the corticotrope cells to synthesize, process, and secrete the foreign proNPY-related peptide products. The stable cell line created contains approximately 40 copies of proNPY cDNA per cell. NPY mRNA levels and proNPY synthesis were increased at least 35-fold when maximally induced with cadmium; proNPY synthesis was also induced by glucocorticoids. Upon induction the NPY secretion rate was equimolar to that of the endogenous peptides. ProNPY, NPY, and the COOH-terminal peptide produced by this cell line had molecular weight and amino acid-labeling pattern predicted from cDNA sequence data and from previous isolation of NPY-related molecules from NPY-producing cells. The structures of secreted proNPY, NPY, and COOH-terminal peptide, as well as determination of the site of proteolytic cleavage between NPY and the COOH-terminal peptide, were determined by tryptic mapping and Edman degradation of secreted biosynthetically labeled peptide products. The proNPY molecule appears to be processed in the same pathway responsible for cleavage of the endogenous pro-ACTH/endorphin precursor. Secretion of proNPY-derived peptides paralleled secretion of endogenous pro-ACTH/endorphin-derived products, under both basal and stimulated conditions. With induction proNPY expression there is a dose-dependent inhibition of both proNPY and pro-ACTH/endorphin proteolytic processing.  相似文献   

7.
We cloned and sequenced a cDNA from a library of mouse pituitary AtT-20 cells which are known to cleave an endogenous and various foreign prohormones at dibasic sites. This cDNA encodes a novel 753-residue protein, named PC3, which is structurally related to the yeast Kex2 protease involved in precursor cleavage at dibasic sites and to recently identified mammalian Kex2-like proteins, furin and PC2. Among examined cell lines and tissues, PC3 mRNA was only detected in AtT-20 cells. The substrate specificity of PC3 expressed in mammalian cells was similar to that observed in AtT-20 cells. We conclude that PC3 is a resident prohormone processing endoprotease in AtT-20 cells.  相似文献   

8.
Several putative peptide-processing endoproteases have been identified by homology to the yeast Kex2 endoprotease, including furin, PC2, and PC1. However, the question is still open as to which might be involved in peptide posttranslational processing. To enable detailed comparisons of physiological changes in peptide processing with biochemical and molecular biological studies, we cloned rat pituitary cDNAs for PC1 and PC2. The amino acid sequence homologies among rat, human, and mouse PC1, PC2, and furin are consistent with each being a highly conserved but distinct member of a larger family of mammalian subtilisin-like proteases. PC1 and PC2 mRNAs show a restricted distribution among rat tissues and cultured cell lines, consistent with a role in tissue-specific peptide processing; the occurrence of furin mRNA among these tissues and cell lines is much more widespread, being high in many nonneuroendocrine tissues. In the neurointermediate pituitary, PC1 and PC2 mRNAs are strikingly regulated in response to dopaminergic agents, in parallel with mRNAs for POMC, peptidylglycine alpha-amidating monooxygenase, and carboxypeptidase-H. In AtT-20 cells, PC1 mRNA is coregulated with POMC and peptidylglycine alpha-amidating monooxygenase mRNAs in response to CRH and glucocorticoids. When the endogenous PC1 mRNA level in AtT-20 cells is significantly and specifically decreased by stable expression of antisense RNA to PC1, biosynthetic labeling of newly synthesized POMC-derived peptides shows a substantial blockade of normal POMC processing. These data are consistent with a role for PC1 protein in endoproteolysis, either as a processing endoprotease or as the activator of the actual processing endoprotease(s).  相似文献   

