首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
During the last decades, New World monkey (NWM, Platyrrhini, Anthropoideae) comparative cytogenetics has shed light on many fundamental aspects of genome organisation and evolution in this fascinating, but also highly endangered group of neotropical primates. In this review, we first provide an overview about the evolutionary origin of the inferred ancestral NWM karyotype of 2n = 54 chromosomes and about the lineage-specific chromosome rearrangements resulting in the highly divergent karyotypes of extant NWM species, ranging from 2n = 16 in a titi monkey to 2n = 62 in a woolly monkey. Next, we discuss the available data on the chromosome phylogeny of NWM in the context of recent molecular phylogenetic analyses. In the last part, we highlight some recent research on the molecular mechanisms responsible for the large-scale evolutionary genomic changes in platyrrhine monkeys.  相似文献   

2.
Telomere Biology and Cellular Aging in Nonhuman Primate Cells   总被引:3,自引:0,他引:3  
To determine how cellular aging is conserved among primates, we analyzed the replicative potential and telomere shortening in skin fibroblasts of anthropoids and prosimians. The average telomere length of the New World primates Ateles geoffroyi (spider monkey) and Saimiri sciureus (squirrel monkey) and the Old World primates Macaca mulatta (rhesus monkey), Pongo pygmaeus (orangutan), and Pan paniscus (pigmy chimpanzee) ranged from 4 to 16 kb. We found that telomere shortening limits the replicative capacity of anthropoid fibroblasts and that the expression of human telomerase produced telomere elongation and the extension of their in vitro life span. In contrast the prosimian Lemur catta (ring-tailed lemur) had both long and short telomeres and telomere shortening did not provide an absolute barrier to immortalization. Following a transient growth arrest a subset of cells showing a reduced number of chromosomes overgrew the cultures without activation of telomerase. Here we show that the presence of continuous TTAGGG repeats at telomeres and rigorous control of replicative aging by telomere shortening appear to be conserved among anthropoid primates but is less effective in prosimian lemurs.  相似文献   

3.
Hybridization in stiu was used to identify the chromosomes that carry rDNA in representative lower primates, including the baboons, Papio cynocephalus and Papio hamadryas; the colobus monkey, Colobus polykomos; the tree shrew, Tupaia glis; the lemur, Lemur fulvis; the saki, Pithecia pithecia; the marmoset, Saguinus nigricollis, and the spider monkey, Ateles geoffroyi. The marker chromosome, common to the Cercopithecines studied to date, carries the rDNA in the baboons. Another marker chromosome carries rDNA in a South American species, the spider monkey. A multichromosomal distribution of rDNA was demonstrated in the tree shrew, lemur, saki, and marmoset. None of the rDNA-containing chromosomes in the prosimians and New World monkeys show homology to the chromosomes that carry rDNA in the Hominids, Pongids, or Old World monkeys.  相似文献   

4.
Studies were conducted on 35 primates, 12 carnivores, and 2 marsupials to determine their susceptibility to the primate coccidian, Isospora arctopitheci. Patent oocyst infections resulted in 12 of the 14 species of animals investigated. These included 6 genera of New World primates native to Panama: Saguinus geoffroyi, Aotus trivirgatus, Ateles fusciceps, Cebus capucinus, Alouatta villosa, and Saimiri sciureus. In addition 4 families of carnivores (2 domestic and 2 sylvatic) and 1 species of marsupial became infected following experimental exposure. These animals are represented respectively by the following 6 genera and species: Canis familiaris; Felis catus; Nasua nasua, and Potos flavus; Eiria barbara; and Didelphis marsupialis. Four Old World rhesus monkeys, Macaca mulatta, and 1 carnivore, Bassaricyon gabbii, did not become oocyst positive. This unusually large host range makes this isosporan unique among the coccidia that have been investigated to date.  相似文献   

