首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Valproic acid (VPA) as a broad-spectrum inhibitor of histone deacetylase, has been used in cancer therapy. Recently, the combination of VPA with other anticancer agents has been considered as a useful and necessary strategy to inhibit tumor growth and progression. The coumarin derivates from natural plants have been shown to be the promising natural anticancer agents. However, no literature is available on the anticancer effects of the combination of VPA and coumarin-3-carboxylic acid (HCCA). Here we show that this combination significantly increases inhibitory effects against the proliferation and migration in highly-metastatic lung cancer cells by inducing apoptosis and cell cycle arrest as well as regulating related protein expressions. Our results indicate that this combination of VPA with HCCA not only enhances the protein levels of Bax, cytosolic cytochrome c, caspase-3 and PARP-1 but also reduces the protein expressions of Bcl-2, cyclin D1 and NF-κB as well as inhibits the phosphorylation and expressions of Akt, EGFR, VEGFR2 and c-Met in the cancer cells. Our results suggest that the combination of VPA with HCCA suppresses the proliferation and migration of lung cancer cells via EGFR/VEGFR2/c-Met-Akt-NF-κB signaling pathways; this combination may have a wide therapeutic and/or adjuvant therapeutic application in the treatment of lung cancer.  相似文献   

2.
Colorectal cancer represents the fourth commonest malignancy, and constitutes a major cause of significant morbidity and mortality among other diseases. However, the chemical therapy is still under development. Angiogenesis plays an important role in colon cancer development. We developed HMQ18–22 (a novel analog of taspine) with the aim to target angiogenesis. We found that HMQ18–22 significantly reduced angiogenesis of chicken chorioallantoic membrane (CAM) and mouse colon tissue, and inhibited cell migration and tube formation as well. Then, we verified the interaction between HMQ18–22 and VEGFR2 by AlphaScreen P-VEGFR assay, screened the targets on angiogenesis by VEGF Phospho Antibody Array, validated the target by western blot and RNAi in lovo cells. We found HMQ18–22 could decrease phosphorylation of VEGFR2(Tyr1214), VEGFR1(Tyr1333), Akt(Tyr326), protein kinase Cα (PKCα) (Tyr657) and phospholipase-Cγ-1 (PLCγ-1) (Tyr771). Most importantly, HMQ18–22 inhibited proliferation of lovo cell and tumor growth in a human colon tumor xenografted model of athymic mice. Compared with normal lovo cells proliferation, the inhibition on proliferation of knockdown cells (VEGFR2, VEGFR1, Akt, PKCα and PLCγ-1) by HMQ18–22 decreased. These results suggested that HMQ18–22 is a novel angiogenesis inhibitor and can be a useful therapeutic candidate for colon cancer intervention.  相似文献   

3.
Bufalin, a naturally occurring small-molecule compound from Traditional Chinese Medicine (TCM) Chansu showed inhibitory effects against human prostate, hepatocellular, endometrial and ovarian cancer cells, and leukemia cells. However, whether or not bufalin has inhibitory activity against the proliferation of human non–small cell lung cancer (NSCLC) cells is unclear. The aim of this study is to study the effects of bufalin on the proliferation of NSCLC and its molecular mechanisms of action. The cancer cell proliferation was measured by MTT assay. The apoptosis and cell cycle distribution were analyzed by flow cytometry. The protein expressions and phosphorylation in the cancer cells were detected by Western blot analysis. In the present study, we have demonstrated that bufalin suppressed the proliferation of human NSCLC A549 cell line in time- and dose-dependent manners. Bufalin induced the apoptosis and cell cycle arrest by affecting the protein expressions of Bcl-2/Bax, cytochrome c, caspase-3, PARP, p53, p21WAF1, cyclinD1, and COX-2 in A549 cells. In addition, bufalin reduced the protein levels of receptor expressions and/or phosphorylation of VEGFR1, VEGFR2, EGFR and/or c-Met in A549 cells. Furthermore, bufalin inhibited the protein expressions and phosphorylation of Akt, NF-κB, p44/42 MAPK (ERK1/2) and p38 MAPK in A549 cells. Our results suggest that bufalin inhibits the human lung cancer cell proliferation via VEGFR1/VEGFR2/EGFR/c-Met–Akt/p44/42/p38-NF-κB signaling pathways; bufalin may have a wide therapeutic and/or adjuvant therapeutic application in the treatment of human NSCLC.  相似文献   

