首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been reported that beta amyloid induces production of radical oxygen species and oxidative stress in neuronal cells, which in turn upregulates β-secretase (BACE-1) expression and beta amyloid levels, thereby propagating oxidative stress and increasing neuronal injury. A series of resveratrol derivatives, known to be inhibitors of oxidative stress-induced neuronal cell death (oxytosis) were biologically evaluated against BACE-1 using homogeneous time-resolved fluorescence (TRF) assay. Correlation between oxytosis inhibitory and BACE-1 inhibitory activity of resveratrol derivatives was statistically significant, supporting the notion that BACE-1 may act as pivotal mediator of neuronal cell oxytosis. Four of the biologically evaluated resveratrol analogs demonstrated considerably higher activity than resveratrol in either assay. The discovery of some “hits” led us to initiate detailed docking studies associated with Molecular Dynamics in order to provide a plausible explanation for the experimental results and understand their molecular basis of action.  相似文献   

2.
Genetic evidence predicts a causative role for amyloid-beta (A beta) in Alzheimer's disease. Recent debate has focused on whether fibrils (amyloid) or soluble oligomers of A beta are the active species that contribute to neurodegeneration and dementia. We developed two aggregation protocols for the consistent production of stable oligomeric or fibrillar preparations of A beta-(1-42). Here we report that oligomers inhibit neuronal viability 10-fold more than fibrils and approximately 40-fold more than unaggregated peptide, with oligomeric A beta-(1-42)-induced inhibition significant at 10 nm. Under A beta-(1-42) oligomer- and fibril-forming conditions, A beta-(1-40) remains predominantly as unassembled monomer and had significantly less effect on neuronal viability than preparations of A beta-(1-42). We applied the aggregation protocols developed for wild type A beta-(1-42) to A beta-(1-42) with the Dutch (E22Q) or Arctic (E22G) mutations. Oligomeric preparations of the mutations exhibited extensive protofibril and fibril formation, respectively, but were not consistently different from wild type A beta-(1-42) in terms of inhibition of neuronal viability. However, fibrillar preparations of the mutants appeared larger and induced significantly more inhibition of neuronal viability than wild type A beta-(1-42) fibril preparations. These data demonstrate that protocols developed to produce oligomeric and fibrillar A beta-(1-42) are useful in distinguishing the structural and functional differences between A beta-(1-42) and A beta-(1-40) and genetic mutations of A beta-(1-42).  相似文献   

3.
Alzheimer's disease (AD) is characterized by cholinergic dysfunction and progressive basal forebrain cell loss which has been assumed to be as a result of the extensive accumulation of beta-amyloid (Abeta). In addition to Abeta fibrillar assemblies, there are pre-fibrillar forms that have been shown to be neurotoxic, although their role in cholinergic degeneration is still not known. Using the cholinergic cell line SN56.B5.G4, we investigated the effect of different Abeta(1-42) aggregates on cell viability. In our model, only soluble oligomeric but not fibrillar Abeta(1-42) forms induced toxicity in cholinergic cells. To determine whether the neurotoxicity of oligomeric Abeta(1-42) was caused by its oxidative potential, we performed microarray analysis of SN56.B5.G4 cells treated either with oligomeric Abeta(1-42) or H(2)O(2). We showed that genes affected by Abeta(1-42) differed from those affected by non-specific oxidative stress. Many of the genes affected by Abeta(1-42) were present in the endoplasmic reticulum (ER), Golgi apparatus and/or otherwise involved in protein modification and degradation (chaperones, ATF6), indicating a possible role for ER-mediated stress in Abeta-mediated toxicity. Moreover, a number of genes, which are known to be involved in AD (clusterin, Slc18a3), were identified. This study provides important leads for the understanding of oligomeric Abeta(1-42) toxicity in cholinergic cells, which may account in part for cholinergic degeneration in AD.  相似文献   