5.
Human chromosome 7 has a complex syntenic origin. It was divided into two segments in both the ancestral primate karyotype and in Platyrrhini. Apparently, a small segment in the ancestral platyrrhine karyotype was associated with HSA5 and the remainder formed a middle‐sized submetacentric. We tested the dynamics of platyrrhine chromosomes by hybridizing the locus specific Willams‐Beuren probe (7q 11.23, 450 kb) to chromosomes of representative species from the three families of the New World monkeys recently proposed by molecular genomics: Cebidae, Callithrix argentata (bare ear marmoset or silvery marmoset, 2n = 44); Pitheciidae, Callicebus cupreus [red titi monkey, or coppery monkey, 2n = 46)] and Atelidae, Alouatta caraya (black and gold howler, 2n = 52). In both the marmoset and the howler monkeys, the signal was found on the small segment of chromosome 7 associated with human chromosome 5, but not in Callicebus cupreus. Instead, the Williams‐Beuren syndrome (WS) signal was found on a C. cupreus chromosome previously reported to be hybridized only by human chromosome 1. The WS probe indicates a small, but complex translocation never described before. Our results point out that fluorescence in situ hybridization (FISH) with locus specific probes and cloned DNA fragments such as bacterial aftificial chromosomes (BACs) provides higher resolution than FISH with whole chromosomes paints. It may be well that the variability seen in the hybridization patterns and revealed by the WS FISH in this report is as a result of a rearrangement ‘hot spot’. The WS region in humans is composed of region‐specific different blocks of complex segmental duplications that probably promote the extraordinary rate of evolutionary dynamics of this region among primate species, and which continues to be reflected today by the predisposition of this region to disease syndromes such as WS. The evolutionary history of this region also suggests that repeat families in this region had their origin in a common ancestor of both Old World and New World monkeys.  相似文献   

6.
Squirrel monkeys are among a diverse group of New World primates that demonstrate unusually high levels of circulating corticosteroids and glucocorticoid receptor (GR) insensitivity. Recent evidence suggests that overexpression of an immunophilin impairs dexamethasone binding to GR in the Bolivian squirrel monkey (Saimiri boliviensis). Here we describe the cloning, expression, and functional characterization of GR from the closely related Guyanese squirrel monkey (S. sciureus). The cloned Guyanese squirrel monkey GR (gsmGR) cDNA closely resembles human GR (hGR) cDNA, and yields a high affinity dexamethasone binding receptor when expressed in COS-1 cells. Transactivation analysis of hGR and gsmGR expressed in CV-1 cells and cultured squirrel monkey kidney (SMK) cells indicates that: (1) SMK cells elaborate a functional high activity GR from human GR cDNA; (2) gsmGR is an order of magnitude less efficient than hGR at transactivation in CV-1 and SMK cells; and (3) maximal transactivation by gsmGR is attenuated in both cell lines. Glucocorticoid resistance in S. sciureus is at least partly attributable to a naturally occurring mutation in the GR gene that results in impaired GR transactivation.  相似文献   

7.
8.
The Platyrrhini, or New World monkeys, are an infraorder of Primates comprised of 16 genera. Molecular phylogenetic analyses have consistently sorted these genera into three groups: the Pitheciidae (e.g., saki and titi monkeys), Atelidae (e.g., spider and howler monkeys), and Cebidae (e.g., night monkeys, squirrel monkeys, and tamarins). No consensus has emerged on the relationships among the three groups or within the Cebidae. Here, approximately 0.8 kb of newly generated intronic DNA sequence data from the X-linked glucose-6-phosphate dehydrogenase (G6PD) locus have been collected from nine New World monkey taxa to examine these relationships. These data are added to 1.3 kb of previously generated G6PD intronic DNA sequence data [Mol. Phylogenet. Evol. 11 (1999) 459]. Using distance and parsimony-based techniques, G6PD sequences provide support for an initial bifurcation between the Pitheciidae and the remaining platyrrhines, linking Atelidae and Cebidae as sister taxa. Bayesian methods provided a conflicting phylogeny with Atelidae as outgroup. Within the Cebidae, a sister relation between Aotus and the Cebus/Saimiri clade is favored by parsimony analysis, but not by other analyses. Potential reasons for the difficulty in resolving family level New World monkey phylogenetics are discussed.  相似文献   

9.
Cytogenetic studies have shown that New World primates are karyologically diverse and highly derived. The genus Callicebus is the best example of this karyological diversity, with diploid numbers ranging from 2n=50 to 2n=16. We report on Callicebus lugens, which has the lowest diploid number (2n=16) yet found in the primate order and represents a striking example of extreme karyotypic shuffling. To better understand the genomic rearrangements that have resulted in this extremely low diploid number, we mapped chromosome homologies between C. lugens and humans by in situ hybridization. The total number of hybridization signals was 42, excluding the Y chromosome, with a total of 34 syntenic associations not found in humans. This species has one of the most derived karyotypes among the Platyrrhini. Fusion has been the predominant mode of karyological evolution, although fissions and inversions have also transformed the C. lugens karyotype. Remarkably in such a highly rearranged karyotype, the synteny of 11 human chromosomes (4, 5, 9, 12, 13, 14, 17, 18, 20, 21, and X) was maintained intact, even if most of these human-homologous gene clusters were translocated. Other human syntenies, such as homologues to human chromosomes 10 and 16, were highly fragmented. Comparisons of the C. lugens-human homology map with those of other New World primates have not yet helped establish a phylogenic arrangement between congeneric species or link Callicebus with any other genus.Communicated by S. Henikoff  相似文献   

10.

