首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The conjugation of the protein transduction domain (PTD) from the HIV-1 Tat protein to shell cross-linked (SCK) nanoparticles is a method to facilitate cell surface binding and transduction. In the previous report, the preparation, derivatization, and characterization of peptide-functionalized SCK nanoparticles were reported in detail. Following assembly, the constructs were evaluated in vitro and in vivo to obtain a preliminary biocompatibility assessment. The effects of SCK exposure on cell viability were evaluated using a metabolic 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) and a fluorescent apoptosis assay. Furthermore, stages of apoptosis were quantified by flow cytometry. Although higher levels of peptide functionalization resulted in decreased metabolic function as measured by MTT assay, significant apoptosis was not observed below 500 mg/L for all the samples. To evaluate the potential immunogenic response of the peptide-derivatized constructs, a real-time polymerase chain reaction (RT-PCR) system that allows for the in vitro analysis and quantification of the cellular inflammatory responses tumor necrosis factor alpha (TNF-alpha) and interleukin-1 beta (IL1-beta) was utilized. The inflammatory response to the peptide-functionalized SCK nanoparticles as measured by RT-PCR show statistically significant increases in the levels of both TNF-alpha and IL1-beta relative to tissue culture polystyrene (TCPS). However, the measured cytokine levels did not preclude the further testing of SCKs in an in vivo mouse immunization protocol. In this limited assay, measured increases in immunoglobulin G (IgG) concentration in the sera were minimal with no specific interactions being isolated, and more importantly, none of the mice (>50) subjected to the three 100 microg immunization protocol have died. Additionally, no gross morphological changes were observed in postmortem organ histology examinations.  相似文献   

2.
Gold nanoparticles modified with nuclear localization peptides were synthesized and evaluated for their subcellular distribution in HeLa human cervical epithelium cells, 3T3/NIH murine fibroblastoma cells, and HepG2 human hepatocarcinoma cells. Video-enhanced color differential interference contrast microscopy and transmission electron microscopy indicated that transport of nanoparticles into the cytoplasm and nucleus depends on peptide sequence and cell line. Recently, the ability of certain peptides, called protein transduction domains (PTDs), to transclocate cell and nuclear membranes in a receptor- and temperature-independent manner has been questioned (see for example, Lundberg, M.; Wikstrom, S.; Johansson, M. (2003) Mol. Ther. 8, 143-150). We have evaluated the cellular trajectory of gold nanoparticles carrying the PTD from HIV Tat protein. Our observations were that (1) the conjugates did not enter the nucleus of 3T3/NIH or HepG2 cells, and (2) cellular uptake of Tat PTD peptide-gold nanoparticle conjugates was temperature dependent, suggesting an endosomal pathway of uptake. Gold nanoparticles modified with the adenovirus nuclear localization signal and the integrin binding domain also entered cells via an energy-dependent mechanism, but in contrast to the Tat PTD, these signals triggered nuclear uptake of nanoparticles in HeLa and HepG2 cell lines.  相似文献   

3.
Protein transduction domains (PTDs) are peptides that afford the internalization of cargo macromolecules (including plasmid DNA, proteins, liposomes, and nanoparticles). In the case of polycationic peptides, the efficiency of PTDs to promote cellular uptake is directly related to their molecular mass or their polyvalent presentation. Similarly, the efficiency of routing to the nucleus increases with the number of nuclear localization signals (NLS) associated with a cargo. The quantitative enhancement, however, depends on the identity of the PTD sequence as well as the targeted cell type. Thus the choice and multivalent presentation of PTD and NLS sequences are important criteria guiding the design of macromolecules intended for specific intracellular localization. This review outlines synthetic and recombinant strategies whereby PTDs and signal sequences can be assembled into multivalent peptide dendrimers and promote the uptake and routing of their cargoes. In particular, the tetramerization domain of the tumour suppressor p53 (p53tet) is emerging as a useful scaffold to present multiple routing and targeting moieties. Short cationic peptides fused to the 31-residue long p53tet sequence resulted in tetramers displaying a significant enhancement (up to 1000 fold) in terms of their ability to be imported into cells and delivered to the cell nucleus in relation to their monomeric analogues. The design of future polycationic peptide dendrimers as effective delivering vehicles will need to incorporate selective cell targeting functions and provide solutions to the issue of endosomal entrapment.  相似文献   