4.
Alzheimer disease (AD), the most frequent cause of dementia, is characterized by an important neuronal loss. A typical histological hallmark of AD is the extracellular deposition of beta-amyloid peptide (A beta), which is produced by the cleavage of the amyloid precursor protein (APP). Most of the gene mutations that segregate with the inherited forms of AD result in increasing the ratio of A beta 42/A beta 40 production. A beta 42 also accumulates in neurons of AD patients. Altogether, these data strongly suggest that the neuronal production of A beta 42 is a critical event in AD, but the intraneuronal A beta 42 toxicity has never been demonstrated. Here, we report that the long term expression of human APP in rat cortical neurons induces apoptosis. Although APP processing leads to production of extracellular A beta 1-40 and soluble APP, these extracellular derivatives do not induce neuronal death. On the contrary, neurons undergo apoptosis as soon as they accumulate intracellular A beta 1-42 following the expression of full-length APP or a C-terminal deleted APP isoform. The inhibition of intraneuronal A beta 1-42 production by a functional gamma-secretase inhibitor increases neuronal survival. Therefore, the accumulation of intraneuronal A beta 1-42 is the key event in the neurodegenerative process that we observed.  相似文献   

5.
Current evidence suggests that amyloid beta peptides (Abeta) may play a major role in the pathogenesis of Alzheimer's disease by eliciting oxidative stress and neuronal apoptosis. In this study we have used differentiated SK-N-BE neurons to investigate molecular mechanisms and regulatory pathways underlying apoptotic neuronal cell death elicited by Abeta(1-40) and Abeta(1-42) peptides as well as the relationships between apoptosis and oxidative stress. Abeta peptides, used at concentrations able to induce oxidative stress, elicit a classic type of neuronal apoptosis involving mitochondrial regulatory proteins and pathways (i.e. affecting Bax and Bcl-2 protein levels as well as release of cytochrome c in the cytosol), poly-ADP rybose polymerase cleavage and activation of caspase 3. This pattern of neuronal apoptosis, that is significantly prevented by alpha-tocopherol and N-acetylcysteine and completely abolished by specific inhibitors of stress-activated protein kinases (SAPK) such as JNKs and p38(MAPK), involved early elevation of p53 protein levels. Pretreatment of neurons with alpha-pifithrin, a specific p53 inhibitor, resulted in a 50-60% prevention of Abeta induced apoptosis. These results suggest that oxidative stress - mediated neuronal apoptosis induced by amyloid beta operates by eliciting a SAPK-dependent multiple regulation of pro-apoptotic mitochondrial pathways involving both p53 and bcl-2.  相似文献   

6.
We previously indicated that amyloid beta (Abeta) augments protein levels of beta-site amyloid precursor protein cleaving enzyme-1 (BACE-1) through oxidative stress. In this study, we revealed that BACE-1 is involved in the cleavage of membrane-bound prostaglandin E2 synthase-2 (mPGES-2) in its N-terminal portion, which, in turn, enhanced the generation of prostaglandin E2 (PGE2). PGE2 results in increased Abeta production, initiating a cell-injuring cycle. Using rat primary cortical neurons, a 48 h treatment with Abeta 1-42 (5 μM) resulted in the enhanced extracellular PGE2 levels up to about 1 ng/mL, which was attenuated by treatment with a BACE-1 inhibitor (200 nM). A synthetic peptide sequence of 20-amino acids that included the cleavage site of mPGES-2 (HTARWHL RAQDLHERS AAQLSLSS) was cleaved by recombinant BACE-1, confirmed using reverse-phase high-performance liquid chromatography. Cleaved or activated mPGES-2 augments the generation of PGE2. In addition, mPGES-2 was determined to be colocalized with BACE-1 and cyclooxygenase-2 in the perinuclear region in cells after exposure to Abeta. Exposure of neurons to PGE2 led to cell death, and Abeta production was enhanced by PGE2 (1 ng/mL, 48 h). Collectively, these results suggest that Abeta might cause neuroinflammation that aggravates Alzheimer’s disease pathogenesis.  相似文献   