Background

The taxonomic and phylogenetic relationships of New World monkeys (Platyrrhini) are difficult to distinguish on the basis of morphology and because diagnostic fossils are rare. Recently, molecular data have led to a radical revision of the traditional taxonomy and phylogeny of these primates. Here we examine new hypotheses of platyrrhine evolutionary relationships by reciprocal chromosome painting after chromosome flow sorting of species belonging to four genera of platyrrhines included in the Cebidae family: Callithrix argentata (silvered-marmoset), Cebuella pygmaea (pygmy marmoset), Callimico goeldii (Goeldi's marmoset) and Saimiri sciureus (squirrel monkey). This is the first report of reciprocal painting in marmosets.

Results

The paints made from chromosome flow sorting of the four platyrrhine monkeys provided from 42 to 45 hybridization signals on human metaphases. The reciprocal painting of monkey probes on human chromosomes revealed that 21 breakpoints are common to all four studied species. There are only three additional breakpoints. A breakpoint on human chromosome 13 was found in Callithrix argentata, Cebuella pygmaea and Callimico goeldii, but not in Saimiri sciureus. There are two additional breakpoints on human chromosome 5: one is specific to squirrel monkeys, and the other to Goeldi's marmoset.

Conclusion

The reciprocal painting results support the molecular genomic assemblage of Cebidae. We demonstrated that the five chromosome associations previously hypothesized to phylogenetically link tamarins and marmosets are homologous and represent derived chromosome rearrangements. Four of these derived homologous associations tightly nest Callimico goeldii with marmosets. One derived association 2/15 may place squirrel monkeys within the Cebidae assemblage. An apparently common breakpoint on chromosome 5q33 found in both Saimiri and Aotus nancymae could be evidence of a phylogenetic link between these species. Comparison with previous reports shows that many syntenic associations found in platyrrhines have the same breakpoints and are homologous, derived rearrangements showing that the New World monkeys are a closely related group of species. Our data support the hypothesis that the ancestral karyotype of the Platyrrhini has a diploid number of 2n = 54 and is almost identical to that found today in capuchin monkeys; congruent with a basal position of the Cebidae among platyrrhine families.
  相似文献   

11.
The karyotypes of Cebus capucinus and C. nigrivittatus (Primates, Platyrrhini) are compared after applying several banding techniques. The chromosomes have abundant intercallary heterochromatin which can be stained by R-, T- and C-band techniques and which are late replicating. The X chromosome resembles that of man and of numerous primates. However, the late replicating pattern of the X in female lymphocytes resembles that of the late replicating X of human fibroblasts rather than of human lymphocytes. Banding patterns of certain chromosomes appear analogous in Cebus and Cattarhini, including Man.  相似文献   

12.
ZOO-FISH (Fluorescent "in vitro" hybridization) was used to establish the chromosomal homology between humans (HSA) and Cebus nigrivitatus (CNI) and Ateles belzebuth hybridus (ABH). These two species belong to different New World monkey families (Cebidae and Atelidae, respectively) which differ greatly in chromosome number and in chromosome morphology. The molecular results were followed by a detailed banding analysis. The ancestral karyotype of Cebus was then determined by a comparison of in situ hybridization results, as well as chromosomal morphology and banding in other Platyrrhini species. The karyotypes of the four species belonging to the genus Cebus differ from each other by three inversions and one fusion as well as in the location and amounts of heterochromatin. Results obtained by ZOO-FISH in ABH are in general agreement with previous gene-mapping and in situ hybridization data in Ateles, which show that spider monkeys have highly derived genomes. The chromosomal rearrangements detected between HSA and ABH on a band-to-band basis were 27 fusions/fissions, 12 centromeric shifts, and six pericentric inversions. The ancestral karyotype of Cebus was then compared with that of Ateles. The rearrangements detected were 20 fusions/fissions, nine centromeric shifts, and five inversions. Atelidae species are linked by a fragmentation of chromosome 4 into three segments forming an association of 4/15, while Ateles species are linked by 13 derived associations. The results also helped clarify the content of the ancestral platyrrhine karyotype and the mode of chromosomal evolution in these primates. In particular, associations 2/16 and 5/7 should be included in the ancestral karyotype of New World monkeys.  相似文献   

