首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Open reading frame 17 (Bm17) gene of Bombyx mori nucleopolyhedrovirus is a highly conserved gene in lepidopteran nucleopolyhedroviruses, but its function remains unknown. In this report, transient-expression and superinfection assays indicated that BM17 localized in the nucleus and cytoplasm of infected BmN cells. To determine the role of Bm17 in baculovirus life cycle, we constructed a Bm17 knockout virus and characterized its properties in cells. Analysis of the production and infection of budded virions, the level of viral DNA replication revealed showed that there was no significant difference among the mutant, the control, and the Bm17 repaired virus strains. These results suggest that BM17 is not essential for virus replication in cultured cells.  相似文献   

2.
3.
4.
Wu W  Lin T  Pan L  Yu M  Li Z  Pang Y  Yang K 《Journal of virology》2006,80(23):11475-11485
38K (ac98) of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is a highly conserved baculovirus gene whose function is unknown. To determine the role of 38K in the baculovirus life cycle, a 38K knockout bacmid containing the AcMNPV genome was generated through homologous recombination in Escherichia coli. Furthermore, a 38K repair bacmid was constructed by transposing the 38K open reading frame with its native promoter region into the polyhedrin locus of the 38K knockout bacmid. After transfection of these viruses into Spodoptera frugiperda cells, the 38K knockout bacmid led to a defect in production of infectious budded virus, while the 38K repair bacmid rescued this defect, allowing budded-virus titers to reach wild-type levels. Slot blot analysis indicated that 38K deletion did not affect the levels of viral DNA replication. Subsequent immunoelectron-microscopic analysis revealed that masses of electron-lucent tubular structures containing the capsid protein VP39 were present in cells transfected with 38K knockout bacmids, suggesting that nucleocapsid assembly was interrupted. In contrast, the production of normal nucleocapsids was restored when the 38K knockout bacmid was rescued with a copy of 38K. Recombinant virus that expresses 38K fused to green fluorescent protein as a visual marker was constructed to monitor protein transport and localization within the nucleus during infection. Fluorescence was first detected along the cytoplasmic periphery of the nucleus and subsequently localized to the center of the nucleus. These results demonstrate that 38K plays a role in nucleocapsid assembly and is essential for viral replication in the AcMNPV life cycle.  相似文献   

5.
6.
Shen H  Chen K 《FEBS letters》2012,586(7):990-995
All lepidopteran baculovirus genomes sequenced encode a homolog of the Bombyx mori nucleopolyhedrovirus orf61 gene (Bm61). To determine the role of Bm61 in the baculoviral life cycle, we constructed a Bm61 knockout virus and characterized it in cells. We observed that the Bm61 deletion bacmid led to a defect in production of infectious budded virus (BV). Quantitative PCR analysis of BV in the media culturing the transfected cell indicated that BV was not produced due to Bm61 deletion. Electron microscope analysis showed that in the knockout of Bm61, nucleocapsids were not transported from the nucleus to the cytoplasm. From these results we concluded that BM61 is required in the BV pathway for the egress of nucleocapsids from the nucleus to the cytoplasm.  相似文献   

7.
Su WJ  Shen WD  Li B  Wu Y  Gao G  Wang WB 《Bioscience reports》2009,29(2):71-75
In the present study, we studied the feasibility of deleting essential genes in insect cells by using bacmid and purifying recombinant bacmid in Escherichia coli DH10B cells. To disrupt the orf4 (open reading frame 4) gene of BmNPV [Bm (Bombyx mori) nuclear polyhedrosis virus], a transfer vector was constructed and co-transfected with BmNPV bacmid into Bm cells. Three passages of viruses were carried out in Bm cells, followed by one round of purification. Subsequently, bacmid DNA was extracted and transformed into competent DH10B cells. A colony harbouring only orf4-disrupted bacmid DNA was identified by PCR. A mixture of recombinant (white colonies) and non-recombinant (blue colonies) bacmids were also transformed into DH10B cells. PCR with M13 primers showed that the recombinant and non-recombinant bacmids were separated after transformation. The result confirmed that purification of recombinant viruses could be carried out simply by transformation and indicated that this method could be used to delete essential genes. Orf4-disrupted bacmid DNA was extracted and transfected into Bm cells. Viable viruses were produced, showing that orf4 was not an essential gene.  相似文献   

