首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Expression kinetics of the lactose (lac) operon in Escherichia coli are reviewed for both wild-type and recombinant cell cultures under chemostatic conditions. A unified model which involves regulation of active inducer (lactose) transport, promoter-operator regulated expression of the lac operon, glucose-mediated inducer exclusion, and catabolite repression is summarized and supporting data is shown to verify its accuracy. The synthesis of alpha-amylase with a recombinant form of Bacillus subtilis is also reviewed to point out generic features in transport regulation, the lac operon model providing a point of departure. While there are many similarities in the influence of transport on both regulating models, there are also important differences. In a chemostat system, the synthesis of alpha-amylase is nongrowth associated, while beta-galactosidase is a growth-associated enzyme. Nevertheless, transport regulation is an important feature in both instances.  相似文献   

2.
Galactose appears to be the physiological inducer of the chromosomal lac operon in Klebsiella aerogenes. Both lactose and galactose are poor inducers in strains having a functional galactose catabolism (gal) operon, but both are excellent inducers in gal mutants. Thus the slow growth of K. aerogenes on lactose reflects the rapid degradation of the inducer. Several pts mutations were characterized and shown to affect both inducer exclusion and permanent catabolite repression. The beta-galactosidase of pts mutants cannot be induced at all by lactose, and pts mutants appear to have a permanent and constitutive inducer exclusion phenotype. In addition, pts mutants show a reduced rate of glucose metabolism, leading to slower growth on glucose and a reduced degree of glucose-mediated permanent catabolite repression. The crr-type pseudorevertants of pts mutations relieve the constitutive inducer exclusion for lac but do not restore the full level of glucose-mediated permanent catabolite repression and only slightly weaken the glucose-mediated inducer exclusion. Except for weakening the glucose-mediated permanent catabolite repression, pts and crr mutations have no effect on expression of the histidine utilization (hut) operons.  相似文献   

3.
4.
Glucose-lactose diauxie in Escherichia coli   总被引:10,自引:3,他引:7  
Growth of Escherichia coli in medium containing glucose, at a concentration insufficient to support full growth, and containing lactose, is diauxic. A mutation in the gene, CR, which determines catabolite repression specific to the lac operon, was found to relieve glucose-lactose but not glucose-maltose diauxie. Furthermore, a high concentration of lactose was shown to overcome diauxie in a CR(+) strain. Studies on the induction of beta-galactosidase by lactose suggested that glucose inhibits induction by 10(-2)m lactose. Preinduction of the lac operon was found to overcome this effect. The ability of glucose to prevent expression of the lac operon by reducing the internal concentration of inducer as well as by catabolite repression is discussed.  相似文献   

5.
The main mechanism causing catabolite repression by glucose and other carbon sources transported by the phosphotransferase system (PTS) in Escherichia coli involves dephosphorylation of enzyme IIAGlc as a result of transport and phosphorylation of PTS carbohydrates. Dephosphorylation of enzyme IIAGlc leads to 'inducer exclusion': inhibition of transport of a number of non-PTS carbon sources (e.g. lactose, glycerol), and reduced adenylate cyclase activity. In this paper, we show that the non-PTS carbon source glucose 6-phosphate can also cause inducer exclusion. Glucose 6-phosphate was shown to cause inhibition of transport of lactose and the non-metabolizable lactose analogue methyl-β- D -thiogalactoside (TMG). Inhibition was absent in mutants that lacked enzyme IIAGlc or were insensitive to inducer exclusion because enzyme IIAGlc could not bind to the lactose carrier. Furthermore, we showed that glucose 6-phosphate caused dephosphorylation of enzyme IIAGlc. In a mutant insensitive to enzyme IIAGlc-mediated inducer exclusion, catabolite repression by glucose 6-phosphate in lactose-induced cells was much weaker than that in the wild-type strain, showing that inducer exclusion is the most important mechanism contributing to catabolite repression in lactose-induced cells. We discuss an expanded model of enzyme IIAGlc-mediated catabolite repression which embodies repression by non- PTS carbon sources.  相似文献   

6.
7.
8.
The genes coding for the binding-protein-dependent lactose transport system and beta-galactosidase in Agrobacterium radiobacter strain AR50 were cloned and partially sequenced. A novel lac operon was identified which contains genes coding for a lactose-binding protein (lacE), two integral membrane proteins (lacF and lacG), an ATP-binding protein (lacK) and beta-galactosidase (lacZ). The operon is transcribed in the order lacEFGZK. The operon is controlled by an upstream regulatory region containing putative -35 and -10 promoter sites, an operator site, a CRP-binding site probably mediating catabolite repression by glucose and galactose, and a regulatory gene (lacl) encoding a repressor protein which mediates induction by lactose and other galactosides in wild-type A. radiobacter (but not in strain AR50, thus allowing constitutive expression of the lac operon). The derived amino acid sequences of the gene products indicate marked similarities with other binding-protein-dependent transport systems in bacteria.  相似文献   