13.
Plasticity of human chromosome 3 during primate evolution   总被引:5,自引:0,他引:5  
Comparative mapping of more than 100 region-specific clones from human chromosome 3 in Bornean and Sumatran orangutans, siamang gibbon, and Old and New World monkeys allowed us to reconstruct ancestral simian and hominoid chromosomes. A single paracentric inversion derives chromosome 1 of the Old World monkey Presbytis cristata from the simian ancestor. In the New World monkey Callithrix geoffroyi and siamang, the ancestor diverged on multiple chromosomes, through utilizing different breakpoints. One shared and two independent inversions derive Bornean orangutan 2 and human 3, implying that neither Bornean orangutans nor humans have conserved the ancestral chromosome form. The inversions, fissions, and translocations in the five species analyzed involve at least 14 different evolutionary breakpoints along the entire length of human 3; however, particular regions appear to be more susceptible to chromosome reshuffling. The ancestral pericentromeric region has promoted both large-scale and micro-rearrangements. Small segments homologous to human 3q11.2 and 3q21.2 were repositioned intrachromosomally independent of the surrounding markers in the orangutan lineage. Breakage and rearrangement of the human 3p12.3 region were associated with extensive intragenomic duplications at multiple orangutan and gibbon subtelomeric sites. We propose that new chromosomes and genomes arise through large-scale rearrangements of evolutionarily conserved genomic building blocks and additional duplication, amplification, and/or repositioning of inherently unstable smaller DNA segments contained within them.  相似文献   

14.
Chromosome rearrangements are considered as "rare genomic changes" and can provide useful markers and even landmarks for reconstructing phylogenies complementary to DNA sequence data and bio-morphological comparisons. Here, we applied multi-directional chromosome painting to reconstruct the chromosome phylogeny and evolutionary relationships among the New World monkey (Platyrrhini) species Callithrix argentata, Cebuella pygmaea, Saguinus oedipus, Callithrix jacchus and Callimico goeldii. The results clarified several aspects of New Wold monkey phylogeny. In particular the phylogenetic position of C. goeldii was elucidated, which has been controversially discussed and variously classified in the family Callitrichidae, in the family Cebidae or in its own family Callimiconidae. Comparative genome maps were established by multi-color fluorescence in situ hybridization (FISH) with human, S. oedipus and Lagothrix lagothricha chromosome- specific DNA probes. From these data we reconstructed the putative ancestral karyotype of all Callitrichidae. Various derived chromosomal syntenies are shared by all five species and cytogenetically define Callitrichidae - including Callimico goeldii -- as a distinctive group within the Platyrrhini. C. pygmaea and C. argentata share identical chromosomal syntenies from which S. oedipus and C. jacchus differ by single independent translocations. A common derived chromosomal change links Callimico with the marmosets to the exclusion of the tamarins, however, it has further diverged from an ancestral marmoset karyotype by at least four apomorphic rearrangements. Saimiri sciureus, representing the Cebinae, exclusively shares a derived syntenic association with all Callithrichidae, defining the genus Saimiri as a sister group.  相似文献   

15.
Squirrel monkeys are the most commonly used New World primates in biomedical research, but in vitro studies are restricted by the limited number of cell lines available from this species. We report here the development and characterization of a continuous, kidney epithelial cell line (SQMK-FP cells) derived from a newborn squirrel monkey. Karyotype was consistent with Bolivian squirrel monkey (submetacentric chromosome pair 15 and acrocentric chromosome pair 16). All cells examined were hyperdiploid with chromosome numbers ranging from 52 to 57. Ultrastructural analysis of SQMK-FP cells revealed the presence of cell junctions with radiating filaments, indicating desmosomes and numerous surface projections containing longitudinally oriented filaments typical of tubular epithelium. Biochemically, SQMK-FP cells exhibit glucocorticoid resistance typical of the squirrel monkey. Glucocorticoid receptor (GR) binding is low in SQMK-FP cells because of high expression of the FK506-binding immunophilin FKBP51 that inhibits GR binding. SQMK-FP cells constitute a tubular epithelial cell line that has biochemical properties characteristic of squirrel monkeys and represents an alternate cell model to B-lymphoblast SML cells to study the biology of the squirrel monkey in vitro.  相似文献   