4.
Matrine has shown therapeutic and/or adjuvant therapeutic effects on the treatment of some patients with breast cancer. However, its mechanisms of action are largely unknown. To disclose the mechanisms, we investigated in vitro and ex vivo effects of matrine on the cancer cells. Our results confirmed that matrine significantly suppressed the proliferation of highly-metastatic human breast cancer MDA-MB-231 cell line. Matrine displayed synergistic effects with existing anticancer agents celecoxib (the inhibitor of cyclooxygenase-2), trichostatin A (the histone deacetylase inhibitor) and rosiglitazone against the proliferation and VEGF excretions in MDA-MB-231 cells. Matrine induced the apoptosis and cell cycle arrest by reducing the ratios of Bcl-2/Bax protein and mRNA levels in the cancer cells. Matrine significantly reduced the invasion, MMP-9/MMP-2 activation, Akt phosphorylation, nuclear factor κB p-65 expression and DNA binding activity, and mRNA levels of MMP-9, MMP-2, EGF and VEGFR1 in MDA-MB-231 cells. Collectively, our results suggest that matrine inhibits the cancer cell proliferation and invasion via EGF/VEGF-VEGFR1-Akt-NF-κB signaling pathway.  相似文献   

5.
CDA-2 (cell differentiation agent 2), a urinary preparation, has potent anti- proliferative and pro-apoptotic properties in cancer cells. However, the mechanisms of tumor inhibitory action of CDA-2 are far from clear, and especially there was no report on lung cancer. Here we demonstrate that CDA-2 and its main component phenylacetylglutamine (PG) reduce the metastatic lung tumor growth, and increases survival time after inoculation with Lewis lung carcinoma (LLC) cells in a dose-dependent manner in C57BL6 mice. Proliferative program analysis in cancer cells revealed a fundamental impact of CDA-2 and PG on proliferation and apoptosis, including Bcl-2, Bcl-XL, cIAP1, Survivin, PCNA, Ki-67 proteins and TUNEL assays. CDA-2 and PG significantly reduced NF-κB DNA-binding activity in lung cancer cells and in alveolar macrophages of tumor bearing mice and especially decreased the release of inflammatory factors including TNFα, IL-6, and KC. Furthermore, CDA-2 and PG decrease the expressions of TLR2, TLR6, and CD14, but not TLR1, TLR3, TLR4, and TLR9 in bone-marrow-derived macrophages (BMDM) of mice stimulated by LLC-conditioned medium (LLC-CM). Over-expressing TLR2 in BMDM prevented CDA-2 and PG from inhibiting NF-κB activation, as well as induction of TNFα and IL-6. TLR2:TLR6 complexes mediate the effect of NF-κB inactivation by CDA-2. In conclusion, CDA-2 potently inhibits lung tumor development by reduction of the inflammation in lung through suppression of NF-κB activation in myeloid cells, associating with modulation of TLR2 signaling.  相似文献   

6.
Lung cancer is one of the most common types of carcinoma worldwide. Cigarette smoking is considered the leading cause of lung cancer. Aberrant expression of several YT521-B homology (YTH) family proteins has been reported to be closely associated with multiple cancer types. The present study aims to evaluate the function and regulatory mechanisms of the N6-methyladenosine (m6A) reader protein YTH domain containing 2 (YTHDC2) by in vitro, in vivo and bioinformatics analyses. The results revealed that YTHDC2 was reduced in lung cancer and cigarette smoke-exposed cells. Notably, bioinformatics and tissue arrays analysis demonstrated that decreased YTHDC2 was highly associated with smoking history, pathological stage, invasion depth, lymph node metastasis and poor outcomes. The in vivo and in vitro studies revealed that YTHDC2 overexpression inhibited the proliferation and migration of lung cancer cells as well as tumor growth in nude mice. Furthermore, YTHDC2 decreased expression was modulated by copy number deletion in lung cancer. Importantly, the cylindromatosis (CYLD)/NF-κB pathways were confirmed as the downstream signaling of YTHDC2, and this axis was mediated by m6A modification. The present results indicated that smoking-related downregulation of YTHDC2 was associated with enhanced proliferation and migration in lung cancer cells, and appeared to be regulated by DNA copy number variation. Importantly, YTHDC2 functions as a tumor suppressor through the CYLD/NF-κB signaling pathway, which is mediated by m6A modification.  相似文献   