9.
10.
11.
Allosteric regulation of several sugar transport systems such as those specific for lactose, maltose and melibiose in Escherichia coli (inducer exclusion) is mediated by the glucose-specific enzyme IIA (IIAGlc) of the phosphoenolpyruvate:sugar phosphotransferase system (PTS). Deletion mutations in the cytoplasmic N and C termini of the lactose permease protein, LacY, and replacement of all cysteine residues in LacY with other residues did not prevent IIAGlc-mediated inhibition of lactose uptake, but several point and insertional mutations in the central cytoplasmic loop of this permease abolished transport regulation and IIAGlc binding. The results substantiate the conclusion that regulation of the lactose permease in E. coli by the PTS is mediated by a primary interaction of IIAGlc with the central cytoplasmic loop of the permease.  相似文献   

12.
13.
Bistability in the lac operon of Escherichia coli has been widely studied, both experimentally and theoretically. Experimentally, bistability has been observed when E. coli is induced by an artificial, nonmetabolizable, inducer. However, if the lac operon is induced with lactose, the natural inducer, bistability has not been demonstrated. We derive an analytical expression that can predict the occurrence of bistability both for artificial inducers and lactose. We find very different conditions for bistability in the two cases. Indeed, for artificial inducers bistability is predicted, but for lactose the condition for bistability is much more difficult to satisfy. Moreover, we demonstrate that in silico evolution of the lac operon generates an operon that avoids bistability with respect to lactose, but does exhibit bistability with respect to artificial inducers. The activity of this evolved operon strikingly resembles the experimentally observed activity of the operon. Thus our computational experiments suggest that the wild-type lac operon, which regulates lactose metabolism, is not a bistable switch. Nevertheless, for engineering purposes, this operon can be used as a bistable switch with artificial inducers.  相似文献   

14.
The role of the phosphoenolpyruvate-dependent phosphotransferase system (PTS) in the phenomenon of inducer exclusion was examined in whole cells of Salmonella typhimurium which carried the genes of the Escherichia coli lactose operon on an episome. In the presence of the PTS substrate methyl alpha-D-glucopyranoside, the extent of accumulation of the lactose analog methyl beta-D-thiogalactopyranoside was reduced. A strain carrying a mutation in the gene for Enzyme I was hypersensitive to the PTS effect, while a crr mutant strain was completely resistant. Influx, efflux, and exchange of galactosides via the lactose "permease" were inhibited by methyl alpha-glucoside. This inhibition occurred in the presence of metabolic energy poisons, and therefore does not involve either the generation of metabolic energy or energy-coupling to the lactose transport system. When the cellular content of the lactose permease was increased by induction with isopropyl beta-D-thiogalactopyranoside, cells gradually became less sensitive to inducer exclusion. The extent of inhibition of methyl beta-thiogalactoside accumulation by methyl alpha-glucoside was shown to be dependent on the relative cellular content of the PTS and lactose system. The data were consistent with an hypothesis involving partial inactivation of galactoside transport due to interaction between a component of the PTS and the lactose permease. By examination of the effects of the PTS and lactose uptake and melibiose permease-mediated uptake of methyl beta-thiogalactoside, it was further shown that the manner in which inducer exclusion is expressed is independent on the routes available to the non-PTS sugar for exit from the cell.  相似文献   

15.
Adaptation to novel environments is often associated with changes in gene regulation. Nevertheless, few studies have been able both to identify the genetic basis of changes in regulation and to demonstrate why these changes are beneficial. To this end, we have focused on understanding both how and why the lactose utilization network has evolved in replicate populations of Escherichia coli. We found that lac operon regulation became strikingly variable, including changes in the mode of environmental response (bimodal, graded, and constitutive), sensitivity to inducer concentration, and maximum expression level. In addition, some classes of regulatory change were enriched in specific selective environments. Sequencing of evolved clones, combined with reconstruction of individual mutations in the ancestral background, identified mutations within the lac operon that recapitulate many of the evolved regulatory changes. These mutations conferred fitness benefits in environments containing lactose, indicating that the regulatory changes are adaptive. The same mutations conferred different fitness effects when present in an evolved clone, indicating that interactions between the lac operon and other evolved mutations also contribute to fitness. Similarly, changes in lac regulation not explained by lac operon mutations also point to important interactions with other evolved mutations. Together these results underline how dynamic regulatory interactions can be, in this case evolving through mutations both within and external to the canonical lactose utilization network.  相似文献   