9.
Gastrin is initially synthesized as a large precursor that requires endoproteolytic cleavage by a prohormone convertase (PC) for bioactivation. Gastric antral G-cells process progastrin at Arg(94)Arg(95) and Lys(74)Lys(75) residues generating gastrin heptadecapeptide (G17-NH(2)). Conversely, duodenal G-cells process progastrin to gastrin tetratriacontapeptide (G34-NH(2)) with little processing at Lys(74)Lys(75). Both tissues express PC1/PC3 and PC2. Previously, we demonstrated that heterologous expression of progastrin in an endocrine cell line that expresses PC1/PC3 and little PC2 (AtT-20) resulted in the formation of G34-NH(2). To confirm that PC1/PC3 was responsible for progastrin processing in AtT-20 cells and capable of processing progastrin in vivo we coexpressed either human wild-type (Lys(74)Lys(75)) or mutant (Arg(74)Arg(75), Lys(74)Arg(75), and Arg(74)Lys(75)) progastrins in AtT-20 cells with two different antisense PC1/PC3 constructs. Coexpression of either antisense construct resulted in a consistent decrease in G34-NH(2) formation. Gastrin mRNA expression and progastrin synthesis were equivalent in each cell line. Although mutation of the Lys(74)Lys(75) site within G34-NH(2) to Lys(74)Arg(75) resulted in the production of primarily G17-NH(2) rather than G34-NH(2), inhibition of PC1/PC3 did not significantly inhibit processing at the Lys(74)Arg(75) site. We conclude that PC1/PC3 is a progastrin processing enzyme, suggesting a role for PC1/PC3 progastrin processing in G-cells.  相似文献   

10.
Recent investigations have shown that the neuroendocrine and immune systems profoundly affect each other. In part, these interactions occur via common chemical messengers and receptors. One possible shared chemical messenger is the opioid precursor preproenkephalin, for which high concentrations of messenger RNA are present in brain, adrenal, and activated T helper cells. Because the biologic action of most peptide messengers depends on the posttranslational processing of the precursor, we have examined T helper cell lines for the production of proenkephalin-derived peptides. These peptides were characterized by multiple radioimmunoassays, gel filtration chromatography, and opiate radioreceptor assays. We found that activated T helper cells secrete significant concentrations of high-molecular-weight, opiate-inactive peptides, which are distinct from the proenkephalin-derived peptides of the neuroendocrine system. These studies clearly indicate cell-specific processing of proenkephalin, and suggest that the T helper cell-secreted products may have nonopiate receptor-mediated actions.  相似文献   

11.
The biosynthesis of neuroendocrine peptides is typically examined by following the rate of appearance of a radioactive amino acid into mature forms of peptides. In the present study, we labeled cell lines with L-leucine containing 10 deuterium residues (d(10)-Leu) and used mass spectrometry to measure the biosynthetic rate of gamma-lipotropin in the AtT-20 cell line and insulin in the INS-1 cell line. After 3 h of labeling, both peptides show detectable levels of the d-labeled form in the cells and media. The relative levels of the d-labeled forms are greater in the media than in the cells, consistent with previous studies that found that newly synthesized peptides are secreted at a higher rate than older peptides under basal conditions. When AtT-20 cells were stimulated with KCl or forskolin, the ratio of d- to H-labeled gamma-lipotropin in the medium decreased, suggesting that the older peptide was in a compartment that could be released upon the appropriate stimulation. Overexpression of proSAAS in AtT-20 cells reduced the ratio of d- to H-labeled gamma-lipotropin, consistent with the proposed role of proSAAS as an endogenous inhibitor of prohormone convertase-1. Labeling with d10-Leu was also used to test whether altering the pH of the secretory pathway with chloroquine affected the rate of peptide biosynthesis. In AtT-20 cells, 30 microm chloroquine for 3 or 6 h significantly reduced the rate of formation of gamma-lipotropin in both cells and media. Similarly, INS-1 cells treated with 10, 30, or 60 microm chloroquine for 6 h showed a significant decrease in the rate of formation of insulin in both cells and media. These results are consistent with the acidic pH optima for peptide processing enzymes. Stable isotopic labeling with d10-Leu provides a sensitive method to examine the rate of peptide formation in neuroendocrine cell lines.  相似文献   