7.
8.
EF24 is a curcumin analog that has improved anticancer activity over curcumin, but its therapeutic potential and mechanism of action is unknown, which is important to address as curcumin targets multiple signaling pathways. EF24 inhibits the NF-κB but not the JAK-STAT signaling pathway in DU145 human prostate cancer cells and B16 murine melanoma cells. EF24 induces apoptosis in these cells apparently by inhibiting miR-21 expression, and also enhances the expression of several miR-21 target genes, PTEN and PDCD4. EF24 treatment significantly suppressed the growth of DU145 prostate cancer xenografts in immunocompromised mice and resulted in tumor regression. EF24 enhanced the expression of the miR-21 target PTEN in DU145 tumor tissue, but suppressed the expression of markers of proliferating cells (cyclin D1 and Ki67). In syngeneic mice injected with B16 cells, EF24 treatment inhibited the formation of lung metastasis, prolonged animal survival, inhibited miR-21 expression and increased the expression of miR-21 target genes. Expression profiling of miRNAs regulated by EF24 in vitro and in vivo showed that the antitumor activity of EF24 reflected the enhanced expression of potential tumor suppressor miRNAs as well as the suppressed expression of oncogenic miRNAs, including miR-21. Taken together, our data suggest that EF24 is a potent anticancer agent and selectively targets NF-κB signaling and miRNA expression, indicating that EF24 has significant potential as a therapeutic agent in various cancers.  相似文献   

9.
10.
11.
Abstract

Background: Vascular endothelial growth factor (VEGF) A and B are endothelial cell mitogens whose ligation to VEGFR1/VEGFR2 drives tumor angiogenesis and metastasis, and epithelial-mesenchymal transition (EMT). Blockade of these signaling axes could be obtained by disturbing the interactions between VEGFA and/or VEGFB with VEGFR1 and/or VEGFR2.

Methods: A 14-mer peptide (VGB) that recognizes both VEGFR1 and VEGFR2 were investigated for its inhibitory effects on the VEGF‐induced proliferation and migration using MTT and scratch assay, respectively. Downstream signaling pathways were also assessed by quantitative estimation of gene and protein expression using real-time PCR and immunohistochemistry (IHC).

Results: We investigated the inhibitory effects of VGB on downstream mediators of metastasis, including epithelial-cadherin (E-cadherin), matrix metalloprotease-9 (MMP-9), cancer myelocytomatosis (c-Myc), and nuclear factor-κβ (NF-κβ), and migration, comprising focal adhesion kinase (FAK) and its substrate Paxilin. VGB inhibited the VEGF‐induced proliferation of human umbilical vein endothelial cells (HUVECs), 4T1 and U87 cells in a time- and dose-dependent manner and migration of HUVECs. Based on IHC analyses, treatment of 4T1 mammary carcinoma tumor with VGB led to the suppression of p-AKT, p-ERK1/2, MMP-9, NF-κβ, and activation of E-cadherin compared with PBS-treated controls. Moreover, quantitative real-time PCR analyses of VGB-treated tumors revealed the reduced expression level of FAK, Paxilin, NF-κβ, MMP-9, c-Myc, and increased expression level of E-cadherin compared to PBS-treated controls.

