首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
N-(1-Pyrene)maleimide, a fluorescent, lipophilic, alkylating agent, was used as a probe for the nicotinic acetylcholine receptor (AChR). Preincubation with N-(1-pyrene)maleimide under nonreducing conditions inhibits agonist-induced cation permeability of AChR-enriched membranes. This inhibition is dependent on the concentration of N-(1-pyrene)maleimide used. This correlation was also exhibited by resonance energy transfer of tryptophan fluorescence to N-(1-pyrene)maleimide and by the labeling stoichiometries. However, agonist-induced desensitization, as based on the time-dependent inhibition of alpha-bungarotoxin binding upon preincubation with the agonist carbamylcholine, was unaffected by N-(1-pyrene)maleimide. Alkylation of the AChR by N-(1-pyrene)maleimide is pH-dependent with an apparent pKa of 7.5 and is unaffected by preincubation with carbamylcholine, alpha-bungarotoxin, tubocurarine, or decamethonium. Preincubation with a 25-fold molar excess of N-ethylmaleimide partially protects against N-(1-pyrene)maleimide, yet simultaneous incubation with an equimolar concentration does not protect. In contrast, simultaneous incubation with equimolar concentrations of phenylmaleimide or naphthylmaleimide inhibited N-(1-pyrene)maleimide alkylation by 52 and 67%, respectively. Each AChR subunit is labeled by N-(1-pyrene)maleimide. Prior alkylation with N-ethylmaleimide does not alter the labeling profile but lowers the amount of labeling of all subunits. Reductive methylation of membranes under conditions which dimethylate all or most protein amino groups does not inhibit alkylation by N-(1-pyrene)maleimide. The above results, as well as amino acid analysis of N-(1-pyrene)maleimide-alkylated receptor, indicate that a homologous class of cysteines, which reside in each subunit within the AChR domain embedded in the membrane, are involved in the reaction with N-(1-pyrene)maleimide.  相似文献   

2.
Reaction kinetic studies of the sulfhydryl-directed fluorescent probes N-(1-pyrene)maleimide (PM) and N-(1-pyrenyl)iodoacetamide with actin from rabbit skeletal muscle showed that there were three accessible sulfhydryl groups in actin. Fluorescence spectral studies showed energy transfer from aromatic amino acid residues to fluorophore reacted at Cys-373, as well as weak excimer fluorescence probably due to doubly labeled molecules at Cys-10 and Cys-373. These results provide further evidence that trytophan and tyrosine residues are located near the probe attached to Cys-373 or Cys-10 and the latter two thiols are in close proximity. In aged PM-Iabeled F-actin, the succinimido ring of PM underwent intramolecular aminolysis. resulting in large emission spectral changes and increased excimer fluorescence. Solvent perturbation studies indicate that the probes were located in a hydrophobic environment; their quantum yield and spectrum properties were very sensitive to changes in the microenvironment. Nanosecond-pulse fluorimetry studies revealed complex fluorescence emission decays with three intrinsic lifetimes in adducts with low molecular weight thiols as well as in labeled proteins. Fluorescence lifetimes were 17. 48 and 111 ns for the pyrenemaleimide adduct of actin, and 3, 14 and 60 ns for the pyrenyliodoacetamide adduct. Supporting evidence is given for the argument that multiple fluorescence lifetimes are an intrinsic property of the pyrene derivatives and are not due to the presence of impurity or heterogeneity in the protein reaction sites. Because of their high sensitivity and long lifetimes, pyrene derivatives are extremely useful.  相似文献   

3.
Interaction of calf thymus non-histone chromosomal protein HMG2 with H1,H5-depleted nucleosomes from chicken erythrocytes was studied by means of thermal denaturation and an N-(3-pyrene)maleimide fluorescence probe. Under low ionic conditions (2 mM Tris buffer plus EDTA) addition of 1-2 molecules of HMG2 per nucleosome markedly stabilized the segment of the linker DNA against thermal denaturation. Under approximately physiological ionic conditions (0.1 M NaCl) addition of two HMG2 molecules per nucleosome, labeled by N-(3-pyrene)maleimide at the sulfhydryl groups of Cys-110 of histones H3, resulted in a decrease of the pyrene excimer fluorescence corresponding to the slight movement of the sulfhydryl groups of the two histone H3 molecules apart.  相似文献   

