共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of cysteine modification and variations in pH on the equilibrium parameters for inducer and operator binding to the lactose repressor protein were examined. Operator binding affinity was minimally affected by increasing the pH from 7.5 to 9.2, whereas inducer binding was decreased for both the unliganded protein and the repressor-operator complex over the same range. Inducer binding to the repressor became more cooperative at high pH. The midpoint for the change in inducer affinity and cooperativity was pH 8.3; this value correlates well with cysteine ionization. The differential between repressor-operator affinity in the presence and absence of inducer was significantly decreased by modification of the protein with methyl methanethiosulfonate (MMTS). In contrast to unreacted protein, the inducer binding parameters for MMTS-modified repressor were largely unaffected by pH variation. The free energy for formation of the completely liganded protein was calculated for two pathways; the delta G values for these two independent routes were equivalent only for stoichiometries of four inducers and two operators per repressor molecule. All of the binding data were analyzed quantitatively by using a Monod-Wyman-Changeux two-state model for allosteric regulation. The observed dependences of the isopropyl beta-D-thiogalactoside binding curves on pH, DNA concentration, and MMTS modification were fitted by varying only the equilibrium constant between the two conformational states of the protein. With this analysis, high pH favors the T (high operator/low inducer affinity) state, while modification of cysteine-281 with MMTS elicits a shift into the R (high inducer/low operator affinity) state.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
2.
The lactose repressor protein from the mutant Escherichia coli BG185 contains valine at position 81 instead of alanine. Spectroscopic, chemical and direct binding measurements demonstrate that the BG185 protein exhibits properties similar to the wild-type repressor-inducer complex. Kinetic measurements of inducer binding to BG185 repressor yielded rate constants that were more than two orders of magnitude smaller than those observed for wild-type repressor; these results suggest that the structural transitions required for inducer binding are markedly impaired by the mutation. The fluorescence spectral shift in response to inducer binding was identical for mutant and wild-type proteins. This identity indicates direct effects of inducer binding on the tryptophan(s) near the sugar binding site rather than environmental changes consequent to conformational shifts. Analogy to the bacterial sugar binding proteins suggest that the Ala to Val change at position 81 in BG185 repressor yields a molecule that is fixed in a closed, sugar-binding conformation. 相似文献
3.
Diethyl pyrocarbonate reaction with the lactose repressor protein affects both inducer and DNA binding 总被引:1,自引:0,他引:1
Modification of the lactose repressor protein of Escherichia coli with diethyl pyrocarbonate (DPC) results in decreased inducer binding as well as operator and nonspecific DNA binding. Spectrophotometric measurements indicated a maximum of three histidines per subunit was modified, and quantitation of lysine residues with trinitrobenzenesulfonate revealed the modification of one lysine residue. The loss of DNA binding, both operator and nonspecific, was correlated with histidine modification; removal of the carbethoxy groups from the histidines by hydroxylamine was accompanied by significant recovery of DNA binding function. The presence of inducing sugars during the DPC reaction had no effect on histidine modification or the loss of DNA binding activity. In contrast, inducer binding was not recovered upon reversal of the histidine modification. However, the presence of inducer during reaction protected lysine from reaction and also prevented the decrease in inducer binding; these results indicate that reaction of the lysine residue(s) may correlate to the loss of sugar binding activity. Since no difference in incorporation of radiolabeled carbethoxy was observed following reaction with diethyl pyrocarbonate in the presence or absence of inducer, the reagent appears to function as a catalyst in the modification of the lysine. The formation of an amide bond between the affected lysine and a nearby carboxylic acid moiety provides a possible mechanism for the activity loss. Reaction of the isolated NH2-terminal domain resulted in loss of DNA binding with modification of the single histidine at position 29. Results from the modification of core domain paralleled observations with intact repressor. 相似文献
4.