12.
A recombinant plasmid containing the rat prodynorphin cDNA was introduced into the mouse anterior pituitary corticotroph cell line AtT-20. These cells normally express and posttranslationally process proopiomelanocortin, but not prodynorphin. Stable transformants were isolated and analyzed for the expression and processing of prodynorphin. The stably transformed AtT-20 cells that expressed a 1.3-kilobase prodynorphin mRNA also expressed prodynorphin protein and processed it to dynorphin peptides. The peptides included leucine-enkephalin, beta-neoendorphin, dynorphin-A8, and dynorphin-B, as identified by gel filtration and reverse phase HPLC followed by RIA using peptide-specific antisera. These results demonstrate that AtT-20 cells efficiently and accurately process prodynorphin at both dibasic sites and monobasic cleavage sites, indicating that the AtT-20 cells contain enzymes capable of cleaving the precursor not only at dibasic residues but also at monobasic residues. The release of prodynorphin-derived peptides paralleled secretion of endogenous proopiomelanocortin-derived peptides when stimulated by CRF, a natural secretagogue for ACTH.  相似文献   

13.
The prohormone convertases play important roles in the maturation of neuropeptides and peptide hormone precursors. Prohormone convertase-2 (PC2) is the only convertase that requires the expression of another neuroendocrine protein, 7B2, for expression of enzyme activity. In this study, we determined that 7B2 can be phosphorylated in Rin cells (a rat insulinoma cell line) and cultured chromaffin cells, but not in AtT-20 cells (derived from mouse anterior pituitary). Phosphoamino acid analysis of Rin cell 7B2 indicated the presence of phosphorylated serine and threonine. Phosphorylation of Ser115 (located within the minimally active 36-residue peptide) was confirmed by mutagenesis, although Ser115 did not represent the sole residue phosphorylated. Two independent assays were used to investigate the effect of phosphorylated 7B2 on PC2 activation: the ability of 7B2 to bind to pro-PC2 was assessed by co-immunoprecipitation, and activation of pro-PC2 was assessed in a cell-free assay. Phosphorylated 7B2 was unable to bind pro-PC2, and the phosphorylated 7B2 peptide (residues 86-121, known to be the minimally active peptide for pro-PC2 activation) was impaired in its ability to facilitate the generation of PC2 activity in membrane fractions containing pro-PC2. In vitro phosphorylation experiments using Golgi membrane fractions showed that 7B2 could be phosphorylated by endogenous Golgi kinases. Golgi kinase activity was strongly inhibited by the broad-range kinase inhibitor staurosporine and partially inhibited by the protein kinase C inhibitor bisindolylmaleimide I, but not by the other protein kinase A, Ca2+/calmodulin-dependent kinase II, myosin light chain kinase, and protein kinase G inhibitors tested. We conclude that phosphorylation of 7B2 functionally inactivates this protein and suggest that this may be analogous to the phosphorylating inactivation of BiP, which impairs its ability to bind substrate.  相似文献   

14.
Initial Processing of Human Proenkephalin in Bovine Chromaffin Cells   总被引:1,自引:1,他引:0  
Abstract: The opioid peptide precursor preproenkephalin (PPE) contains seven enkephalin sequences and is synthesized by epinephrine-producing adrenal chromaffin cells and various peripheral and central neurons. After removal of its signal peptide. PPE undergoes processing at dibasic amino acid sites to yield its final opioid products—Met-enkephalin, Leu-enkephalin, and various larger, enkephalin-containing peptides. Processing of PPE was examined in bovine chromaffin cells using a plasmid containing the human PPE (hPPE) cDNA under the control of the cytomegalovirus immediate early enhancer/promoter. Following transfection of this hPPE-containing plasmid into bovine chromaffin cells, several proenkephalin-immunoreactive bands were observed on western blots with monoclonal antibodies that recognize human, but not bovine, proenkephalin sequences. The pattern of hPPE-derived peptides observed was similar to that of bovine PPE processing products. A series of recombinant plasmids containing mutations in the hPPE sequence at putative processing sites was then constructed. Conversion of Lys-Lys and Lys-Arg sequences to Lys-Gln and of Arg-Arg to Arg-Gln altered initial hPPE processing at only three of the putative processing sites. When hPPE cDNA containing mutations at all of these initially processed sites was expressed, one or more alternative processing sites were revealed. These data suggest the importance of structural features in addition to the dibasic sequences that limit the processing of proenkephalin.  相似文献   