4.
The excimer fluorescence of the adduct of N-(1-pyrene)maleimide (PMI) with the Ca2+-ATPase was proposed as a probe of ATPase-ATPase interactions in sarcoplasmic reticulum (Lüdi and Hasselbach, Eur. J. Biochem., 1983, 130:5-8). We tested this proposition by analyzing the spectral properties and stoichiometry of the adducts of pyrenemaleimide with sarcoplasmic reticulum and with dithiothreitol and by comparing the effects of various detergents on the excimer fluorescence of the two adducts, with their influence on the sedimentation characteristics, ATPase activity, and light scattering of the pyrenemaleimide-labeled sarcoplasmic reticulum. These studies indicate that pyrenemaleimide reacts nearly randomly with several SH groups on the Ca2+-ATPase, and suggest that the observed excimer fluorescence of pyrenemaleimide-labeled sarcoplasmic reticulum may reflect intramolecular phenomena rather than ATPase-ATPase interactions. Further work is required to establish the relative contribution of intra- and intermolecular mechanisms to the excimer fluorescence.  相似文献   

5.
Rabbit skeletal alphaalphatropomyosin was specificially labeled at cysteine 190 with the fluorescent reagent, N-(1-pyrene)maleimide. Spectroscopically different products were obtained by labeling at pH 6.0 (PyrI-alphaalphaTm) or pH 7.5 (PyrII-alphaalphaTm). PyrII-alphaalphaTm results from a secondary reaction between the N-(1-pyrene)succinimido moiety at cysteine 190 of PyrI-alphaalphaTm and a lysine group on the same chain, probably lysine 189. Pyrene excimer fluorescence was present in the native state but absent in the unfolded state of both products, thus verifying the proximity of the--SH groups and the chain register model for the structure of tropomyosin. Studies of the guanidinium chloride-dependent unfolding of PyrII-alphaalphaTm showed that loss of excimer fluorescence precedes unfolding, providing evidence for a region of preferential instability in the molecule near cysteine 190. This work suggests that N-(1-pyrene)maleimide could be used to probe both--SH proximity and local conformation in any protein if the presence of two or more proximal--SH groups is suspected.  相似文献   

6.
S C Tu  C W Wu  J W Hastings 《Biochemistry》1978,17(6):987-993
The distance between specific sites on bacterial luciferase was estimated by energy transfer. Luciferase was fluorescently labeled by reaction of an essential sulfhydryl group with N-(1-pyrene)maleimide and N-[p-(2-benzoxazolyl)phenyl]meleimide. Both of the modified enzymes bind 8-anilino-1-naphthalenesulfonate (Ans) with affinities similar to that exhibited by the native luciferase. Using each of the two fluorescent probes as a donor and the bound Ans as an acceptor, the energy transfer efficiencies were determined by the resulting enhancement of fluorescence of the acceptor. The corresponding distance was calculated to be in the range of 21 to 37 A. Energy-transfer studies were also carried out using fluorescence lifetime measurements of bound ANS, acting as a donor with bound FMN as an acceptor. The corresponding distance was calculated to be between 30 and 58 A. Using samples of luciferase:Ans complex and luciferase modified with N-(1-pyrene)maleimide, the rotational correlation time of the enzyme-dye conjugate as awhole was found to be 47 +/- 2 ns. The observed rotational correlation time is much longer than that calculated for luciferase assuming a spherical structure, thus indicating an elongated form for the luciferase-dye conjugate.  相似文献   