7.
Aggregation and accumulation of the microtubule-associated protein tau are associated with cognitive decline and neuronal degeneration in Alzheimer's disease and other tauopathies. Thus, preventing the transition of tau from a soluble state to insoluble aggregates and/or reversing the toxicity of existing aggregates would represent a reasonable therapeutic strategy for treating these neurodegenerative diseases. Here we demonstrate that molecular chaperones of the heat shock protein 70 (Hsp70) family are potent inhibitors of tau aggregation in vitro, preventing the formation of both mature fibrils and oligomeric intermediates. Remarkably, addition of Hsp70 to a mixture of oligomeric and fibrillar tau aggregates prevents the toxic effect of these tau species on fast axonal transport, a critical process for neuronal function. When incubated with preformed tau aggregates, Hsp70 preferentially associated with oligomeric over fibrillar tau, suggesting that prefibrillar oligomeric tau aggregates play a prominent role in tau toxicity. Taken together, our data provide a novel molecular basis for the protective effect of Hsp70 in tauopathies.  相似文献   

8.
9.
Alzheimer's disease (AD) is characterized by the deposition of amyloid beta-peptide (A beta) and neuronal degeneration in brain regions involved in learning and memory. One of the leading etiologic hypotheses regarding AD is the involvement of free radical-mediated oxidative stress in neuronal degeneration. Recent evidence suggests that metals concentrated in amyloid deposits may contribute to the oxidative insults observed in AD-affected brains. We hypothesized that A beta peptide in the presence of copper enhances its neurotoxicity generating free radicals via copper reduction. In the present study, we have examined the effect of the aggregation state of amyloid-beta-peptide on copper reduction. In independent experiments we measured the copper-reducing ability of soluble and fibrillar A beta(1-40) forms by bathocuproine assays. As it was previously observed for the amyloid precursor protein (APP), the A beta peptide showed copper-reducing ability. The capacity of A beta to reduce copper was independent of the aggregation state. Finally, the A beta peptide derived from the human sequence has a greater effect than the A beta peptide derived from the rat sequence, suggesting that histidine 13 may play a role in copper reduction. In agreement with this possibility, the A beta peptide reduces less copper in the presence of exogenous histidine.  相似文献   

10.
Several protein conformational disorders (Parkinson and prion diseases) are linked to aberrant folding of proteins into prefibrillar oligomers and amyloid fibrils. Although prefibrillar oligomers are more toxic than their fibrillar counterparts, it is difficult to decouple the origin of their dissimilar toxicity because oligomers and fibrils differ both in terms of structure and size. Here we report the characterization of two oligomers of the 42-residue amyloid β (Aβ42) peptide associated with Alzheimer disease that possess similar size and dissimilar toxicity. We find that Aβ42 spontaneously forms prefibrillar oligomers at Aβ concentrations below 30 μm in the absence of agitation, whereas higher Aβ concentrations lead to rapid formation of fibrils. Interestingly, Aβ prefibrillar oligomers do not convert into fibrils under quiescent assembly conditions but instead convert into a second type of oligomer with size and morphology similar to those of Aβ prefibrillar oligomers. Strikingly, this alternative Aβ oligomer is non-toxic to mammalian cells relative to Aβ monomer. We find that two hydrophobic peptide segments within Aβ (residues 16-22 and 30-42) are more solvent-exposed in the more toxic Aβ oligomer. The less toxic oligomer is devoid of β-sheet structure, insoluble, and non-immunoreactive with oligomer- and fibril-specific antibodies. Moreover, the less toxic oligomer is incapable of disrupting lipid bilayers, in contrast to its more toxic oligomeric counterpart. Our results suggest that the ability of non-fibrillar Aβ oligomers to interact with and disrupt cellular membranes is linked to the degree of solvent exposure of their central and C-terminal hydrophobic peptide segments.  相似文献   