8.
To construct the Bac-to-Bac expression system of Bombyx mori nucleopolyhedrovirus (BmNPV), a transfer vector was constructed which contained an Escherichia coli (E. coli) mini-F replicon and a lacZ: attTN7: lacZ cassette within the upstream and downstream regions of the BmNPV polyhedrin gene. B. mori larvae were cotransfected with wild-type BmNPV genomic DNA and the transfer vector through subcutaneous injection to generate recombinant viruses by homologous recombination in vivo. The genomic DNA of budded viruses extracted from the hemolymph of the transfected larvae was used to transform E. coli DH10B. Recombinant bacmids were screened by kanamycin resistance, PCR and restriction enzyme (REN) digestion. One of the bacmid colonies, BmBacJS13, which had similar REN profiles to that of wild-type BmNPV, was selected for further research. To investigate the infectivity of BmBacJS13, the polyhedrin gene was introduced into the bacmid and the resultant recombinant (BmBacJS13-ph) was transfected to BmN cells. The budded viruses were collected from the supernatant of the transfected cells and used for infecting BmN cells. Growth curve analysis indicated that BmBacJS13-ph had a similar growth curve to that of wild-type BmNPV. Bio-assays indicated that BmBacJS13-ph was also infectious to B. mori larvae. Foundation items: 973 (2003CB114202); Programme Strategic Scientific Alliances between China and the Netherlands (2004CB720404); National Natural Fundation of China project (30630002)  相似文献   

9.
odv-e25(e25) is one of the core genes of baculoviruses. To investigate how it functions in the replication cycle of a baculovirus, a number of Autographa californica multiple nucleopolyhedrovirus recombinants with e25 under control of the promoter of immediate early gene ie1, or the promoter of the very late hyperexpressed gene p10, were constructed using a bacmid system, and the effects of early expression or overexpression of e25 on replication of the virus were evaluated. Microscopy and titration assays demonstrated that bacmids with e25 under control of ie1 promoter were unable to produce budded viruses; and that the recombinant viruses with e25 under control of p10 promoter generated budded virus normally, but formation of occlusion bodies were dramatically reduced and delayed in the infected cells. Electron microscopy showed that there were no mature virions or intact nucleocapsids present in the cells transfected with a recombinant bacmid with e25 under control of ie1 promoter. Quantitative real-time PCR analysis demonstrated that alteration of the e25 promoter did not affect viral DNA synthesis. The reporter gene expression from the promoter of the major capsid protein gene vp39 was reduced 63% by early expression of e25. Confocal microscopy revealed that E25 was predominantly localized in nuclei by 24 hours post infection with wild-type virus, but it remained in the cytoplasm in the cells transfected with a recombinant bacmid with e25 under control of the ie1 promoter, suggesting that the transport of E25 into nuclei was regulated in a specific and strict time dependent manner.  相似文献   

10.

Objective

To examine the feasibility of chitosan as an alternative transfection reagent candidate for protein expression in Bm5 cells and silkworm larvae using recombinant BmNPV bacmid DNA.

Result

Chitosan 100 and recombinant Bombyx mori nucleopolyhedrovirus (BmNPV) bacmid DNA, in amino group/phosphate group (N/P) ratios of 0.1–10, were used for formation of chitosan/DNA nanocomplexes. The chitosan/BmNPV bacmid DNA nanocomplexes showed higher specific activity of GFPuv-β1,3-N-acetylglucosaminyltransferase 2 (β3GnT2) fusion protein (GGT2) expressed in silkworm larvae than DMRIE-C, a conventional silkworm transfection reagent. In particular, the composition of chitosan and BmNPV bacmid DNA nanocomplexes formed by an N/P ratio of 8 or 10, respectively, showed the highest specific activity of β3GnT2 in the silkworm larvae hemolymph. In addition, three different proteins were expressed in silkworm larvae to the same extent using chitosan as that using DMRIE-C.