4.
CyclinD1/CDK4 and cyclinD3/CDK4 complexes are key regulators of the cell progression and therefore constitute promising targets for the design of anticancer agents. In the present study, the key peptide motifs were selected from these two complexes. Chimeric peptides with these peptides conjugated to the protein transduction domain 4 (PTD4) were designed and synthesized. The chimeric peptides, PTD4-D1, PTD4-D3, PTD4-K4 exhibited significant anti-proliferation effects on cancer cell lines. These peptides could compete with the cyclinD/CDK4 complex and induce the G1/S phase arrest and apoptosis of cancer cells. In the tumor challenge experiment, these peptides showed potent antitumor effects with no significant side effects. Our results suggested that these peptides could be served as novel leading compounds with potent antitumor activity.  相似文献   

5.
Protein transduction domains (PTDs) are peptides that afford the internalization of cargo macromolecules (including plasmid DNA, proteins, liposomes, and nanoparticles). In the case of polycationic peptides, the efficiency of PTDs to promote cellular uptake is directly related to their molecular mass or their polyvalent presentation. Similarly, the efficiency of routing to the nucleus increases with the number of nuclear localization signals (NLS) associated with a cargo. The quantitative enhancement, however, depends on the identity of the PTD sequence as well as the targeted cell type. Thus the choice and multivalent presentation of PTD and NLS sequences are important criteria guiding the design of macromolecules intended for specific intracellular localization. This review outlines synthetic and recombinant strategies whereby PTDs and signal sequences can be assembled into multivalent peptide dendrimers and promote the uptake and routing of their cargoes. In particular, the tetramerization domain of the tumour suppressor p53 (p53tet) is emerging as a useful scaffold to present multiple routing and targeting moieties. Short cationic peptides fused to the 31-residue long p53tet sequence resulted in tetramers displaying a significant enhancement (up to 1000 fold) in terms of their ability to be imported into cells and delivered to the cell nucleus in relation to their monomeric analogues. The design of future polycationic peptide dendrimers as effective delivering vehicles will need to incorporate selective cell targeting functions and provide solutions to the issue of endosomal entrapment.  相似文献   

6.
蛋白质转导及其内在化机制   总被引:2,自引:0,他引:2  
付爱玲  孙曼霁 《生命科学》2003,15(5):266-269
蛋白质转导是新近发展起来的向细胞内快速输送外源性大分子或高极性分子的有效途径。它实质上是一些蛋白质,尤其是病毒蛋白上被称为蛋白质转导区(PTD)的小片段,蛋白质和其他物质,如DNA、脂质体、纳米颗粒、环孢素A等与之结合后,即能够被携带进入细胞或穿过血脑屏障。蛋白质转导的内在化机制目前尚不清楚,可能与带正电荷(富Arg)的PTD肽与细胞膜上带负电荷的硫酸乙酰肝素有关,但不排除其他内在化机制。  相似文献   

7.
汤莹  史道华 《生物磁学》2009,(14):2756-2758,2762
HIV-TAT蛋白转导域(Protein transduction domain,,PTD)是新近发现的一种在蛋白转导过程中能高效穿过生物膜的结构域,源自人类免疫缺陷病毒Tat蛋白的一段碱性氨基酸多肽,能与多肽、蛋白质及DNA等分子连接并跨膜导入绝大部分的组织细胞或透过血脑屏障,转导效率高且对细胞无损伤。TAT-PTD与细胞膜之间的电荷作用,吸附于膜表面,依赖脂筏介导的巨胞饮作用进入细胞。TAT融合蛋白系统是一种极有价值的运载工具,在基础医学研究和临床治疗方面有着广泛的应用前景。  相似文献   

