首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Background and AimsSeveral biogeographical models have been proposed to explain the colonization and diversification patterns of Macaronesian lineages. In this study, we calculated the diversification rates and explored what model best explains the current distribution of the 15 species endemic to the Canary Islands belonging to Helianthemum sect. Helianthemum (Cistaceae).MethodsWe performed robust phylogenetic reconstructions based on genotyping-by-sequencing data and analysed the timing, biogeographical history and ecological niche conservatism of this endemic Canarian clade.Key ResultsOur phylogenetic analyses provided strong support for the monophyly of this clade, and retrieved five lineages not currently restricted to a single island. The pristine colonization event took place in the Pleistocene (~1.82 Ma) via dispersal to Tenerife by a Mediterranean ancestor.ConclusionsThe rapid and abundant diversification (0.75–1.85 species per million years) undergone by this Canarian clade seems the result of complex inter-island dispersal events followed by allopatric speciation driven mostly by niche conservatism, i.e. inter-island dispersal towards niches featuring similar environmental conditions. Nevertheless, significant instances of ecological niche shifts have also been observed in some lineages, making an important contribution to the overall diversification history of this clade.  相似文献   

2.
Subtropical islands are often viewed as refuges where Quaternary climatic shifts driving global episodes of extinction were buffered. Island biodiversity, however, may have been impacted by climatic fluctuations at local scales, particularly in spatially heterogeneous island systems. In this study, we generated a conceptual framework for predicting the potential impact of Pleistocene extinctions on the biogeographical pattern of the Canarian spermatophyte flora, with a focus on the easternmost Canarian islands (ECI). Then, we performed an exhaustive bibliographic revision (270 studies) to examine whether taxonomic, phylogenetic and phylogeographical data support our predictions. Although molecular information is limited for many lineages, the available data suggest that the majority of extant ECI plant taxa may be the result of relatively recent (<1 Ma) dispersal from surrounding insular and mainland areas. Different lines of evidence are compatible with the idea of a Pleistocene period of frequent lineage extirpation on ECI. Extinction may thus have provided new ecological opportunities for recent (re)colonization, with some cases of recent establishment mediated by facilitation. Considering background extinction on ECI, we describe five general patterns of colonization for Canarian plant lineages. In addition to factors related to island ontogeny and long‐distance dispersal, we suggest that Pleistocene extinctions may have significantly contributed to extant biogeographical patterns in the Canarian archipelago, such as the biased distribution ranges of island plants and the low endemic richness on ECI. This new scenario provides testable hypotheses for future studies dealing with the phylogeography, taxonomy and conservation of terrestrial biodiversity on the Canarian islands, and possibly, on other near‐shore islands.  相似文献   

3.
Part of the mitochondrial Cytochrome Oxidase I gene was sequenced for seven species of Gonepteryx (Pieridac) butterflies. Four of the species are island endemics inhabiting the Canary Island archipelago and Madeira. The remaining three are European and African conspecifics. Sequence data were analysed phylogenetically by maximum parsimony and maximum likelihood methods. The resulting trees were used to deduce Canarian species' ancestry, sequential inter-island colonization and systematics. They suggest African ancestry for the Canary Island taxa and a colonization pattern, within the archipelago, compatible with the geological ages of the islands and other Canarian fauna: a colonization sequence from Africa to Tenerife and Gomera, followed by Tenerife to La Palma. The molecular phylogeny indicated that there are three Canarian endemics, G. cleobule, G. palmae and G. eversi from Tenerife, La Palma and Gomera, respectively.  相似文献   