15.
Beinfeld MC  Wang W 《Life sciences》2002,70(11):1251-1258
Human teratocarcinoma Ntera2/c 1.D1 (NT2) cells express very low levels of the prohormone convertase enzyme PC1, moderate levels of PC2 and significant levels of PC5. When infected with an adenovirus which expresses rat CCK mRNA, several glycine-extended forms were secreted that co-eluted with CCK 33, 22 and 12. Amidated CCK is not produced because these cells appear to lack the amidating enzyme. Pituitary GH3 cells express high levels of PC2 and PC5. CCK adenovirus-infected GH3 cells secrete amidated versions of the same peptides as NT2 cells. Differentiation of NT2 cells into hNT cells with retinoic acid and mitotic inhibitors increased expression of PC5 and decreased expression of PCI and PC2. CCK adenovirus-infected differentiated hNT cells also secrete glycine extended CCK products and the major molecular form produced co-eluted with CCK 8 Gly. These experiments demonstrate that the state of differentiation of this neuronal cell line influences its expression of PC 1,2, and 5 and its cleavage of pro CCK and suggests that these cells may make an interesting model to study how differentiation alters prohormone processing. These results also support the hypothesis that PC5 in differentiated neuronal cells is capable of processing pro CCK to glycine-extended CCK 8.  相似文献   

16.
17.
Concentrations of mRNA coding for the opioid peptide precursor proenkephalin A (mRNAENK) were measured in primary cultures of bovine adrenal chromaffin cells maintained in serum-free medium. Using a sensitive solution hybridization assay, an increase in mRNAENK levels from 45 to 300% above control with K+ (10-20 mM), Ba2+ (1 mM) and veratridine (5 microM) was found. The highest increase (300% above control) was obtained with the Na+ channel agonist veratridine. This effect was nearly abolished in the presence of the Na+ channel antagonist tetrodotoxin (TTX) (1 microM). Moreover, TTX partially inhibited the increase in mRNAENK levels caused by K+ (20 mM) depolarization (from 185 to 130% of control), but had no effect on the stimulation by Ba2+ (1 mM). The Ca2+ channel antagonists D600 (50 microM) verapamil (50 microM) and Co2+ (1 mM) inhibited the responses to either K+, Ba2+ or veratridine, whereas the Ca2+ channel agonist Bay K 8644 (0.1 microM) potentiated the effect of 20 mM K+ from 185 to 230% of control. The K+-induced increase in the mRNAENK levels was associated with an increase of immunoreactive proenkephalin A-derived peptides in both tissue and medium, indicating an enhanced production of opioid peptides. These results suggest that membrane depolarization may play an important role in the regulation of proenkephalin A gene expression in bovine adrenal chromaffin cells. It may represent a mode by which substances acting directly on Na+ or Ca2+ channels may modulate the regulation of proenkephalin A mRNA biosynthesis and opioid peptide production.  相似文献   