16.
Regulation of the beta-galactoside transport system in response to growth substrates in the extremely thermophilic anaerobic bacterium Thermotoga neapolitana was studied with the nonmetabolizable analog methyl-beta-D-thiogalactopyranoside (TMG) as the transport substrate. T. neapolitana cells grown on galactose or lactose accumulated TMG against a concentration gradient in an intracellular free sugar pool that was exchangeable with external galactose or lactose and showed induced levels of beta-galactosidase. Cells grown on glucose, maltose, or galactose plus glucose showed no capacity to accumulate TMG, though these cells carried out active transport of the nonmetabolizable glucose analog 2-deoxy-D-glucose. Glucose neither inhibited TMG uptake nor caused efflux of preaccumulated TMG; rather, glucose promoted TMG uptake by supplying metabolic energy. These data show that beta-D-galactosides are taken up by T. neapolitana via an active transport system that can be induced by galactose or lactose and repressed by glucose but which is not inhibited by glucose. Thus, the phenomenon of catabolite repression is present in T. neapolitana with respect to systems catalyzing both the transport and hydrolysis of beta-D-galactosides, but inducer exclusion and inducer expulsion, mechanisms that regulate permease activity, are not present. Regulation is manifest at the level of synthesis of the beta-galactoside transport system but not in the activity of the system.  相似文献   

17.
18.
Several carbohydrate permease systems in Salmonella typhimurium and Escherichia coli are sensitive to regulation by the phosphoenolpyruvate:sugar phosphotransferase system. Mutant Salmonella strains were isolated in which individual transport systems had been rendered insensitive to regulation by sugar substrates of the phosphotransferase system. In one such strain, glycerol uptake was insensitive to regulation; in another, the maltose transport system was resistant to inhibition; and in a third, the regulatory mutation specifically rendered the melibiose permease insensitive to regulation. An analogous mutation in E. coli abolished inhibition of the transport of beta-galactosides via the lactose permease system. The mutations were mapped near the genes which code for the affected transport proteins. The regulatory mutations rendered utilization of the particular carbohydrates resistant to inhibition and synthesis of the corresponding catabolic enzymes partially insensitive to repressive control by sugar substrates of the phosphotransferase system. Studies of repression of beta-galactosidase synthesis in E. coli were conducted with both lactose and isopropyl beta-thiogalactoside as exogenous sources of inducer. Employing high concentrations of isopropyl beta-thiogalactoside, repression of beta-galactosidase synthesis was not altered by the lactose-specific transport regulation-resistant mutation. By contrast, the more severe repression observed with lactose as the exogenous source of inducer was partially abolished by this regulatory mutation. The results support the conclusions that several transport systems, including the lactose permease system, are subject to allosteric regulation and that inhibition of inducer uptake is a primary cause of the repression of catabolic enzyme synthesis.  相似文献   

19.
Multistability is an emergent dynamic property that has been invoked to explain multiple coexisting biological states. In this work, we investigate the origin of bistability in the lac operon. To do this, we develop a mathematical model for the regulatory pathway in this system and compare the model predictions with other experimental results in which a nonmetabolizable inducer was employed. We investigate the effect of lactose metabolism using this model, and show that it greatly modifies the bistable region in the external lactose (Le) versus external glucose (Ge) parameter space. The model also predicts that lactose metabolism can cause bistability to disappear for very low Ge. We have also carried out stochastic numerical simulations of the model for several values of Ge and Le. Our results indicate that bistability can help guarantee that Escherichia coli consumes glucose and lactose in the most efficient possible way. Namely, the lac operon is induced only when there is almost no glucose in the growing medium, but if Le is high, the operon induction level increases abruptly when the levels of glucose in the environment decrease to very low values. We demonstrate that this behavior could not be obtained without bistability if the stability of the induced and uninduced states is to be preserved. Finally, we point out that the present methods and results may be useful to study the emergence of multistability in biological systems other than the lac operon.  相似文献   

20.
大肠杆菌分解代谢产物阻遏效应研究进展   总被引:1,自引:1,他引:1  
马婉晴  章珍  刘悦琳  王华忠 《遗传》2010,32(6):571-576
细菌在多种碳源共存的环境中优先利用一种(通常是葡萄糖)的现象被称为分解代谢产物阻遏效应。国内现有分子生物学及相关课程教材普遍对该效应的机理解释不清甚至给出错误的解释。大肠杆菌葡萄糖-乳糖分解代谢产物阻遏效应产生的根本原因不是胞内葡萄糖的存在, 而是葡萄糖经PTS(Phosphoenolpyruvate: carbohydrate phosphotransferase system)系统向胞内运输同时藕联磷酸化的过程。磷酸向葡萄糖的传递导致PTS关键组分EⅡAGlc去磷酸化形式的积累。该形式的EⅡAGlc可以与质膜上本底表达的乳糖透性酶LacY结合, 阻止诱导物乳糖的吸收。cAMP的影响也是通过激活参与PTS系统的关键基因而加强了诱导物排斥作用。此外, 去磷酸化形式的EⅡBGlc和YeeⅠ对全局性转录阻遏蛋白Mlc活性的抑制也保证了PTS系统关键组分蛋白的基因表达。文章综述了近年来有关大肠杆菌分解代谢产物阻遏效应机理的最新研究进展, 并对相关教材有关这一内容的阐述提出了修改建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号