Conclusions: Our results demonstrated that simultaneous blockade of VEGFR1/VEGFR2 is an effective strategy to fight solid tumors by targeting a wider range of mediators involved in tumor angiogenesis, growth, and metastasis.  相似文献   

12.
The aim of the present study was to investigate the therapeutic efficacy of genetically engineered stem cells (GESTECs) expressing bacterial cytosine deaminase (CD) and/or human interferon-beta (IFN-β) gene against HeLa cervical cancer and the migration factors of the GESTECs toward the cancer cells. Anticancer effect of GESTECs was examined in a co-culture with HeLa cells using MTT assay to measure cell viability. A transwell migration assay was performed so as to assess the migration capability of the stem cells to cervical cancer cells. Next, several chemoattractant ligands and their receptors related to a selective migration of the stem cells toward HeLa cells were determined by real-time PCR. The cell viability of HeLa cells was decreased in response to 5-fluorocytosine (5-FC), a prodrug, indicating that 5-fluorouracil (5-FU), a toxic metabolite, was converted from 5-FC by CD gene and it caused the cell death in a co-culture system. When IFN-β was additionally expressed with CD gene by these GESTECs, the anticancer activity was significantly increased. In the migration assay, the GESTECs selectively migrated to HeLa cervical cancer cells. As results of real-time PCR, chemoattractant ligands such as MCP-1, SCF, and VEGF were expressed in HeLa cells, and several receptors such as uPAR, VEGFR2, and c-kit were produced by the GESTECs. These GESTECs transduced with CD gene and IFN-β may provide a potential of a novel gene therapy for anticervical cancer treatments via their selective tumor tropism derived from VEGF and VEGFR2 expressions between HeLa cells and the GESTECs.  相似文献   

13.
14.
The purpose of this study is to investigate in vitro and ex vivo effects of matrine on the growth of human lung cancer and hepatoma cells and the cancer cell migration as well as the expressions of related proteins in the cancer cells. Matrine significantly inhibited the in vitro and ex vivo growth of human non-small cell lung cancer A549 and hepatoma SMMC-7721 cells. Matrine induced the apoptosis in A549 and SMMC-7721 cells. Western blot analysis indicated that matrine dose-dependently down-regulated the expression of anti-apoptotic protein Bcl-2 and up-regulated the level of pro-apoptotic protein bax, eventually leading the reduction of ratios of Bcl-2/Bax proteins in A549 and SMMC-7721 cells. Furthermore, matrine significantly suppressed the A549 cell migration without reducing the cell viability. In addition, matrine dramatically reduced the secretion of vascular endothelial growth factor A in A549 cells. More importantly, matrine markedly enhanced the anticancer activity of anticancer agent trichostatin A (the histone deacetylase inhibitor) by strongly reducing the viability and/or the ratio of Bcl-2/Bax protein in A549 cells. Our findings suggest that matrine may have the broad therapeutic and/or adjuvant therapeutic application in the treatment of human non-small cell lung cancer and hepatoma.  相似文献   

15.
Bamboo shavings (Bambusae Caulis in Taeniam, BCT) are widely used as a traditional Chinese medicine to control hypertension and cardiovascular disease, and to alleviate fever, vomiting, and diarrhea. It has been demonstrated that BCT reduces ovalbumin-induced airway inflammation by regulating pro-inflammatory cytokines, and decreases tumor growth in tumor-bearing mice. However, the effects of BCT on the metastatic potential of malignant cancer cells and the detailed mechanism of its anti-metastatic activity have not been examined previously. In this study, we investigated whether an aqueous extract of BCT (AE-BCT) reduces the metastatic potential of HT1080 cells, and elucidated the underlying anti-metastatic mechanism. In addition, we examined whether AE-BCT administration inhibits pulmonary metastasis of intravenously injected B16F10 cells in C57BL/6J mice. AE-BCT (50–250 µg/ml) dose-dependently suppressed colony-forming activity under anchorage-dependent and -independent growth conditions. Pretreatment with AE-BCT efficiently inhibited cell migration, invasion, and adhesion. AE-BCT also dramatically suppressed PMA-induced MMP-9 activity and expression by blocking NF-κB activation and ERK phosphorylation. Production of intracellular ROS, a key regulator of NF-κB-induced MMP-9 activity, was almost completely blocked by pretreatment with AE-BCT. Furthermore, daily oral administration of AE-BCT at doses of 50 and 100 mg/kg efficiently inhibited lung metastasis of B16F10 cells injected into the tail veins of C57BL/6J mice with no systemic toxicity. These results demonstrate that AE-BCT significantly reduced the metastatic activity of highly malignant cancer cells by suppressing MMP-9 activity via inhibition of ROS-mediated NF-κB activation. These results indicate that AE-BCT may be a safe natural product for treatment of metastatic cancer.  相似文献   