4.
The Gonosperminae (Asteraceae) are composed of three genera endemic to the Canary Islands (GONOSPERMUM: Less., and LUGOA: DC.) and southern Africa (INULANTHERA: K?llersj?), and they are considered an example of a floristic link between these two regions. Phylogenetic analyses of ITS sequences reveal that the Canarian genera are not sister to INULANTHERA: and do not support the monophyly of the Gonosperminae. These results, coupled with previous phylogenetic studies of other groups, suggest that many of the putative biogeographic links between Macaronesia and southeast Africa need to be evaluated by rigorous phylogenetic analyses. INULANTHERA: forms part of the basal southern African radiation of the Anthemideae, and therefore it is closely related to other taxa from this region. Maximum likelihood and weighted parsimony analyses support a monophyletic group in the Canary Islands, that includes LUGOA:, Gonospermum, and three TANACETUM: species endemic to the island of Gran Canaria. Bootstrap support for the monophyly of this Canarian group is weak, and it collapses in the strict consensus tree based on unweighted parsimony. LUGOA: is nested within Gonospermum, and both interisland colonization among the western islands of La Gomera, El Hierro, La Palma and Tenerife, and radiation on the central island of Gran Canaria have been the major patterns of species diversification for these Canarian endemics.  相似文献   

5.
Abstract.  We investigated the phylogenetic patterns, evolutionary processes, and their taxonomic implications, of two closely related shield-backed katydid genera endemic to the Macaronesian archipelagos: the monotypic Psalmatophanes Chopard, 1938 endemic to Madeira and Calliphona Krauss, 1892, which includes three species restricted to the Canary Islands. Two main hypotheses have been proposed to explain the origin and colonization pathways of these two genera: a single origin with subsequent sequential colonization of the islands, or three independent colonization waves from continental Africa. We used DNA sequence information from the mitochondrial genes cox1, tRNAleucine, rrnL and nad1 to infer phylogenetic relationships among Psalmatophanes and Calliphona species. Our results provide support for the independent colonization of Madeira and the Canary Islands, and suggest that Psalmatophanes is actually more closely related to the continental genus Tettigonia than to the Canarian representatives. Deep genetic divergence among Canarian species provides further support for the assignment of the Canarian species into two subgenera. Tree topology along with Bayesian-based estimates of lineage age suggest a pattern of colonization from Tenerife to La Palma, and from Tenerife to Gran Canaria with subsequent dispersal to La Gomera. We report the first collection of a Calliphona specimen in the island of El Hierro, which molecular data suggest is a recent immigrant from La Gomera. We hypothesize that the patterns of distribution and genetic divergence exhibited by Calliphona in the Canary Islands are compatible with a taxon cycle process. Our results have further implications for the higher level phylogeny of the subfamily Tettigoniinae and suggest that some of the tribes as currently delimited may not correspond to natural groups.  相似文献   

6.
The Canary Islands have proven to be an interesting archipelago for the phylogeographic study of colonization and diversification with a number of recent studies reporting evolutionary patterns and processes across a diversity of floral and faunal groups. The Canary Islands differ from the Hawaiian and Galapagos Islands by their close proximity to a continental land mass, being 110 km from the northwestern coast of Africa. This close proximity to a continent obviously increases the potential for colonization, and it can be expected that at the level of the genus some groups will be the result of more than one colonization. In this study we investigate the phylogeography of a group of carabid beetles from the genus Calathus on the Canary Islands and Madeira, located 450 km to the north of the Canaries and 650 km from the continent. The Calathus are well represented on these islands with a total of 29 species, and on the continent there are many more. Mitochondrial cytochrome oxidase I and II sequence data has been used to identify the phylogenetic relationships among the island species and a selection of continental species. Specific hypotheses of monophyly for the island fauna are tested with parametric bootstrap analysis. Data suggest that the Canary Islands have been colonized three times and Madeira twice. Four of these colonizations are of continental origin, but it is possible that one Madeiran clade may be monophyletic with a Canarian clade. The Calathus faunas of Tenerife and Madeira are recent in origin, similar to patterns previously reported for La Gomera, El Hierro, and Gran Canaria.  相似文献   