8.
Intracellular delivery of glutathione S-transferase into mammalian cells   总被引:4,自引:0,他引:4  
Protein transduction domains (PTDs) derived from human immunodeficiency virus Tat protein and herpes simplex virus VP22 protein are useful for the delivery of non-membrane-permeating polar or large molecules into living cells. In the course of our study aiming at evaluating PTD, we unexpectedly found that the fluorescent-dye-labeled glutathione S-transferase (GST) from Schistosoma japonicum without known PTDs was delivered into COS7 cells. The intracellular transduction of GST was also observed in HeLa, NIH3T3, and PC12 cells, as well as in hippocampal primary neurons, indicating that a wide range of cell types is permissive for GST transduction. Furthermore, we showed that the immunosuppressive peptide VIVIT fused with GST successfully inhibits NFAT activation. These results suggest that GST is a novel PTD which may be useful in the intracellular delivery of biologically active molecules, such as small-molecule drugs, bioactive peptides, or proteins.  相似文献   

9.
10.
The phenomenon of protein transduction represents internalization of short peptides known as protein transduction domains (PTD) by cells. It is widely used in the development of new preparations for treatment of various brain disorders. However, the drug discovery process is limited by lack of simple and reliable models of blood brain barrier (BBB). These models should meet two main criteria: they should be applicable for testing of large numbers of samples simultaneously reproduce the physiological and functional characteristics of mammalian (including) human BBB. The major goal of this study was to estimate the BBB-crossing ability of known PTD-peptides using Drosophila melanogaster BBB as the model. We demonstrate here that after abdominal administration the PTD-peptide penetratin, derived from a Drosophila Antennapedia homeodomain protein can cross Drosophila and deliver the apoE mimetic peptide exhibiting neuroprotective properties.  相似文献   

11.
Cellular uptake of the human immunodeficiency virus TAT protein transduction domain (PTD), or cell-penetrating peptide, has previously been surmised to occur in a manner dependent on the presence of heparan sulfate proteoglycans that are expressed ubiquitously on the cell surface. These acidic polysaccharides form a large pool of negative charge on the cell surface that TAT PTD binds avidly. Additionally, sulfated glycans have been proposed to aid in the interaction of TAT PTD and other arginine-rich PTDs with the cell membrane, perhaps aiding their translocation across the membrane. Surprisingly, however, TAT PTD-mediated induction of macropinocytosis and cellular transduction occurs in the absence of heparan sulfate and sialic acid. Using labeled TAT PTD peptides and fusion proteins, in addition to TAT PTD-Cre recombination-based phenotypic assays, we show that transduction occurs efficiently in mutant Chinese hamster ovary cell lines deficient in glycosaminoglycans and sialic acids. Similar results were obtained in cells where glycans were enzymatically removed. In contrast, enzymatic removal of proteins from the cell surface completely ablated TAT PTD-mediated transduction. Our findings support the hypothesis that acidic glycans form a pool of charge that TAT PTD binds on the cell surface, but this binding is independent of the PTD-mediated transduction mechanism and the induction of macropinocytotic uptake by TAT PTD.  相似文献   

12.
HIV-TAT蛋白转导域(PTD)是新近发现的一种在蛋白转导过程中能高效穿过生物膜的结构域,它能将与之连接的多肽、蛋白质及DNA等分子跨膜导入几乎所有的组织和细胞,转导效率高而对细胞没有损伤.构建了TAT-EDAG、TAT-GFP融合蛋白原核表达载体,在大肠杆菌BL21(DE3)细胞中实现了两种融合蛋白的可溶性原核表达,在非变性条件下进行蛋白纯化,获得了纯度在90%以上的融合蛋白.脱盐处理后,利用TAT-GFP转染体外培养的鼠成纤维细胞证实了TAT转导肽的生物活性;利用TAT-EDAG转染体外培养的HL-60细胞,Western blotting分析表明:TAT-EDAG可以导入HL-60细胞中.这为下一步应用于体外造血干细胞扩增研究奠定了基础.  相似文献   

13.
It has been reported that the fusion protein with the protein transduction domain (PTD) peptide of HIV-1 Tat protein can be internalized through the cell membrane of intact cells, although the exact mechanism is unknown. In this report, we investigated whether this new method could be used for the molecular analysis of exocytosis via HPC-1/syntaxin 1A, which plays an important role in transmitter release. When applied to PC12 cells, Tat PTD fusion proteins were rapidly internalized into most cells. In order to show that the internalized protein remained biologically active, the H3 domain of HPC-1/syntaxin 1A was fused to Tat PTD (Tat-H3). Transmitter release in PC12 cells was suppressed by Tat-H3 treatment. These results indicate that the Tat fusion protein is a useful tool for analyzing the process of transmitter release.  相似文献   