11.
Hydrogen sulfide (H(2)S) is now identified as a new neuromodulator. Increasing evidence suggest that H(2)S may play an important role in the progression of Alzheimer's disease (AD). The aim of the present study is to investigate the effects of H(2)S on beta-site amyloid precursor protein cleaving enzyme 1 (BACE-1) expression and amyloid beta (Aβ) secretion in PC12 cells. The levels of BACE-1 mRNA were measured by quantitative polymerase chain reaction analysis. BACE-1 protein levels were assessed by Western blot. Cellular culture medium levels of Aβ1-42 were analyzed by ELISA. We found that sodium hydrosulfide (NaHS), a H(2)S donor, decreased BACE-1 mRNA and protein levels and Aβ1-42 release. Furthermore, NaHS promoted the phosphorylation of Akt and ERK but not JNK or p38 MAPK. However, the effects of NaHS on BACE-1 expression and Aβ1-42 secretion were abolished by inhibitors of phosphatidylinositol 3-kinase (PI3-K), but not of mitogen-activated protein kinase kinases (MEK). Our data indicate that H(2)S reduces BACE-1 expression in PC12 cells via activation of PI3-K/Akt signaling pathways. H(2)S releasing drugs may have therapeutic potential in AD patients.  相似文献   

12.
The proteinase-activated receptors (PARs) are a novel family of G protein-coupled receptors, and their effects in neurodegenerative diseases remain uncertain. Alzheimer's disease (AD) is a neurodegenerative disorder defined by misfolded protein accumulation with concurrent neuroinflammation and neuronal death. We report suppression of proteinase-activated receptor-2 (PAR2) expression in neurons of brains from AD patients, whereas PAR2 expression was increased in proximate glial cells, together with up-regulation of proinflammatory cytokines and chemokines and reduced IL-4 expression (p < 0.05). Glial PAR2 activation increased expression of formyl peptide receptor-2 (p < 0.01), a cognate receptor for a fibrillar 42-aa form of beta-amyloid (Abeta(1-42)), enhanced microglia-mediated proinflammatory responses, and suppressed astrocytic IL-4 expression, resulting in neuronal death (p < 0.05). Conversely, neuronal PAR2 activation protected human neurons against the toxic effects of Abeta(1-42) (p < 0.05), a key component of AD neuropathogenesis. Amyloid precursor protein-transgenic mice, displayed glial fibrillary acidic protein and IL-4 induction (p < 0.05) in the absence of proinflammatory gene up-regulation and neuronal injury, whereas PAR2 was up-regulated at this early stage of disease progression. PAR2-deficient mice, after hippocampal Abeta(1-42) implantation, exhibited enhanced IL-4 induction and less neuroinflammation (p < 0.05), together with improved neurobehavioral outcomes (p < 0.05). Thus, PAR2 exerted protective properties in neurons, but its activation in glia was pathogenic with secretion of neurotoxic factors and suppression of astrocytic anti-inflammatory mechanisms contributing to Abeta(1-42)-mediated neurodegeneration.  相似文献   

13.
Butterfield DA  Kanski J 《Peptides》2002,23(7):1299-1309
Amyloid beta-peptide 1-42 [Abeta(1-42)] is central to the pathogenesis of Alzheimer's disease (AD), and the AD brain is under intense oxidative stress. Our laboratory combined these two aspects of AD into the Abeta-associated free radical oxidative stress model for neurodegeneration in AD brain. Abeta(1-42) caused protein oxidation, lipid peroxidation, reactive oxygen species formation, and cell death in neuronal and synaptosomal systems, all of which could be inhibited by free radical antioxidants. Recent studies have been directed at discerning molecular mechanisms by which Abeta(1-42)-associated free radical oxidative stress and neurotoxicity arise. The single methionine located in residue 35 of Abeta(1-42) is critical for these properties. This review presents the evidence supporting the role of methionine in Abeta(1-42)-associated free radical oxidative stress and neurotoxicity. This work is of obvious relevance to AD and provides a coupling between the centrality of Abeta(1-42) in the pathogenesis of AD and the oxidative stress under which the AD brain exists.  相似文献   