16.
Pepsinogens A and C, and prochymosin were purified from four species of adult New World monkeys, namely, common marmoset (Callithrix jacchus), cotton-top tamarin (Saguinus oedipus), squirrel monkey (Saimiri sciureus), and capuchin monkey (Cebus apella). The occurrence of prochymosin was quite unique since this zymogen is known to be neonate-specific and, in primates, it has been thought that the prochymosin gene is not functional. No multiple form has been detected for any type of pepsinogen except that two pepsinogen-A isozymogens were identified in capuchin monkey. Pepsins A and C, and chymosin hydrolyzed hemoglobin optimally at pH 2-2.5 with maximal activities of about 20, 30, and 15 units/mg protein. Pepsins A were inhibited in the presence of an equimolar amount of pepstatin, and chymosins and pepsins C needed 5- and 100-fold molar excesses of pepstatin for complete inhibition, respectively. Hydrolysis of insulin B chain occurred first at the Leu15-Tyr16 bond in the case of pepsins A and chymosins, and at either the Leu15-Tyr16 or Tyr16-Leu17 bond in the case of pepsins C. The presence of different types of pepsins might be advantageous to New World monkeys for the efficient digestion of a variety of foods. Molecular cloning of cDNAs for three types of pepsinogens from common marmoset was achieved. A phylogenetic tree of pepsinogens based on the nucleotide sequence showed that common marmoset diverged from the ancestral primate about 40 million years ago.  相似文献   

17.
The presence of nucleolar organizer regions (NORs) and C-band polymorphisms has been examined in three subspecies of squirrel monkeys, Saimiri sciureus sciureus, S. boliviensis boliviensis, and S. boliviensis peruviensis. Pericentric inversions in chromosomes 15 and 16 were also examined in the three groups. Chromosome 15 was acrocentric in S. s. sciureus and submetacentric in S.b. boliviensis and S.b. peruviensis. Chromosome 16 was acrocentric in S.s. sciureus and S.b. boliviensis while being submetacentric in S.b. peruviensis. There was a significant difference in the distribution of the C-band polymorphisms on chromosomes 5 and 14 in the three groups, as determined by Chi-square analysis, while no difference was observed in the distribution of the NOR polymorphism on chromosome 2. The NOR polymorphism and the interstitial C-band polymorphism of chromosome 14 were found in all three groups; the C-band polymorphism of chromosome 5 was found only in S.s. sciureus. Twelve pedigreed families were examined. Pedigree analyses were consistent with codominant inheritance of each polymorphism. The results of these cytogenetic studies in squirrel monkeys are pertinent to genetic management and research protocols.  相似文献   

18.
Yaping Qian  Li Jin  Bing Su 《Génome》2004,47(2):239-245
The large-insert genomic DNA library is a critical resource for genome-wide genetic dissection of target species. We constructed a high-redundancy bacterial artificial chromosome (BAC) library of a New World monkey species, the black-handed spider monkey (Ateles geoffroyi). A total of 193 152 BAC clones were generated in this library. The average insert size of the BAC clones was estimated to be 184.6 kb with the small inserts (50-100 kb) accounting for less than 3% and the non-recombinant clones only 1.2%. Assuming a similar genome size with humans, the spider monkey BAC library has about 11x genome coverage. In addition, by end sequencing of randomly selected BAC clones, we generated 367 sequence tags for the library. When blasted against human genome, they showed a good correlation between the number of hit clones and the size of the chromosomes, an indication of unbiased chromosomal distribution of the library. This black-handed spider monkey BAC library would serve as a valuable resource in comparative genomic study and large-scale genome sequencing of nonhuman primates.  相似文献   

19.
Unlike other primates, the South American titi monkey,Callicebus moloch, does not exhibit sex-differences in the size or shape of the canine teeth, or in the extent of loss or fracture from excessive use. Males and females have similar canines as well in each of six subspecies ofC. moloch. The lack of dimorphism is related to the low level of aggression in this species.  相似文献   

20.
In order to study the intra- and interspecific variability of the 14/15 association in Platyrrhini, we analyzed 15 species from 13 genera, including species that had not been described yet. The DNA libraries of human chromosomes 14 and 15 were hybridized to metaphases of Alouatta guariba clamitans, A. caraya, A. sara, Ateles paniscus chamek, Lagothrix lagothricha, Brachyteles arachnoides, Saguinus midas midas, Leontopithecus chrysomelas, Callimico goeldii, Callithrix sp., Cebus apella, Aotus nigriceps, Cacajao melanocephalus,Chiropotes satanas and Callicebus caligatus. The 14/15 hybridization pattern was present in 13 species, but not in Alouatta sara that showed a 14/15/14 pattern and Aotus nigriceps that showed a 15/14/15/14 pattern. In the majority of the species, the HSA 14 homologue retained synteny for the entire chromosome, whereas the HSA 15 homologue displayed fragmented segments. Within primates, the New World monkeys represent the taxon with the highest variability in chromosome number (2n = 16 to 62). The presence of the HSA 14/15 association in all species and subspecies studied herein confirms that this association is the ancestral condition for platyrrhines and that this association has been retained in most platyrrhines, despite the occurrence of extensive inter- and intrachromosomal rearrangements in this infraorder of Primates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号