18.
《The Journal of cell biology》1995,129(6):1641-1650
The prohormone convertase PC2, which is thought to mediate the proteolytic conversion of many peptide hormones, has recently been shown to interact with the neuroendocrine-specific polypeptide 7B2 in Xenopus intermediate lobe (Braks, J. A. M., and G. J. M. Martens. Cell. 78:263. 1994). In the present work we have stably transfected neuroendocrine cell lines with rat 7B2 constructs and found that overexpression of 27 kD 7B2 greatly facilitates the kinetics of maturation of proPC2, both in AtT-20/PC2 cells and in Rin5f cells. The half-life of conversion of proPC2 was reduced from 2.7 to 1.7 h in AtT- 20/PC2 cells stably transfected with 27 kD 7B2 cDNA. The previously proposed "chaperone" domain was not sufficient for this facilitation event; however, a construct corresponding to the 21-kD 7B2 protein (which represents the naturally occurring maturation product) functioned well. A 7B2 construct in which maturation of 27 kD 7B2 to its 21-kD form was blocked was unable to facilitate maturation of proPC2. To correlate effects on PC2 maturation with the actual generation of PC2 enzymatic activity, a similar transfection of 21 kD 7B2 was performed using CHO cells previously amplified for the expression of proPC2. Enzymatic activity cleaving the fluorogenic substrate Cbz-Arg-Ser-Lys-Arg-AMC was highly correlated with the expression of immunoreactive 21 kD 7B2 in the conditioned medium; medium obtained from the parent cell line was completely inactive. Enzymatic activity was identified as PC2 on the basis of inhibition by the carboxy-terminal peptide of 7B2, which has previously been shown to represent a potent and specific PC2 inhibitor. Taken together, our in vivo results indicate that the interesting secretory protein 7B2 is a bifunctional molecule with an amino-terminal domain involved in proPC2 transport as well as activation.  相似文献   

19.
The carboxy terminal part of the proenkephalin A sequence is the 31 amino acid peptide B, which has as its final seven amino acids the sequence of the opioid peptide Met-enkephalyl-Arg6-Phe7. Using a radioimmunoassay which recognises both these peptides we have investigated the relative amounts of peptide B and Met-enkephalyl-Arg6-Phe7 in a human neuroblastoma cell line. We show that these cells contain peptide B-like immunoreactivity but not its heptapeptide fragment. This may be due to lack of proteolytic activity cleaving Met-enkephalyl-Arg6-Phe7 from its precursor, peptide B. On treatment with dibutyryl cyclic AMP the level of immunoreactivity approximately doubles, due to increased amounts of peptide B-like immunoreactivity. Treatment with reserpine, which increases conversion of peptide B to the heptapeptide in bovine chromaffin cells in culture does not stimulate the accumulation of Met-enkephalyl-Arg6-Phe7 in the human neuroblastoma cells. The results are discussed with respect to peptide processing.  相似文献   

20.
The biosynthesis of gastrin involves a complex series of post-translational processing reactions that result in the formation of a biologically active secretory product. To study the mechanisms for two specific reactions in gastrin processing, namely dibasic cleavage and amidation, we infected AtT-20, GH3, and Rin5-f cells with the retroviral expression vector, pZip-NeoSV(X), containing human gastrin cDNA. We detected gastrin and its glycine extended post-translational processing intermediates (G-gly) in the media and cell extracts of successfully infected cells. Characterization of the molecular forms of gastrin in these cell lines revealed that GH3 and Rin5-f processed gastrin in a manner similar to antral G-cells but the cleavage of the Lys74-Lys75 bond that converts G34 to G17 appeared to be suppressed in AtT-20 cells. Even after conversion of this site to Arg74-Arg75 via site-directed mutagenesis, the At-20 cells synthesized G34 predominantly. All of the infected cells amidated gastrin but the gastrin/G-gly ratio, a reflection of amidation within the cells, was enhanced in GH3 and Rin5-f cells but diminished in AtT-20 cells upon treatment with dexamethasone (10(-4) M) for 3 days. The dibasic cleavage of gastrin was uneffected by dexamethasone. Our data suggest that the activities of post-translational processing reactions responsible for the synthesis of biologically active gastrin exhibit considerable tissue and substrate specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号