14.
In this paper, evidence is provided that p75 neurotrophin receptor (p75NTR) exerts an opposite role on the cytotoxic function of β-amyloid (Aβ) depending on the different state of the peptide, fibrillar or oligomeric soluble form. Previous work in our laboratory has shown that the expression of p75NTR is required for cell death in vitro by Aβ peptides in fibrillar form (G. Perini, V. Della-Bianca, V. Politi, G. Della Valle, I. Dal-Pra, F. Rossi, U. Armato. Role of p75 neurotrophin receptor in the neurotoxicity by beta-amyloid peptides and synergistic effect of inflammatory cytokines. J. Exp. Med. 195 (2002) 907-918). In the present study, performed by using the same cell clones and procedures as in previous paper, we show that: (a) soluble oligomers of Aβ(1-42) exert a cytotoxic activity independent of p75NTR, (b) the expression of p75NTR exerts a protective role against the toxic activity of soluble oligomers, (c) this role is due to an active function of the juxtamembrane sequence of the cytoplasmic region of p75NTR and (d) the protective function is mediated by phosphatidylinositide 3-kinase (PI3K) activity.  相似文献   

15.
Small model peptides containing N-terminal methionine are reported to form sulfur-centered-free radicals that are stabilized by the terminal N atom. To test whether a similar chemistry would apply to a disease-relevant longer peptide, Alzheimer's disease (AD)-associated amyloid beta-peptide 1-42 was employed. Methionine at residue 35 of this 42-mer has been shown to be a key amino acid residue involved in amyloid beta-peptide 1-42 [A beta1-42]-mediated toxicity and therefore, the pathogenesis of AD. Previous studies have shown that mutation of the methionine residue to norleucine abrogates the oxidative stress and neurotoxic properties of A beta(1-42). In the current study, we examined if the position of methionine at residue 35 is a criterion for toxicity. In doing so, we tested the effects of moving methionine to the N-terminus of the peptide in a synthetic peptide, A beta(1-42)D1M, in which methionine was substituted for aspartic acid at the N-terminus of the peptide and all subsequent residues from D1 to L34 were shifted one position towards the carboxy-terminus. A beta(1-42)D1M exhibited oxidative stress and neurotoxicity properties similar to those of the native peptide, A beta(1-42), all of which are inhibited by the free radical scavenger Vitamin E, suggesting that reactive oxygen species may play a role in the A beta-mediated toxicity. Additionally, substitution of methionine at the N-terminus by norleucine, A beta(1-42)D1Nle, completely abrogated the oxidative stress and neurotoxicity associated with the A beta(1-42)D1M peptide. The results of this study validate the chemistry reported for short peptides with N-terminal methionines in a disease-relevant peptide.  相似文献   

16.
The link between the size of soluble amyloid β (Aβ) oligomers and their toxicity to rat cerebellar granule cells (CGC) was investigated. Variation in conditions during in vitro oligomerization of Aβ1-42 resulted in peptide assemblies with different particle size as measured by atomic force microscopy and confirmed by dynamic light scattering and fluorescence correlation spectroscopy. Small oligomers of Aβ1-42 with a mean particle z-height of 1-2 nm exhibited propensity to bind to phospholipid vesicles and they were the most toxic species that induced rapid neuronal necrosis at submicromolar concentrations whereas the bigger aggregates (z-height above 4-5 nm) did not bind vesicles and did not cause detectable neuronal death. A similar neurotoxic pattern was also observed in primary cultures of cortex neurons whereas Aβ1−42 oligomers, monomers and fibrils were non-toxic to glial cells in CGC cultures or macrophage J774 cells. However, both oligomeric forms of Aβ1-42 induced reduction of neuronal cell densities in the CGC cultures.  相似文献   