14.
Peptides of the protein transduction domain (PTD) mediate the introduction of passenger proteins into cells in vitro and in vivo, where the domains are positively charged. This unusual ability can be exploited for medical applications in protein therapeutics. Chondrocytes are embedded in a dense extracellular matrix, whose components are highly negatively charged. We examined whether PTD mediates the delivery of functional proteins into chondrocytes through the matrix using the super anti-apoptotic protein FNK fused with Tat/PTD peptide (PTD-FNK), the FNK protein being constructed from anti-apoptotic Bcl-xL to enhance its activity. The PTD-FNK protein labeled with a fluorescent dye was incorporated into chondrocytes through the matrix and immunostaining confirmed the transduction into the cells. The PTD-FNK protein protected chondrocytes from cell death induced by Fas antibody and nitrogen oxide (NO). Thus, the PTD peptide has the ability to deliver passenger proteins into chondrocytes by penetrating the extracellular matrix of cartilage.  相似文献   

15.
蛋白转导多肽本身或携带生物大分子能以一种不明机制的方式高效地穿过真核细胞质膜并且几乎没有组织选择性。这为生物药物研究、基因治疗等领域带来了新的希望。最近有研究表明:来源于HIV-1的TAT蛋白的蛋白转导结构域多肽可以显著地提高重组腺病毒感染细胞和实验动物的效率。在对。HeLa且和Vero-E62种具有不同病毒易感性的细胞进行重组腺病毒感染实验时发现TAT多肽可以明显地提高重组腺病毒对HeLa细胞的感染及在细胞中外源报道基因的表达,但是对Vero-E6细胞却没有效果,表明TAT多肽增强重组腺病毒的感染与靶细胞类型有关,而并不像转导现象那样没有组织差异。这为蛋白转导技术在病毒载体中的应用提供了参考,但其中涉及的蛋白转导的机制有待进一步实验研究。  相似文献   

16.
The human immunodeficiency virus type 1 (HIV-1) Tat protein transduction domain (PTD), which contains rich arginine and lysine residues, is responsible for the highly efficient transduction of protein through the plasma membrane. In addition, it can be secreted from infected cells and has the ability to enter neighboring cells. When the PTD of Tat is fused to proteins and exogenously added to cells, the fusion protein can cross plasma membranes. Recent reports indicate that the endogenously expressed Tat fusion protein can demonstrate biodistribution of several proteins. However, intercellular transport and protein transduction have not been observed in some studies. Therefore, this study examined the intercellular transport and protein transduction of the Tat protein. The results showed no evidence of intercellular transport (biodistribution) in a cell culture. Instead, the Tat fusion peptides were found to have a significant effect on the transduction and intercellular localization properties. This suggests that the HIV-1 PTD passes through the plasma membrane in one direction.  相似文献   

17.
Dendritic cell (DC)-based vaccines are being developed for treatment of patients with cancer, in part because DC are potent inducers of CD8(+) CTL. DC MHC class I:antigenic peptide complexes that are required for CTL elicitation are most often generated by incubating DC with peptides or by transfecting (or transducing) DC with cDNAs (or viral vectors) that encode protein Ags. The former approach is feasible when MHC class I Ags and relevant peptides are known. The latter approach may be hampered by inefficient DC transfection (transduction) and/or difficulties associated with preparation and use of viral vectors. Herein we demonstrate that a bacterial recombinant model tumor-associated Ag (OVA) that contains the HIV TAT protein transduction domain (PTD) was readily engineered and purified, efficiently transduced murine lymphocytes and DC, and was processed by proteasomes for MHC class I-restricted presentation to CTL. In addition, PTD-containing rOVA was processed and presented by DC to CD4 T cells as efficiently as native OVA or rOVA lacking the PTD. PTD-OVA-transduced DC induced CTL in vivo in a Th cell-independent fashion and vaccinated against OVA-expressing tumors. In contrast, rOVA lacking the PTD did not enter the DC MHC class I presentation pathway and DC treated with this protein did not prime OVA-specific CTL in vivo. Treatment of mice harboring clinically apparent OVA-expressing tumors with PTD-OVA-transduced DC resulted in tumor regression in some animals. This straightforward vaccination strategy may translate into DC-based treatments for patients with cancer and other serious diseases.  相似文献   