16.
Breast cancer is currently one of the most common malignant tumors in women. Our previous research found that thymic dysfunction has a certain relationship with the occurrence and development of breast cancer. In order to explore whether the functional status of thymus is related to the development and metastasis of breast cancer, we use BALB/c wild type mice (BALB wt), BALB/c nude mice (BALB nu), BALB wt mice implanted with 4T1 cells (wt 4T1), BALB nu with 4T1 (nu 4T1), D-galactose treatment wt 4T1 mice (D-Gal), Thymalfasin treatment wt 4T1 mice (Tα1), Cyclophosphamide treatment wt 4T1 mice (CTX), Doxorubicin treatment wt 4T1 mice (Dox) in the research. As a result, nu 4T1, D-Gal and DOX had earlier lung metastases. Gene chip results showed that PTMα and Tβ15b1 were the most up-regulated and down-regulated genes in thymosin-related genes, respectively. Overexpression or silencing of PTMα and Tβ15b1 genes did not affect the proliferation of 4T1 cells. PTMα gene silenced, cell migration and invasion ability enhanced, while PTMα gene overexpression, the cell invasion ability weaken. In vivo, PTMα gene overexpression promotes tumor growth and lung metastasis in the early stage, but has no significant effect in the later stage. Tβ15b1 overexpression also promotes tumor growth in the early stage, but suppresses in the later stage. Tβ15b1 gene silencing inhibits tumor lung metastasis. Thus, our findings demonstrated that thymic function affects breast cancer development and metastasis by regulating expression of thymus secretions PTMα and Tβ15b1. Our study provided new directions for breast cancer therapy.  相似文献   

17.
The aberrant signaling activation of vascular endothelial growth factor receptor (VEGFR) and urokinase plasminogen activator (uPA) is a common characteristic of many tumors, including lung cancer. Accordingly, VEGFR and uPA have emerged as attractive targets for tumor. KDR (Flk-1/VEGFR-2), a member of the VEGFR family, has been recognized as an important target for antiangiogenesis in tumor. In this study, a recombinant immunotoxin was produced to specifically target KDR-expressing tumor vascular endothelial cells and uPA-expressing tumor cells and mediate antitumor angiogenesis and antitumor effect. Based on its potent inhibitory effect on protein synthesis, Luffin-beta (Lβ) ribosome-inactivating protein was selected as part of a recombinant fusion protein, a single-chain variable fragment against KDR (KDRscFv)-uPA cleavage site (uPAcs)-Lβ-KDEL (named as KPLK). The KDRscFv-uPAcs-Lβ-KDEL (KPLK) contained a single-chain variable fragment (scFv) against KDR, uPAcs, Lβ, and the retention signal for endoplasmic reticulum proteins KDEL (Lys-Asp-Glu-Leu). The KPLK-expressing vector was expressed in Escherichia coli, and the KPLK protein was isolated with nickel affinity chromatography and gel filtration chromatography. Sodium dodecyl sulfate–polyacrylamide gel electrophoresis test demonstrated KPLK was effectively expressed. Result of in vitro cell viability assay on non-small cell lung cancer (NSCLC) H460 cell line (uPA-positive cell) revealed that KPLK significantly inhibited cell proliferation, induced apoptosis, and accumulated cells in S and G2/M phases, but the normal cell line (human submandibular gland cell) was unaffected. These effects were enhanced when uPA was added to digest KPLK to release Lβ. For in vivo assay of KPLK, subcutaneous xenograft tumor model of nude mice were established with H460 cells. Growth of solid tumors was significantly inhibited in animals treated with KPLK up to 21 days, tumor weights were decreased, and the expression of angiogenesis marker CD31 was downregulated; meanwhile, the apoptosis-related protein casspase-3 was upregulated. These results suggested that the recombinant KPLK may have therapeutic applications on tumors, especially uPA-overexpressing ones.  相似文献   