7.
Analysis of sequence data from the internal transcribed spacers (ITS) and 5.8S region of nuclear ribosomal DNA show that Canarian and Madeiran brooms (Genisteae) of the genera Teline, Adenocarpus, and Genista are related to Mediterranean species and not to species from adjacent parts of Morocco. Each separate colonization of the islands has resulted in contrasting patterns of adaptation and radiation. The genus Teline is polyphyletic, with both groups (the "T. monspessulana group" and the "T. linifolia group") separately nested within Genista. Genista benehoavensis (La Palma) and G. tenera (Madeira) form, with G. tinctoria of Europe, a single clade characterized by vestigially arillate seeds. The Canarian species of Adenocarpus have almost identical sequence to the Mediterranean A. complicatus and are likely to be the result of island speciation after a very recent colonization event. This Canarian/Mediterranean A. complicatus group is sister to the afrotropical montane A. mannii which is probably derived from an earlier colonization from the Mediterranean, possibly via the Red Sea hills. The independent colonization and subsequent radiation of the two Teline groups in the Canary Islands make an interesting comparison: the phylogenies both show geographical structuring, each with a central and western island division of taxa. Within the "T. monspessulana group" there is some evidence that both continental and Madeiran taxa could be derived from the Canary Islands, although it is likely that near contemporaneous speciation occurred via rapid colonization of the mainland and islands. The finding of two groups within Teline also has implications for patterns of hybridization in those parts of the world where Teline species are invasive; in California members of the T. monspessulana group hybridize readily, but no hybrids have been recorded with T. linifolia which has been introduced in the same areas.  相似文献   

8.
The mitochondrial DNA (mtDNA) of individuals from 79 colonies of Apis mellifera from five Canary Islands was studied using the Dra I test based on the restriction of PCR products of the tRNAleu–COII intergenic region. Five haplotypes of the African (A) lineage and one of the west European (C) lineage were found. The haplotypes A14 and A15 are described for the first time. These haplotypes have a new P sequence named P1. The wide distribution and high frequency of haplotype A15 suggest that it is characteristic of the Canarian Archipelago. Sources of haplotype variability of honeybee mtDNA in the Canary Islands (waves of colonization from Africa, queen importations, habitat diversification) are discussed.  相似文献   

9.
The presence of diverse and species-rich plant lineages on oceanic islands is most often associated with adaptive radiation. Here we discuss the possible adaptive significance of some of the most prominent traits in island plants, including woodiness, monocarpy and sexual dimorphisms. Indirect evidence that such traits have been acquired through convergent evolution on islands comes from molecular phylogenies; however, direct evidence of their selective value rarely is obtained. The importance of hybridization in the evolution of island plants is also considered as part of a more general discussion of the mechanisms governing radiations on islands. Most examples are from the Hawaiian and Canarian floras, and in particular from studies on the morphological, ecological and molecular diversification of the genus Aeonium, the largest plant radiation of the Canarian Islands.  相似文献   

10.
Abstract.— The genus Brachyderes Schönherr (Coleoptera: Curculionidae) is represented by the species B. rugatus Wollaston on the Canary Islands, with one subspecies on each of the islands of Gran Canaria, Tenerife, La Palma, and El Hierro. These four subspecies are associated with the endemic pine tree Pinus canariensis , and their distributions are broadly coincident. Eighty-eight individual Canarian Brachyderes , sampled from across the distributions of each subspecies, have been sequenced for 570 bp of the mitochondrial DNA (mtDNA) cytochrome oxidase II gene (COII). No mitotypes are shared among islands. Both maximum-likelihood and distance-based phylogenetic analyses have shown that: Tenerife is composed of a single monophyletic clade of mitotypes, El Hierro is composed of a single monophyletic clade occurring within a larger clade comprising all the La Palma mitotypes, and the mitotypes of these three islands form a monophyletic group distinct from Gran Canaria. New methods for estimating divergence times without the assumption of rate constancy have been used to reconstruct the direction and approximate timing of colonizations among the islands. Colonization has occurred from older to progressionally younger islands, and these colonizations are estimated to have occurred less than 2.6 million years ago, although the timing of the initial colonization of the archipelago is not discernable. New methods for the estimation of diversification rates that use branching times as the analyzed variable have been applied to each island fauna. Hypothesized effects of different levels of recent volcanism among islands were not apparent. All islands exhibit a gradually decreasing rate of genetic diversification that is marked by periodic sudden changes in rate.  相似文献   