Conclusion

This is the first finding that chitosan/BmNPV bacmid DNA nanocomplexes can rival the performance of commercially available transfection reagents for the expression of recombinant proteins in Bm5 cells and silkworm larvae.
  相似文献   

11.
12.
We have previously reported that baculovirus Bombyx mori nucleopolyhedrovirus (BmNPV) late expression factor 11 (lef-11) is associated with viral DNA replication and have demonstrated that it potentially interacts with itself; however, whether LEF-11 forms oligomers and the impact of LEF-11 oligomerization on viral function have not been substantiated. In this study, we first demonstrated that LEF-11 is capable of forming oligomers. Additionally, a series of analyses using BmNPV LEF-11 truncation mutants indicated that two distinct domains control LEF-11 oligomerization (aa 42–61 and aa 72–101). LEF-11 truncation constructs were inserted into a lef-11-knockout BmNPV bacmid, which was used to demonstrate that truncated LEF-11 lacking either oligomerization domain abrogates viral DNA replication. Finally, site-directed mutagenesis was used to determine that the conserved hydrophobic residues Y58&I59 (representing Y58 and I59), I85 and L88&L89 (representing L88 and L89) are required for LEF-11 oligomerization and viral DNA replication. Collectively, these data indicate that BmNPV LEF-11 oligomerization influences viral DNA replication.  相似文献   

13.

Background

Shigella flexneri is the major cause of bacillary dysentery in the developing countries. The lipopolysaccharide (LPS) O-antigen of S. flexneri plays an important role in its pathogenesis and also divides S. flexneri into 19 serotypes. All the serotypes with an exception for serotype 6 share a common O-antigen backbone comprising of N-acetylglucosamine and three rhamnose residues. Different serotypes result from modification of the basic backbone conferred by phage-encoded glucosyltransferase and/or acetyltransferase genes, or plasmid-encoded phosphoethanolamine transferase. Recently, a new site for O-acetylation at positions 3 and 4 of RhaIII, in serotypes 1a, 1b, 2a, 5a and Y was shown to be mediated by the oacB gene. Additionally, this gene was shown to be carried by a transposon-like structure inserted upstream of the adrA region on the chromosome.

Results

In this study, a novel bacteriophage Sf101, encoding the oacB gene was isolated and characterised from a serotype 7a strain. The complete sequence of its 38,742 bp genome encoding 66 open reading frames (orfs) was determined. Comparative analysis revealed that phage Sf101 has a mosaic genome, and most of its proteins were >90% identical to the proteins from 12 previously characterised lambdoid phages. In addition, the organisation of Sf101 genes was found to be highly similar to bacteriophage Sf6. Analysis of the Sf101 OacB identified two amino acid substitutions in the protein; however, results obtained by NMR spectroscopy confirmed that Sf101-OacB was functional. Inspection of the chromosomal integration site of Sf101 phage revealed that this phage integrates in the sbcB locus, thus unveiling a new site for integration of serotype-converting phages of S. flexneri, and determining an alternative location of oacB gene in the chromosome. Furthermore, this study identified oacB gene in several serotype 7a isolates from various regions providing evidence of O-acetyl modification in serotype 7a.

Conclusions

This is the first report on the isolation of bacteriophage Sf101 which contains the S. flexneri O-antigen modification gene oacB. Sf101 has a highly mosaic genome and was found to integrate in the sbcB locus. These findings contribute an advance in our current knowledge of serotype converting phages of S. flexneri.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-742) contains supplementary material, which is available to authorized users.  相似文献   

14.
Orf94 (Bm94) of Bombyx mori nucleopolyhedrovirus (BmNPV) potentially encodes 424-amino acids with a predicted molecular weight of 49.4 kDa, but its function remains unknown. Blast search results revealed that Bm94 homologues exist in 10 completely sequenced Lepidopteron NPVs with identities ranging from 95 to 37%. Results of our recent study showed that Bm94 was transcribed from 12 to 72 h and the corresponding protein was detected from 24 to 72 h post-infection. Furthermore, Western blot analysis revealed that Bm94 was present in occlusion-derived virus (ODV) and in total protein from BmNPV-infected BmN cells, but not in budded virus. Immunofluoresence analysis revealed that the protein located primarily in the cytoplasm and was also present in the nucleus in the later infection. In conclusion, these results together indicated that Bm94 was a late gene, which distributed both in the cytoplasm and in the nucleus, and was identified to be a component of BmNPV ODV.  相似文献   