17.
The toxicity of the nonaggregated amyloid beta-peptide (1-40) [A beta(1-40)] on the viability of rat cortical neurons in primary culture was investigated. We demonstrated that low concentrations of A beta peptide, in a nonfibrillar form, induced a time- and dose-dependent apoptotic cell death, including DNA condensation and fragmentation. We compared the neurotoxicity of the A beta(1-40) peptide with those of several A beta-peptide domains, comprising the membrane-destabilizing C-terminal domain of A beta peptide (e.g., amino acids 29-40 and 29-42). These peptides reproduced the effects of the (1-40) peptide, whereas mutant nonfusogenic A beta peptides and the central region of the A beta peptide (e.g., amino acids 13-28) had no effect on cell viability. We further demonstrated that the neurotoxicity of the nonaggregated A beta peptide paralleled a rapid and stable interaction between the A beta peptide and the plasma membrane of neurons, preceding apoptosis and DNA fragmentation. By contrast, the peptide in a fibrillar form induced a rapid and dramatic neuronal death mainly through a necrotic pathway, under our conditions. Taken together, our results suggest that A beta induces neuronal cell death by either apoptosis and necrosis and that an interaction between the nonfibrillar C-terminal domain of the A beta peptide and the plasma membrane of cortical neurons might represent an early event in a cascade leading to neurodegeneration.  相似文献   

18.
Molecular Biology Reports - Many evidence confirms that amyloid beta 1–42 fragment (Aβ1–42) causes neuroinflammation, oxidative stress, and cell death, which are related to...  相似文献   

19.
Oxidative stress induced neuronal cell death by accumulation of β-amyloid (Aβ) is a critical pathological mechanism of Alzheimer's disease (AD). Intracerebroventrical infusion of Aβ1-42 (300 pmol/day per mouse) for 14 days induced neuronal cell death and memory impairment, but pre-treatment of 4-O-methylhonokiol (4-O-MH), a novel compound extracted from Magnolia officinalis for 3 weeks (0.2, 0.5 and 1.0 mg/kg) prior to the infusion of Aβ1-42 and during the infusion dose dependently improved Aβ1-42-induced memory impairment and prevented neuronal cell death. Additionally, 4-O-MH reduced Aβ1-42 infusion-induced oxidative damages of protein and lipid but reduced glutathione levels in the cortex and hippocampus. Aβ1-42 infusion-induced activation of astrocytes and p38 mitogenic activated protein (MAP) kinase was also prevented by 4-O-MH in mice brains. In further study using culture cortical neurons, p38 MAP kinase inhibitor abolished the inhibitory effect of 4-O-MH (10 μM) on the Aβ1-42 (5 μM)-induced reactive oxidative species generation and neuronal cell death. These results suggest that 4-O-MH might prevent the development and progression of AD through the reduction of oxidative stress and neuronal cell death via inactivation of p38 MAP kinase pathway.  相似文献   

20.
Oxidative stress is postulated to play a role in cell death in many neurodegenerative diseases. As a model of neonatal neuronal cell death, we have examined the role of oxidative stress in Purkinje cell death in the heterozygous Lurcher mutant (+/Lc). Lurcher is a gain of function mutation in the delta2 glutamate receptor (GluRdelta2) that turns the receptor into a leaky membrane channel, resulting in chronic depolarization of +/Lc Purkinje cells starting around the first week of postnatal development. Virtually, all +/Lc Purkinje cells die by the end of the first postnatal month. To investigate the role of oxidative stress in +/Lc Purkinje cell death, we have examined nitric oxide synthase (NOS) activity and the expression of two markers for oxidative stress, nitrotyrosine and manganese super oxide dismutase (MnSOD), in wild type and +/Lc Purkinje cells at P10, P15, and P25. The results show that NOS activity and immunolabeling for nitrotyrosine and MnSOD are increased in +/Lc Purkinje cells. To determine whether peroxynitrite formation is a prerequisite for +/Lc Purkinje cell death, +/Lc mutants were crossed with an alpha-nNOS knockout mutant (nNOSalpha(-/-)) to reduce the production of NO. Analysis of the double mutants showed that blocking alpha-nNOS expression does not rescue +/Lc Purkinje cells. However, we present evidence for sustained NOS activity and nitrotyrosine formation in the GluRdelta2(+/Lc):nNOS(-/-) double mutant Purkinje cells, which suggests that the failure to rescue GluRdelta2(+/Lc):nNOS(-/-) Purkinje cells may be explained by the induction of alternative nNOS isoforms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号