7.
4-Aminobutyrate aminotransferase is inactivated by preincubation with N-(1-pyrene)maleimide (mixing molar ratio 10:1) at pH 7. The reaction with N-(1-pyrene)maleimide was monitored by fluorescence spectroscopy and the degree of labeling of the enzyme determined by absorption spectroscopy. The blocking of 2 cysteinyl residues/enzyme dimer is needed for inactivation of the aminotransferase. The time course of the reaction is significantly affected by the substrate alpha-ketoglutarate, which afforded complete protection against the loss of catalytic activity. Trypsin digestion of pyrene-labeled aminotransferase, followed by gel filtration and "fingerprint" analysis, revealed the presence of only one peptide tagged with the fluorescent probe. The reaction of approximately 1.9 SH residues/dimer with iodosobenzoate resulted in enzyme inactivation together with a formation of an oligomeric species of Mr = 100,000 detectable by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The cross-linked subunits are dissociated by addition of 2-mercaptoethanol which also restores full catalytic activity. Altogether, these observations are consistent with the concept that inactivation of 4-aminobutyrate aminotransferase by iodosobenzoate proceeds through disulfide bond formation between vicinal cysteinyl residues of the protein. It is postulated that the critical sulfhydryl groups of the enzyme are situated on opposite sides of the dimeric structure at the subunit interfaces.  相似文献   

8.
Peptide bond hydrolysis of bovine serum albumin (BSA) by chymotrypsin and trypsin was investigated by employing time-resolved fluorescence spectroscopy. As a fluorescent cross-linking reagent, N-(1-pyrenyl) maleimide (PM) was attached to BSA, through all free amine groups of arginine, lysine, and/or single free thiol (Cys34). Time-resolved fluorescence spectroscopy was used to monitor fluorescence decays analyzed by exponential series method to obtain the changes in lifetime distributions. After the exposure of synthesized protein substrate PM-BSA to chymotrypsin and trypsin, it is observed that each protease produced a distinct change in the lifetime distribution profile, which was attributed to distinct chemical environments created by short peptide fragments in each hydrolysate. The persistence of excimer emission at longer lifetime regions for chymotrypsin, as opposed to trypsin, suggested the presence of small-scale hydrophobic clusters that might prevent some excimers from being completely quenched. It is most likely that the formation of these clusters is due to hydrophobic end groups of peptide fragments in chymotrypsin hydrolysate. A similar hydrophobic shield was not suggested for trypsin hydrolysis, as the end groups of peptide fragments would be either arginine or lysine. Overall, in case the target protein’s 3D structure is known, the structural analysis of possible excimer formation presented here can be used as a tool to explain the differences in activity between two proteases, i.e. the peak’s intensity and location in the profile. Furthermore, this structural evaluation might be helpful in obtaining the optimum experimental conditions in order to generate the highest amount of PM-BSA complexes.  相似文献   

9.
Rabbit skeletal alpha alpha-tropomyosin was labeled at Cys-190 with pyrene maleimide to form (S-[N-(1-pyrene)succinimido])2-tropomyosin (pyreneI-Tm). The product with cleaved succinimido-rings, pyreneII-Tm was also prepared by incubation of pyreneI-Tm at pH greater than 7.5. The pH dependence of the rate of cleavage indicated that hydrolysis rather than aminolysis was the more likely reaction. PyreneI-Tm exhibited a loss in helix content and end-to-end polymerization compared with unlabeled Tm, which increased upon formation of pyreneII-Tm. The cleavage resulted in increased interchain excited state excimer fluorescence originating from pyrene-pyrene interaction between the chains. Thus, increased pyrene-pyrene interaction at Cys 190 leads to an increase in unfolding, the effects of which appear to be transmitted to the ends of tropomyosin. The fluorescence properties of the two types of pyrene-succinimide adducts of dithiothreitol were very similar to the corresponding adducts of pyrene-Tm indicating excimer formation through ground state pyrene-pyrene interaction.  相似文献   