18.
The β2 adrenergic receptor (ADRB2) is a G protein-coupled transmembrane receptor expressed in the human respiratory tract and widely recognized as a pharmacological target for treatments of asthma and chronic obstructive pulmonary disorder (COPD). Although a number of ADRB2 agonists have been developed for use in asthma therapy, indacaterol is the only ultra-long-acting inhaled β2-agonist (LABA) approved by the FDA for relieving the symptoms in COPD patients.The precise molecular mechanism underlying the pharmacological effect of indacaterol, however, remains unclear. Here, we show that β-arrestin-2 mediates the internalization of ADRB2 following indacaterol treatment. Moreover, we demonstrate that indacaterol significantly inhibits tumor necrosis factor-α (TNF-α)-induced NF-κB activity by reducing levels of both phosphorylated-IKK and -IκBα, thereby decreasing NF-κB nuclear translocation and the expression of MMP-9, an NF-κB target gene. Subsequently, we show that indacaterol significantly inhibits TNF-α/NF-κB-induced cell invasiveness and migration in a human cancer cell line. In conclusion, we propose that indacaterol may inhibit NF-κB activity in a β-arrestin2-dependent manner, preventing further lung damage and improving lung function in COPD patients.  相似文献   

19.

Background

Neutralization of vascular endothelial growth factor receptor 1 (VEGFR1) and/or VEGFR2 is a widely used means of inhibiting tumor angiogenesis.

Methods

Based on the complex X-ray structures of VEGFA/VEGFR1, VEGFA/VEGFR2, and VEGFB/VEGFR1, a peptide (referred to as VGB) was designed to simultaneously bind to VEGFR1 and VEGFR2, and binding, antiangiogenic and antitumor properties of the peptide was investigated in vitro.

Results

VGB bound to both VEGFR1 and VEGFR2 in human umbilical vein endothelial cells (HUVECs) and 4?T1 mammary carcinoma tumor (MCT) cells, and inhibited the proliferation of HUVE, 4?T1 MCT, and U87 glioblastoma cells. Through abrogation of AKT and ERK1/2 phosphorylation, VEGFA-stimulated proliferation, migration, and two- and three-dimensional tube formation in HUVECs were inhibited more potently by VGB than by bevacizumab. In a murine 4?T1 MCT model, VGB strongly inhibited tumor growth without causing weight loss, accompanied by inhibition of AKT and ERK1/2 phosphorylation, a significant decrease in tumor cell proliferation (Ki-67 expression), angiogenesis (CD31 and CD34 expression), an increase in apoptosis index (increased TUNEL staining and p53 expression and decreased Bcl-2 expression), and the suppression of systematic spreading of the tumor (reduced NF-κB and MMP-9 and increased E-cadherin expression).

Conclusion

The dual specificity of VGB for VEGFR1 and VEGFR2, through which the PI3K/AKT and MAPK/ERK1/2 signaling pathways can be abrogated and, subsequently, angiogenesis, tumor growth, and metastasis are inhibited.

General significance

This study demonstrated that simultaneous blockade of VEGFR1 and VEGFR2 downstream cascades is an effective means for treatment of various angiogenic disorders, especially cancer.  相似文献   

20.
Tumor development and progression are influenced by macrophages of the surrounding microenvironment. To investigate the influences of an inflammatory tumor microenvironment on the growth and metastasis of prostate cancer, the present study used a co-culture model of prostate cancer (PCa) cells with tumor-associated macrophage (TAM)-conditioned medium (MCM). MCM promoted PCa cell (LNCaP, DU145 and PC-3) growth, and a xenograft model in nude mice consistently demonstrated that MCM could promote tumor growth. MCM also stimulated migration and invasion in vitro. Somatostatin derivate (smsDX) significantly attenuated the TAM-stimulated proliferation, migration and invasion of prostate cancer. Immunohistochemistry revealed that NF-κB was over-expressed in PCa and BPH with chronic inflammatory tissue specimens and was positively correlated with macrophage infiltration. Further investigation into the underlying mechanism revealed that NF-κB played an important role in macrophage infiltration. SmsDX inhibited the paracrine loop between TAM and PCa cells and may represent a potential therapeutic agent for PCa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号