11.
An unusual geological setting and a high level of endemism makes the Philippine islands of great interest to biogeography. These islands lie adjacent to the continental (Sunda) shelf, yet the majority of the islands have never been directly attached to the mainland. Existing hypotheses of colonization and diversification processes have been tested across multiple taxa, but only in ahistorical contexts. We present explicit phylogenetic predictions based on these hypotheses, and then test them using new molecular datasets for four Philippine birds. Two proposed colonization routes to the northern Philippines (from mainland Asia and Palawan) are difficult to differentiate from each other, except on the basis of outgroup, as are the two routes from the south (Sulu archipelago and Sulawesi). We find unique colonization and diversification patterns for each taxon. These results contrast with expectations from Pleistocene geography, with Luzon and Mindoro indistinguishable genetically, and Negros and Panay are often nonsister taxa. Combining these data with a literature search for studies addressing these patterns, Philippine organisms shows some evidence for each proposed colonization route but the greatest support is for the two routes from Borneo. Many taxa exhibit multiple colonization events using several of these routes, contrasting with past assumptions of single colonization events. Island‐by‐island differentiation within the Philippines follows, with patterns reflecting colonization patterns rather than Pleistocene geography, particularly for highland species. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 620–639.  相似文献   

12.
The vangas of Madagascar exhibit extreme diversity in morphology and ecology. Recent studies have shown that several other Malagasy species also are part of this endemic radiation, even as the monophyly of the clade remains in question. Using DNA sequences from 13 genes and representatives of all 15 vanga genera, we find strong support for the monophyly of the Malagasy vangids and their inclusion in a family along with six aberrant genera of shrike-like corvoids distributed in Asia and Africa. Biogeographic reconstructions of these lineages include both Asia and Africa as possible dispersal routes to Madagascar. To study patterns of speciation through time, we introduce a method that can accommodate phylogenetically non-random patterns of incomplete taxon sampling in diversification studies. We demonstrate that speciation rates in vangas decreased dramatically through time following the colonization of Madagascar. Foraging strategies of these birds show remarkable congruence with phylogenetic relationships, indicating that adaptations to feeding specializations played a role in the diversification of these birds. Vangas fit the model of an 'adaptive radiation' in that they show an explosive burst of speciation soon after colonization, increased diversification into novel niches and extraordinary ecomorphological diversity.  相似文献   

13.
Species-level phylogenies derived from DNA sequence data provide a tool for estimating diversification rates and how these rates change over time, but to date there have been few empirical studies, particularly on insect groups. We use a densely sampled phylogenetic tree based on mitochondrial DNA to investigate diversification rates in the North American tiger beetles (genus Cicindela). Using node ages estimated from sequence data and calibrated by biogeographical evidence, we estimate an average per-lineage diversification rate of at least 0.22 +/- 0.08 species/Myr over the time interval since the most recent colonization that led to a radiation within the continent. In addition, we find evidence for a weak, recent increase in the net diversification rate. This is more consistent with a late Pleistocene increase in the speciation rate than with a constant rate of background extinction, but the results are sensitive to the dating method and taxon sampling. We discuss practical limitations to phylogenetic studies of diversification rates.  相似文献   

14.
The Canary Islands have been a focus for phylogeographic studies on the colonization and diversification of endemic angiosperm taxa. Based on phylogeographic patterns, both inter island colonization and adaptive radiation seem to be the driving forces for speciation in most taxa. Here, we investigated the diversification of Micromeria on the Canary Islands and Madeira at the inter- and infraspecific level using inter simple sequence repeat PCR (ISSR), the trnK-Intron and the trnT-trnL-spacer of the cpDNA and a low copy nuclear gene. The genus Micromeria (Lamiaceae, Mentheae) includes 16 species and 13 subspecies in Macaronesia. Most taxa are restricted endemics, or grow in similar ecological conditions on two islands. An exception is M. varia, a widespread species inhabits the lowland scrub on each island of the archipelago and could represent an ancestral taxon from which radiation started on the different islands. Our analyses support a split between the "eastern" islands Fuerteventura, Lanzarote and Gran Canaria and the "western" islands Tenerife, La Palma and El Hierro. The colonization of Madeira started from the western Islands, probably from Tenerife as indicated by the sequence data. We identified two lineages of Micromeria on Gomera but all other islands appear to be colonized by a single lineage, supporting adaptive radiation as the major evolutionary force for the diversification of Micromeria. We also discuss the possible role of gene flow between lineages of different Micromeria species on one island after multiple colonizations.  相似文献   