10.
The local conformational changes in the tropomyosin molecule under various conditions were studied by means of fluorimetry using SH-directed fluorescent dyes, N-(1-anilinonaphthyl-4)maleimide (ANM) and N-(3-pyrene)maleimide (PRM). 1. The fluorescence intensity, polarization and the emmission maximum of ANM-tropomyosin were found to be susceptible to ionic strength, but in different ways. The changes in these parameters suggest that the fluorescence-labeled sulfhydryl group or groups become more buried in a hydrophobic internal region by salt-induced depolymerization of aggregate and by adding F-actin to tropomyosin. 2. Titration of the labeled tropomyosin with F-actin revealed a cooperative nature in ANM labeling and a simple saturation kinetics in PRM labeling. The dissociation constant of F-actin to PRM-tropomyosin was calculated to be 5.8-10(-6) M. 3. Temperature dependence of the fluorescence polarization showed a thermal transition in the conformation of ANM- or PRM-tropomyosin at around 30 degrees C. Flexibility or segmental motion of the region containing the fluorophore was suppressed significantly on adding troponin and markedly on adding F-actin. 4. Measurements of the quantum yield and polarization of the ANM-tropomyosin-F-actin complex suggested that troponin strengthened the binding between the two proteins and that Ca2+ reversed this effect.  相似文献   

11.
N-(3-pyrene)maleimide adducts of myosin (PM-myosin) are fluorescent and possess actin-activated Mg2+ ATPase activity. Addition of ATP to PM-myosin produces a reversible decrease of 10% in fluorescence intensity of the pyrene fluorophore in the presence of actin. Analogues of ATP which are poor substrates for myosin ATPase or which merely dissociate actomyosin produce less decrease in fluorescence of PM-myosin than does ATP. Since fluorescence of acto-PM-myosin is sensitive to environmental changes associated with ATP hydrolysis, and/or with fluorophore-actin interactions. PM-myosin may be a useful analysis of molecular aspects of muscle contraction.  相似文献   

12.
Summary Several fluorescent maleimide compounds were evaluated as possible substitutes for N-(4-aminophenyl)maleimide in the histochemical procedures developed by Sippel (1973, 1978a, b, 1980) for the demonstration of sulfhydryl and disulfide groups. The brightest and most selective fluorescence was obtained by using N-(7-dimethylamino-4-methylcoumarinyl)maleimide (DACM), although both eosin-5-maleimide and fluorescein-5-maleimide could also be used if adequate control preparations were made.  相似文献   

13.
Interaction of domains in fibronectin was observed by photometry of fluorescence polarization of three kinds of dye; [N-(1-anilinonaphthyl-4)]maleimide (ANM tau = 5 ns), [N-(3-fluoranthyl)]maleimide (FAM tau = 20 ns), and [N-(3-pyrene)]maleimide (PRM tau = 100 ns). Each dye was labeled at a free sulfhydryl group in the cell-binding domain. Neither fluorescence of ANM with short fluorescent lifetime, FAM with long lifetime, nor PRM with longer fluorescent lifetime on fibronectin depolarized as much as the free dye. It was found that each dye was firmly fixed in the cell-binding domain. When heparin or gelatin was added in the solution of PRM-fibronectin complex, the fluorescence polarization tended to increase principally by combining heparin or gelatin to fibronectin. It was found that the rotation of whole or partial fibronectin containing the cell-binding domain through fluorescent lifetime of 100 ns was suppressed by combining of heparin or gelatin to fibronectin. When heparin or gelatin was added in the solution of ANM- or FAM-fibronectin complex, on the contrary, the fluorescence polarization tended to decrease, that is, slightly depolarize through the fluorescent lifetime of 5 or 20 ns, respectively. It was found that the rotation of the cell-binding domain, or of part of the fibronectin molecule containing the domain, was slightly promoted by combining heparin or gelatin to its domain. These results indicate that an interaction of the heparin- or gelatin-binding domain with the cell-binding domain was induced by the combining of heparin or gelatin to the respective domains.  相似文献   