Kinetic and equilibrium studies of the binding of modified beta-D-galactoside sugars to the lac repressor were carried out to generate thermodynamic data for protein-inducer interactions. The energetic contributions of the galactosyl hydroxyl groups to binding were assessed by using a series of methyl deoxyfluoro-beta-D-galactosides. The C-3 and C-6 hydroxyls contributed less than or equal to -2.3 and -1.7 +/- 0.3 kcal/mol to the binding free energy change, respectively, whereas the C-4 hydroxyl provided only a nominal contribution (-0.1 +/- 0.2 kcal/mol). Favorable contributions to the total binding free energy change were observed for replacement of O-methyl by S-methyl at the beta-anomeric position and for S-methyl by S-isopropyl. Negative delta H degrees values characteristic of protein-sugar complexes [Quiocho, F. A. (1986) Annu. Rev. Biochem. 55, 287-315] were observed for a series of beta-D-galactosides differing at the beta-glycosidic position. A decrease in delta H degrees of approximately 6 kcal/mol upon replacement of the O-methyl substituent by S-methyl indicates a substantial increase in van der Waals' interactions and/or hydrogen bonding in this region of the ligand binding site. The more favorable free energy change for the binding of the S-isopropyl vs S-methyl compound is due mainly to more positive entropic contributions, consistent with an increase in apolar interactions.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
5.
The lactose repressor protein has been modified with three sulfhydryl-specific reagents which form mixed disulfide adducts. Methyl methanethiosulfonate (MMTS) and 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) completely reacted with all three cysteine residues, whereas only partial reaction was observed with didansylcystine. Cysteines-107 and -140 reacted stoichiometrically with MMTS and DTNB, while Cys-281 was modified only at higher molar ratios. Didansylcystine reacted primarily with cysteines-107 and -140. Affinity of MMTS-modified repressor for 40 base pair operator DNA was decreased 30-fold compared to unmodified repressor, and this decrease correlated with modification of cysteine-281. DTNB-modified repressor bound operator DNA with a 50-fold weaker affinity than unmodified repressor. Modification of the lac repressor with didanylcystine decreased operator binding only 4-fold, and nonspecific DNA binding increased 3-fold compared to unmodified repressor. No change in the inducer equilibrium binding constant was observed following modification with any of these reagents. In contrast, inducer association and dissociation rate constants were decreased approximately 50-fold for repressor completely modified with MMTS or DTNB, while didansylcystine had minimal effect on inducer binding kinetics. Correlation between modification of Cys-281 and the observed decrease in rate constants indicates that this region of the protein regulates the accessibility of the sugar binding site. The parallel between the increase in the Kd for repressor binding to operator, the altered rate constant for inducer binding, and modification of cysteine-281 suggests that this region of the protein is crucially involved in the function of the repressor protein. 相似文献
6.
Preferential binding of the β-anomer of allolactose to the lactose repressor of Escherichia coli was demonstrated by two methods: (1) by repeated washing of ammonium sulfate precipitates of the allolactose-repressor complex and (2) by competitive inhibition of allolactose binding by isopropyl-β-d-thiogalacto-side. Quantitation showed that one β-allolactose binds per isopropyl-β-d-thiogalactoside binding site. A control system is postulated. 相似文献
7.
M Charlier F Culard J C Maurizot C Helene 《Biochemical and biophysical research communications》1977,74(2):690-698
Insulin was tritiated by exposure to tritium gas activated by microwave radiation. 3H-insulin competed with 125I-insulin for binding to cultured human lymphocytes and to anti-insulin antibody to the same extent as did native insulin. The affinity constant for the binding of 3H-insulin to specific receptors on cultured human lymphocytes was 0.48 × 109 M?1 (SD-0.06). The affinity constant for the binding of 125I-insulin was 0.57 × 109 M?1 (SD=0.23). As was the case with 125I-insulin, the Scatchard plot of the binding of 3H-insulin to human lymphocytes was curvilinear, suggesting the presence of a heterogeneous population of receptors, or of a homogeneous population of receptors that exhibit negative cooperativity. The similarity observed between 3H-insulin and 125I-insulin helps refute the argument that distortion of the insulin molecule caused by introduction of an iodine atom may interfere with its binding to insulin receptors. 相似文献
8.
9.