15.
Diversification rates of insular oceanic lineages have been historically considered to be higher than those of mainland counterparts. In order to test this hypothesis in a group of Canarian endemics (Cistus), we estimated phylogeny and conducted both network analyses of haplotypes and molecular clock estimates using plastid DNA sequences of the trnS?trnG and the trnK?matK. Net differentiation rates in the Canarian purple-flowered lineage parallel those of the mainland (Mediterranean) purple-flowered sister group, as revealed by a similar number of species (five vs. three), haplotypes (seven vs. eight) and haplotype clades (four vs. four). Splitting dates in the Canarian (0.33±0.14/0.28±0.16 Ma) and Mediterranean (0.66±0.18/0.38±0.19 Ma) lineages reveal concordance in tempo of diversification. All these results are interpreted as evidence of two synchronous evolutionary histories given that Cistus ancestors had to cope with factors promoting differentiation in two hotspots of plant diversity: the Macaronesian and Mediterranean floristic regions. Analysis of Canarian populations suggests that a geographical rather than ecological differentiation was primarily responsible for early stages of a non-adaptive radiation of the Canarian lineage. Differentiation patterns of mainland populations appear to be more complex.  相似文献   

16.

Background

Population genetic theory holds that oceanic island populations are expected to have lower levels of genetic variation than their mainland counterparts, due to founder effect after island colonization from the continent. Cistus monspeliensis (Cistaceae) is distributed in both the Canary Islands and the Mediterranean region. Numerous phylogenetic results obtained in the last years allow performing further phylogeographic analyses in Cistus.

Methodology/Principal Findings

We analyzed sequences from multiple plastid DNA regions in 47 populations of Cistus monspeliensis from the Canary Islands (21 populations) and the Mediterranean basin (26 populations). The time-calibrated phylogeny and phylogeographic analyses yielded the following results: (1) a single, ancestral haplotype is distributed across the Mediterranean, whereas 10 haplotypes in the Canary Islands; (2) four haplotype lineages are present in the Canarian Islands; (3) multiple colonization events across the archipelago are inferred; (4) the earliest split of intraspecific lineages occurred in the Early to Middle Pleistocene (<930,000 years BP).

Conclusions/Significance

The contrasting pattern of cpDNA variation is best explained by genetic bottlenecks in the Mediterranean during Quaternary glaciations, while the Canarian archipelago acted as a refugium of high levels of genetic diversity. Active colonization across the Canarian islands is supported not only by the distribution of C. monspeliensis in five of the seven islands, but also by our phylogeographic reconstruction in which unrelated haplotypes are present on the same island. Widespread distribution of thermophilous habitats on every island, as those found throughout the Mediterranean, has likely been responsible for the successful colonization of C. monspeliensis, despite the absence of a long-distance dispersal mechanism. This is the first example of a plant species with higher genetic variation among oceanic island populations than among those of the continent.  相似文献   

17.
This study compares the phylogenetic structure in the Canary Islands and Hawaii by means of the distributions of the species number for plant families (Taxonomic evenness) and lineages (Phylogenetic evenness) across archipelagos and across habitats in both archipelagos using the Gini coefficient. We then investigate phylogenies to identify particular habitats contributing to such differences using Taxonomic distinctness (AvTD) and its variation (VarTD).Our results show that the distribution of species number among Hawaiian lineages is much more uneven than the Canary Islands. In contrast, Hawaii produces a more even distribution of species number by family than the Canary Islands. This may be due to the Hawaiian Flora being derived from considerably fewer colonists than the Canarian Flora as a result of its much greater degree of isolation. At the same time, Hawaii is represented by the same number of families as the Canary Islands. This may stem from Hawaii's flora being derived from a greater range of source areas despite its isolation. Finally, there is much more diversification spread across a larger number of lineages in Hawaii. The higher degree of Hawaiian diversification may be due to a greater range of habitats, more diverse and phylogenetically distinct floristic sources, and low initial species diversity resulting from extreme isolation.Two Canarian habitats (Rock communities and Thermophilous habitats) and one Hawaiian habitat (Wet communities) contribute to the differences in phylogenetic structure between the two archipelagos. These habitats exhibit disproportionate levels of unevenness and may represent centres of diversification. We propose a combination of two habitat properties, high receptivity and low stability, to explain these results.  相似文献   