14.
We report a facile labeling technique in which the telechelic thiocarbonylthio functionality of well-defined poly(N-isopropylacrylamide) (PNIPAM) prepared by room temperature RAFT polymerization is first converted to the thiol and subsequently reacted with a maleimido-functional fluorescent dye, N-(1-pyrene)maleimide (PM). Nearly monodisperse PNIPAM (M(n) = 39 500 g/mol, M(w)/M(n) = 1.07) was synthesized using a trithiocarbonate-based CTA, 2-dodecylsulfanylthiocarbonylsulfanyl-2-methyl propionic acid (DMP), and a conventional azo-initiator, namely, 2,2'-azobis(4-methoxy-2,4-dimethylvaleronitrile) (V-70), as the primary source of radicals. The key to successful conjugation of PM to PNIPAM is the implementation of a two-step reduction process involving (1) the cleavage of the trithiocarbonate with a strong reducing agent, in this case, NaBH4, to form a mixture of polymeric thiols and disulfides and (2) the conjugation of PM to the pure polymeric thiol in the presence of tris(2-carboxyethyl)phosphine.HCl (TCEP). We show that TCEP efficiently eliminates the formation of polymeric disulfides and thus allows for the desired addition of the free polymeric thiol across the maleimide double bond. This concept is demonstrated using SEC-MALLS and UV-vis spectroscopy measurements.  相似文献   

15.
N-(1-Pyrene)maleimide is a hydrophobic, sulfhydryl-directed, chemical modification probe which, at a low concentration, inhibits the capacity of lamb kidney sodium- and potassium-activated adenosine triphosphatase [Na,K)-ATPase; EC 3.6.1.3) to bind ouabain. This inhibition is partially blocked by preincubation of the enzyme with ouabagenin, an aglycone derivative which can be used as a reversible protecting ligand for the ouabain binding site. The kinetics of inhibition are not first order, suggesting that there may be more than one site of labeling which is responsible for the inhibition of ouabain binding. Although earlier work (Kirley, T. L., Lane, L. K., and Wallick, E. T. (1986) J. Biol. Chem. 261, 4525-4528) indicates that the inhibition is accompanied by a loss in the number of binding sites rather than a decrease in affinity of the sites for the ligand, other data (Scheiner-Bobis, G., Zimmerman, M., Kirch, V., and Schoner, W. (1987) Eur. J. Biochem. 165, 653-656) indicates that there is no cysteine residue located extracellularly in the ouabain binding site. By sequence analysis of alpha subunit peptides labeled by N-(1-pyrene)maleimide in the absence but not in the presence of protecting ligand, it is demonstrated in this work that there are two major sites of labeling protected by the binding of ouabagenin, Cys-367 and Cys-656. Both of these sites are located in the large cytoplasmic domain of the alpha subunit, one close to the phosphorylation site (Asp-369), and the other implicated in the binding of ATP (Cys-656). Therefore, it appears from this data that the inhibition of ouabain binding by N-(1-pyrene)maleimide is not due to modification of a site in the binding pocket for cardiac glycosides, but rather to an allosteric effect, since cardiac glycoside binding is known to be dependent on the phosphorylation state of the enzyme. The dependence of inhibition on the presence of sodium, potassium, and ATP also is consistent with this interpretation. The work reported here thus explains the apparent paradox posed by the earlier data.  相似文献   

16.
A heterobifunctional crosslinking agent N-[beta-(4-diazophenyl)ethyl]maleimide (DPEM) was newly synthesized and characterized to possess the maleimide group with a stability greater than that previously reported for N-(4-diazophenyl)maleimide. Using the peptide hormone neurotensin (NT) as a model hapten, DPEM was used in the conjugation reaction with bovine serum albumin (BSA) and with beta-D-galactosidase (beta-Gal) in developing an enzyme immunoassay (EIA) for NT. The NT-DPEM-BSA conjugate elicited anti-NT antibodies in rabbits and the NT-beta-Gal conjugate behaved as an enzyme marker of NT in the EIA. The EIA developed double antibody was reproducible and sensitive in detecting NT at concentrations as low as 30 fmol per tube. The specificity of anti-NT serum seems to be primarily toward the carboxy-terminal region of NT, showing cross-reactions with such NT fragments as NT2-13, NT8-13, and NT1-8 for 120, 22, and less than 0.1%, respectively. The utility of this assay was also demonstrated by measuring the NT immunoreactivity in several rat organs. DPEM could be useful for developing EIAs for other peptide hormones (even those which contain neither a free amino group nor a free carboxyl group), using the imidazole, phenolic, or indole group(s) of amino acids as a binding site for carrier proteins.  相似文献   