Based on primary sequence homology between the lactose repressor protein and periplasmic sugar-binding proteins (Müller-Hill, B. (1983) Nature 302, 163-164), a hypothetical sugar-binding site for the lac repressor was proposed using the solved x-ray crystallographic structure of the arabinose-binding protein (ABP) (Sams, C. F., Vyas, N. K., Quiocho, F. A., and Matthews, K. S. (1984) Nature 310, 429-430). By analogy to Arg151 in the ABP sugar site, Arg197 is predicted to play an important role in lac repressor binding to inducer sugars. Hydrogen bonding occurs between Arg151 and the ring oxygen and 4-hydroxyl of the sugar ligand, two backbone carbonyls, and a side chain in ABP, and similar interactions in the lac repressor would be anticipated. To test this hypothesis, Arg197 in the lac repressor protein was altered by oligonucleotide-directed site-specific mutagenesis to substitute Gly, Leu, or Lys. Introduction of these substitutions at position 197 had no effect on operator binding parameters of the isolated mutant proteins, whereas the affinity for inducer was dramatically decreased, consistent with in vivo phenotypic behavior obtained by suppression of nonsense mutations at this site (Kleina, L. G., and Miller, J. H. (1990) J. Mol. Biol. 212, 295-318). Inducer binding affinity was reduced approximately 3 orders of magnitude for Leu, Gly, or Lys substitutions, corresponding to a loss of 50% of the free energy of binding. The pH shift characteristic of wild-type repressor is conserved in these mutants. Circular dichroic spectra demonstrated no significant alterations in secondary structure for these mutants. Thus, the primary effect of substitution for Arg197 is a very significant decrease in the affinity for inducer sugars. Arginine is uniquely able to make the multiple contacts found in the ABP sugar site, and we conclude that this residue plays a similar role in sugar binding for lactose repressor protein. These results provide experimental validation for the proposed homology between ABP and the lac repressor and suggest that homology with ABP may be employed to generate additional insight into the structure and function of this regulatory protein. 相似文献
10.
Amino acid alterations were designed at the C terminus of the hinge segment (amino acids approximately 51-59) that links two functional domains within lactose repressor protein (LacI). Gly was introduced between Gly(58) and Lys(59) to generate Gly(58+1); Gln(60) was changed to Gly or Pro, and up to three additional glycines were inserted following Gln(60) --> Gly. All mutant proteins exhibited purification behavior, CD spectra, assembly state, and inducer binding properties similar to wild-type LacI and only small differences in trypsin proteolysis patterns. In contrast, significant differences were observed in DNA binding properties. Gly(58+1) exhibited a decrease of approximately 100-fold in affinity for O(1) operator, and sequential Gly insertion C-terminal to Gln(60) --> Gly resulted in progressively decreased affinity for O(1) operator, approaching nonspecific levels for insertion of >/=2 glycines. Where sufficient affinity for O(1) operator existed, decreased binding to O(1) in the presence of inducer indicated no disruption in the allosteric response for these proteins. Collectively, these results indicate that flexibility and/or spacing between the core and N-terminal domains did not significantly affect folding or assembly, but these alterations in the hinge domain profoundly altered affinity of the lactose repressor protein for its wild-type target sequence. 相似文献
11.
We constructed a mutant of the tetracycline-inducible repressor protein TetR with specificity for the tc analogue 4-de(dimethylamino)anhydrotetracycline (4-ddma-atc), which is neither an antibiotic nor an inducer for the wild-type protein. The previously published relaxed specificity mutant TetR H64K S135L displays reduced induction by tc but full induction by doxycycline (dox), anhydrotetracycline (atc), and 4-de(dimethylamino)-6-demethyl-6-deoxytetracycline (cmt3). To create induction specificity for tc derivatives lacking the 4-dimethylamino grouping such as cmt3 and 4-ddma-atc, the residues at positions 82 and 138, which are located close to that moiety in the crystal structure of the TetR-[tc-Mg](+)(2) complex, were randomized. We anticipated that a residue with increased size may lead to sterical hindrance, and screening for 4-ddma-atc-specific induction indeed revealed the mutant TetR H64K S135L S138I. Out of 24 exchanges only the addition of S138I to TetR H64K S135L yielded a mutant with a pronounced reduction of affinity for atc and dox, while the one for 4-ddma-atc is not affected. The ratio of binding constants revealed a 200-fold specificity increase for 4-ddma-atc over atc. The contributions of each single mutant to specificity indicate that the tc variants bind slightly different positions in the TetR tc binding pocket. 相似文献
12.