18.
Mitochondrial DNA sequence data were obtained for eight species of flightless Galapaganus endemic weevils and one winged close relative in order to study their colonization history and modes of diversification in the Galápagos Archipelago. Contrary to most other insular radiations, the phylogeny estimates we recovered for Galapaganus do not follow the progression rule of island biogeography. The penalized likelihood age estimates of colonization of the archipelago exceed the age of the emerged islands and underscore the potential role of now sunken seamounts for the early evolution of Galapaganus . The phylogeny proposes one intra-island origin for Galapaganus endemics, but monophyly tests suggest a larger contribution of in-situ speciation on older islands. Generalist habitat preferences were reconstructed as ancestral while shifts to highland habitats were reconstructed as having evolved independently on different islands. Magnitudes and patterns of diversification rate were found to differ between older and younger islands. Our analyses reveal that the colonization sequence of islands and timing of colonization of Galapaganus could be linked with the geological and volcanic history of the islands in a rather complex scenario. Even though most islands appear to have been colonized soon after their emergence, there are notable deviations from the pattern of sequential colonization expected under the progression rule when considering only the extant emerged islands. Patterns of diversification rate variation on older and younger islands correspond to the volcanic activity or remnants of such activity, while the pattern of independent evolution of restricted habitat preferences in different islands suggests that habitat shifts could also have contributed to species diversity in Galapaganus .  相似文献   

19.
To clarify the effect of niche conservatism on evolutionary history, we focused on freshwater snails, which have different ecological and phylogenetic properties from previously tested taxa. We conducted a phylogenetic analysis using 750 lymnaeid individuals from 357 sites of eleven Radix species. Then, we estimated the ancestral distribution using the geographic coordinates and colonization routes. In addition, a statistical test of the colonization distances in the latitudinal and longitudinal directions was performed. We also conducted ecological niche modeling for two widely distributed species using climatic data. Ancestral geographic reconstruction estimated the origin of the genus to be around the Indian subcontinental region and showed that latitudinal immigration distances were shorter than longitudinal immigration distances in the diversification process. Ecological niche models suggested that the current distribution was restricted by climate, with annual mean temperature and precipitation of the driest month as particularly strong factors. Niche conservatism to the climate can affect the diversification of freshwater snails.  相似文献   

20.
A large number of repeats of a satellite DNA (stDNA) family have been cloned and sequenced from species and populations of the genus Pimelia (Tenebrionidae, Coleoptera). The beetles were collected in the Canary Islands, Morocco, the Iberian Peninsula, and the Balearic Islands in order to analyze the evolutionary forces and processes acting on abundant stDNAs conserved at the genus level. This repetitive family is composed of an abundant A-T-rich stDNA, with basic units of 357 bp. All the sequences obtained showed similarity to the 22 repeat units of the PIM357 stDNA family described previously for six Iberian Pimelia species (Pons et al. 1997 ). An analysis based on similarity shows the presence of three different groups of sequences clearly in accordance with their geographical origin. One is composed of satellite sequences from Iberian and Balearic species, a second group from the Moroccan taxa, whereas the third one is from the Pimelia species endemic to the Canary Islands. The latter group shows higher nucleotide diversities for their stDNA sequences and a lack of relationship between transition stages to fixation and sequence divergence. Phylogeographic data of Canarian Pimelia show that the PIM357 stDNA family has persisted for more than 8 Myr and could probably be traced to the origin of the lineage. The data suggest that distinct demographic and phylogenetic patterns related to the colonization of the volcanic Canarian island chain account for particular evolutionary dynamics of the repeat DNA family in this group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号