17.
A new series of (E)-pyrene oxime ester conjugates of carboxylic acids including amino acids were synthesized by coupling with an environment sensitive fluorophore 1-acetylpyrene. (E)-Pyrene oxime esters exhibited strong fluorescence properties and interestingly their fluorescence properties were found to be highly sensitive to the surrounding environment. Direct irradiation of the (E)-pyrene oxime esters by UV light (≥350 nm) resulted in both the photo-Beckmann rearrangement product and products resulting from N-O bond homolysis. Photoproduct formation and their distribution were found to be solvent dependent. Further, we also showed (E)-pyrene oxime esters intercalated into DNA efficiently and photo-cleaved DNA. Finally we also showed these oxime esters can permeate cells efficiently and may cause cytotoxicity upon irradiation of light.  相似文献   

18.
We have developed a high-performance liquid chromatographic system capable of resolving mercaptoacetate and N-acetylcysteine as their N-(1-pyrene)maleimide (PM) and N-(7-dimethylamino-4-methyl-3-coumarinyl)maleimide (DACM) derivatives. Good resolution was obtained by ion pairing with tetramethylammonium hydroxide and chromatography on reversed phase. The detection limits for the thiols were about 50 fmol as their DACM derivatives and about 400 fmol as their PM derivatives. The method is illustrated by chromatography of urinary thiols which indicates that the derivatization and chromatography procedures should be well applicable in bioanalytical work.  相似文献   

19.
The effect of peroxidation on 5'-nucleotidase activity as well as on membrane microviscosity has been investigated in liver plasma membranes from Wistar rats. The peroxidation was performed with 100 microM H2O2 and 200 microM FeSO4 and/or with 5 mM t-butylhydroperoxide. Treatment of the membranes with these oxidizing agents resulted in an elevation of the transition temperatures of the polarization of the lipid fluorescent probes 1,6 diphenyl-1,3,5 hexatriene (DPH), 3-p-(6-phenyl) 1,3,5 hexatriene phenylpropionic acid (PA-DPH) as well as of the fluorescent thiol reagent N-(1-pyrene) maleimide (1-PM). The peroxidation resulted in a decrease of the activity of 5'nucleotidase. Our data support that the increase of membrane microviscosity of the lipid domain regulates the activity of 5'-nucleotidase.  相似文献   

20.
Rhodopsin-G-protein interactions monitored by resonance energy transfer   总被引:1,自引:0,他引:1  
Resonance energy transfer measurements were implemented to monitor the specific interactions between G-protein and rhodopsin in phospholipid vesicles reconstituted with the purified proteins. Fluorescently labeled G-protein was extracted from bleached rod outer segments (ROS) reacted with several sulfhydryl reagents: N-(1-pyrenyl)maleimide (P), monobromobimane (B), 7-(diethylamino)-3-(4-maleimidylphenyl)-4-methylcoumarin (C), and N-(4-anilino-1-naphthyl)maleimide (A). Limited labeling of ROS, resulting in the modification of less than a single -SH residue per G-protein molecule and less than 0.2 residue per rhodopsin, did not impair the specific in situ interactions between rhodopsin and G-protein. This was demonstrated by preservation of their light-activated tight association and Gpp(NH)p binding and their fast dissociation with excess GTP. The distribution of fluorescent label among the three subunits of G-protein revealed a highly reactive -SH group in the gamma subunit accessible to labeling when G-protein was bound specifically to bleached rhodopsin. Recombination of purified fluorescent derivatives of G-protein with purified rhodopsin reconstituted in lipid vesicles restored the light-activated Gpp(NH)p binding to a level comparable to that measured with unlabeled G-protein. Similar observations were obtained with ROS depleted of peripheral proteins. Likewise, modification of up to two -SH groups per rhodopsin molecule with the fluorescent reagents did not affect the functional recombination of G-protein with rhodopsin in reconstituted lipid vesicles or in depleted ROS. Interactions between rhodopsin and G-protein were monitored by resonance energy transfer measurements, with the following fluorescent conjugates as donor/acceptor couples: P-rhodopsin/C-G-protein, P-rhodopsin/B-G-protein, and P-G-protein/C-rhodopsin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号