18.
Protein transduction domains (PTDs) are versatile peptide sequences that facilitate cell delivery of several cargo molecules including proteins. PTDs usually consist of short stretches of basic amino acids that can cross the plasma membrane and gain entry into cells. Traditionally, to assess PTD mediated protein delivery, PTD-fusion proteins have been used as purified proteins. To overcome the requirement for a protein purification step, we used a secretory signal peptide to allow PTD-CRE fusion proteins to be exported from transfected mammalian cells. PTD induced protein transduction into cells was assessed by a CRE-mediated recombination event that resulted in beta-galactosidase expression. Several PTDs were tested including the prototypic TAT, different TAT variants, Antp, MTS and polyarginine. A negative correlation was observed between the cationic charge on the PTD and the extent of secretion. Poor secretion was found when the PTD charge was greater than +5. One TAT-CRE protein variant had a 14-fold enhancement above CRE alone when added to cells in the presence of chloroquine. This PTD domain also enhanced gene expression after plasmid delivery. These data illustrate that some secreted PTD proteins may be useful reagents to improve protein delivery in mammalian systems and a novel approach to enhancing the response to DNA transfections.  相似文献   

19.
The development of peptide drugs and therapeutic proteins is limited by the poor permeability and the selectivity of the cell membrane. There is a growing effort to circumvent these problems by designing strategies to deliver full-length proteins into a large number of cells. A series of small protein domains, termed protein transduction domains (PTDs), have been shown to cross biological membranes efficiently and independently of transporters or specific receptors, and to promote the delivery of peptides and proteins into cells. TAT protein from human immunodeficiency virus (HIV-1) is able to deliver biologically active proteins in vivo and has been shown to be of considerable interest for protein therapeutics. Similarly, the third alpha-helix of Antennapedia homeodomain, and VP22 protein from herpes simplex virus promote the delivery of covalently linked peptides or proteins into cells. However, these PTD vectors display a certain number of limitations in that they all require crosslinking to the target peptide or protein. Moreover, protein transduction using PTD-TAT fusion protein systems may require denaturation of the protein before delivery to increase the accessibility of the TAT-PTD domain. This requirement introduces an additional delay between the time of delivery and intracellular activation of the protein. In this report, we propose a new strategy for protein delivery based on a short amphipathic peptide carrier, Pep-1. This peptide carrier is able to efficiently deliver a variety of peptides and proteins into several cell lines in a fully biologically active form, without the need for prior chemical covalent coupling or denaturation steps. In addition, this peptide carrier presents several advantages for protein therapy, including stability in physiological buffer, lack of toxicity, and lack of sensitivity to serum. Pep-1 technology should be extremely useful for targeting specific protein-protein interactions in living cells and for screening novel therapeutic proteins.  相似文献   

20.
Previously, we have demonstrated that purified Hoxc8 homeoprotein has the ability to penetrate the cellular membrane and can be transduced efficiently into COS-7 cells. Moreover, the Hoxc8 protein is able to form a complex with DNA molecules in vitro and helps the DNA be delivered intracellularly, serving as a gene delivery vehicle. Here, we further analyzed the membrane transduction activity of Hoxc8 protein and provide the evidence that the 16 amino acid (a.a.191-206, 2.23 kDa) third helix of murine Hoxc8 protein is an efficient protein transduction domain (PTD). When the 16 amino acid peptide was fused at the carboxyl terminal of enhanced green fluorescence protein (EGFP), the fusion proteins were transduced efficiently into the primary pig fetal fibroblast cells. The transduction efficiency increased in a concentration-dependent manner up to 1 μM, and appeared to plateau above a concentration of 1 μM. When tandem multimers of PTD, EGFP-PTD(2), EGFP-PTD(3), EGFP-PTD(4), and EGFP-PTD(5), were analyzed at 500 nM of concentration, the penetrating efficiency increased in a dose-dependent manner. As the number of PTDs increased, the EGFP signal also increased, although the signal maintained plateau after EGFP-PTD(3). These results indicate that the 16 amino acid third helix is the key element responsible for the membrane transduction activity of Hoxc8 proteins, and further suggest that the small peptide could serve as a therapeutic delivery vehicle for large cargo proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号