Gillard N Goffinont S Buré C Davidkova M Maurizot JC Cadene M Spotheim-Maurizot M 《The Biochemical journal》2007,403(3):463-472
Understanding the cellular effects of radiation-induced oxidation requires the unravelling of key molecular events, particularly damage to proteins with important cellular functions. The Escherichia coli lactose operon is a classical model of gene regulation systems. Its functional mechanism involves the specific binding of a protein, the repressor, to a specific DNA sequence, the operator. We have shown previously that upon irradiation with gamma-rays in solution, the repressor loses its ability to bind the operator. Water radiolysis generates hydroxyl radicals (OH* radicals) which attack the protein. Damage of the repressor DNA-binding domain, called the headpiece, is most likely to be responsible of this loss of function. Using CD, fluorescence spectroscopy and a combination of proteolytic cleavage with MS, we have examined the state of the irradiated headpiece. CD measurements revealed a dose-dependent conformational change involving metastable intermediate states. Fluorescence measurements showed a gradual degradation of tyrosine residues. MS was used to count the number of oxidations in different regions of the headpiece and to narrow down the parts of the sequence bearing oxidized residues. By calculating the relative probabilities of reaction of each amino acid with OH. radicals, we can predict the most probable oxidation targets. By comparing the experimental results with the predictions we conclude that Tyr7, Tyr12, Tyr17, Met42 and Tyr47 are the most likely hotspots of oxidation. The loss of repressor function is thus correlated with chemical modifications and conformational changes of the headpiece. 相似文献
13.
In the inducer-bound structure of the lac repressor protein, the side chains of H74 and D278 are positioned to form an ion pair between monomers that appears to be disrupted upon operator binding (Lewis, M., Chang, G., Horton, N. C., Kercher, M. A., Pace, H. C., Schumacher, M. A., Brennan, R. G., and Lu, P. (1996) Science 271, 1247-1254). A series of single substitutions at H74 and D278 and a double mutant, H74D-D278H, were generated to determine the influence of this interaction on ligand binding and allostery in lac repressor. Introduction of apolar amino acids at H74 resulted in distinct effects on ligand binding. Alanine and leucine substitutions decreased operator binding, while tryptophan and phenylalanine increased affinity for operator DNA. Introduction of a negatively charged residue at position 74 in H74D had minimal effects, and "inverting" the side chains in H74D/D278H did not significantly alter inducer or operator binding at neutral pH. In contrast, all substitutions of D278 increased affinity for operator DNA and diminished inducer binding. These observations can be interpreted in the context of the Monod-Wyman-Changeux model. If a salt bridge were essential for stabilizing or destabilizing the inducer-bound conformation, a mutation at either residue that interrupts this interaction should have a similar effect on allostery. Because the type and degree of alteration in ligand binding properties depended on the nature of the substitution at these residues, the individual roles played by H74 and D278 in lac repressor allostery appear more important than their direct contact across the monomer-monomer interface. 相似文献
14.
Ultraviolet difference spectra of the lactose repressor protein 总被引:2,自引:0,他引:2
K S Matthews H R Matthews H W Thielmann G Jardetzky 《Biochimica et biophysica acta》1973,295(1):159-165
15.
Two mutations in the tetracycline repressor change the inducer anhydrotetracycline to a corepressor 总被引:3,自引:2,他引:3
下载免费PDF全文

We report for the first time the in vitro characterization of a reverse tetracycline repressor (revTetR). The dimeric wild-type repressor (TetR) binds to tet operator tetO in the absence of the inducer anhydrotetracycline (atc) to confer tight repression. We have isolated the revTetR G96E L205S mutant, which, contrary to TetR, binds tetO only in the presence of atc. This reverse acting mutant was overproduced and purified. Effector and DNA binding properties were analyzed by EMSA and quantified by fluorescence titration and surface plasmon resonance. The association constant KA of revTetR for binding of [atcMg]+ is ~108 M–1, four orders of magnitude lower than that of TetR. The affinity of TetR for tetO is 5.6 ± 2 × 109 M–1 and that for revTetR in the presence of atc is 1 ± 0.2 × 108 M–1. Both induced forms, the atc-bound TetR and the free revTetR, have the same low affinity of 4 ± 1 × 105 M–1 for DNA. Therefore, atc does not act as a dimerization agent for revTetR. We discuss the structural differences between TetR and revTetR potentially underlying this reversal of activity. 相似文献
16.
A significant number of eukaryotic regulatory proteins are predicted to have disordered regions. Many of these proteins bind DNA, which may serve as a template for protein folding. Similar behavior is seen in the prokaryotic LacI/GalR family of proteins that couple hinge-helix folding with DNA binding. These hinge regions form short alpha-helices when bound to DNA but appear to be disordered in other states. An intriguing question is whether and to what degree intrinsic helix propensity contributes to the function of these proteins. In addition to its interaction with operator DNA, the LacI hinge helix interacts with the hinge helix of the homodimer partner as well as to the surface of the inducer-binding domain. To explore the hierarchy of these interactions, we made a series of substitutions in the LacI hinge helix at position 52, the only site in the helix that does not interact with DNA and/or the inducer-binding domain. The substitutions at V52 have significant effects on operator binding affinity and specificity, and several substitutions also impair functional communication with the inducer-binding domain. Results suggest that helical propensity of amino acids in the hinge region alone does not dominate function; helix-helix packing interactions appear to also contribute. Further, the data demonstrate that variation in operator sequence can overcome side chain effects on hinge-helix folding and/or hinge-hinge interactions. Thus, this system provides a direct example whereby an extrinsic interaction (DNA binding) guides internal events that influence folding and functionality. 相似文献
17.
Evidence for leucine zipper motif in lactose repressor protein 总被引:10,自引:0,他引:10
A E Chakerian V M Tesmer S P Manly J K Brackett M J Lynch J T Hoh K S Matthews 《The Journal of biological chemistry》1991,266(3):1371-1374
Amino acid sequence homology between the carboxyl-terminal segment of the lac repressor and eukaryotic proteins containing the leucine zipper motif with associated basic DNA binding region (bZIP) has been identified. Based on the sequence comparisons, site-specific mutations have been generated at two sites predicted to participate in oligomer formation based on the three-leucine heptad repeat at positions 342, 349, and 356. Leu342----Ala, Leu349----Ala, and Leu349----Pro have been isolated and their oligomeric state and ligand binding properties evaluated. These mutant proteins do not form tetramers but exist as stable dimers with inducer binding comparable with the wild-type protein. Apparent operator affinities for lac repressor proteins with mutations in the proposed bZIP domain were significantly lower than the corresponding wild-type values. For these dimeric mutant proteins, the monomer-dimer equilibrium is linked to the apparent operator binding constant. The values for the monomer-monomer binding constant and for the intrinsic operator binding constant for the dimer cannot be resolved from measurements of the observed Kd for operator DNA. Further studies on these proteins are in progress. 相似文献
18.
The lactose repressor protein was chemically modified with 2,3-butanedione and phenylglyoxal. Arginine reaction was quantitated by either amino acid analysis or incorporation of 14C-labeled phenylglyoxal. Inducer binding activity was unaffected by the modification of arginine residues, while both operator and nonspecific DNA binding activities were diminished, although to differing degrees. The correlation of the decrease in DNA binding activities with the modification of approximately 1-2 equiv of arginine per monomer suggests increased reactivity of a functionally essential residue(s). For both reagents, operator DNA binding activity was protected by the presence of calf thymus DNA, and the extent of reaction with phenylglyoxal was simultaneously diminished. This protection presumably results from steric restriction of reagent access to an arginine(s) that is (are) essential for DNA binding interactions. These experiments suggest that there is (are) an essential reactive arginine(s) critical for repressor binding to DNA. 相似文献
19.
B Shineberg 《Journal of bacteriology》1974,119(2):500-507
After treatment with N-methyl-N'-nitro-N-nitrosoguanidine, 133 independent mutants of a haploid strain of Escherichia coli able to use phenyl-beta-galactoside as a carbon source were obtained. The galactoside was specific in selecting for mutants with increases in their uninduced levels of beta-galactosidase. Virtually all mutants (37 in a subsample of 38) carried mutations in the lac repressor gene. There were two classes of repressor mutants. As well as the commonly identified class of mutants with completely inactivated repressors, there was a frequent class of mutants (21/37) whose repressors were partially inactivated. Most of these (15/21) repressed beta-galactosidase synthesis 4 to 50 times less than wild type, but were more numerous in the lower part of this range. Their beta-galactosidase was inducible to levels characteristic of the parent strain. The repressor activities were diverse and stably expressed under routine growth conditions. The decreased activity did not result from the formation of temperature-sensitive repressors. None of the mutants with completely inactivated repressors appeared to carry UAG or UGA chain-terminating codons. On the assumption that the partially defective repressor mutants carried missense mutations, it is argued that missense mutations in the lac repressor gene modify the repressor's affinity for the operator with high probability. An explanation is proposed for the apparent sensitivity of this repressor function to partial inactivation as the result of amino acid substitutions. 相似文献
20.
Y Oshima M Matsuura T Horiuchi 《Biochemical and biophysical research communications》1972,47(6):1444-1450