15.
利用Red系统快速敲除家蚕核型多角体病毒orf60基因   总被引:1,自引:0,他引:1  
用Red重组系统和最近构建的家蚕核型多角体病毒(BmNPV)bacmid在大肠杆菌BW25113中快速地敲除BmNPVorf60基因。从大肠杆菌BmDH10Bac中提取BmNPVbacmid,将其电转化到含有质粒pKD46(能表达Red重组酶)的大肠杆菌菌株BW25113中,获得了可用于BmNPV基因打靶的菌株BW25113-Bac。设计一对长63bp的引物(5′端为orf60基因的左右同源臂,长45bp;3′端长18bp,为氯霉素抗性基因(cat)的首尾序列),以pKD3质粒(含cat)为模板,PCR扩增携带orf60左右同源臂的cat,即打靶线性化片段。将该线性化片段电转入BW25113-Bac菌株,在Red重组酶的作用下,线性化片段与BmNPVbacmid中的orf60基因发生同源重组。设计3对特异引物,用PCR方法证明cat成功地替换了BmNPVorf60基因。重组bacmid DNA转染BmN细胞后,Western blot分析未检测到orf60基因的表达。  相似文献   

16.
Very late expression factor 1 (VLF-1) of Autographa californica multiple nucleopolyhedrovirus is a putative tyrosine recombinase and is required for both very late gene expression and budded virus production. In this report, we show that a vlf-1 knockout bacmid was able to synthesize viral DNA at levels similar to that detected for a gp64 knockout bacmid that served as a noninfectious control virus. Additionally, analysis of replicated bacmid DNA by field-inversion gel electrophoresis indicated that VLF-1 is not required for synthesizing high-molecular-weight intermediates that could be resolved into unit-length genomes when cut at a unique restriction site. However, immunoelectron microscopic analysis revealed that in cells transfected with a vlf-1 knockout bacmid, aberrant tubular structures containing the capsid protein vp39 were observed, suggesting that this virus construct was defective in producing mature capsids. In contrast, rescuing the vlf-1 knockout bacmid construct with a copy of VLF-1 that carries a mutation of a highly conserved tyrosine (Y355F) was sufficient to restore the production of nucleocapsids with a normal appearance, but not infectious virus production. Furthermore, the results of a DNase I protection assay indicated that the DNA packaging efficiency of the VLF-1(Y355F) virus construct was similar to that of the gp64 knockout control. Finally, a recombinant virus containing a functional hemagglutinin epitope-tagged version of VLF-1 was constructed to investigate the association of VLF-1 with the nucleocapsid. Analysis by immunoelectron microscopy of Sf-9 cells infected with this virus showed that VLF-1 localized to an end region of the nucleocapsid. Collectively, these results indicate that VLF-1 is required for normal capsid assembly and serves an essential function during the final stages of the DNA packaging process.  相似文献   

17.
Bombyx mori nucleopolyhedrovirus (BmNPV) orf4 has been shown to be expressed at very early stage of Bm-NPV infection cycle. In this study, using transient expression experiment, we demonstrated for the first time that orf4 promoter is an immediate early promoter, indicating that orf4 may play a role in the immediate-early stage of BmNPV infection. Moreover, with the recently developed Bac-to-Bac/BmNPV baculovirus expression system and a modified pFast-Bac1 whose polyhedrin promoter was replaced with orf4 promoter, a recombinant bacmid baculovirus expressing enhanced green fluorescent protein (EGFP) under the control of orf4 promoter in Bombyx mori (Bm) cells was successfully constructed. The result not only showed that the polyhedrin promoter can be replaced easily with other promoters to direct the expression of foreign genes by using this novel system but also laid the foundation for the rescue experiment of orf4 deletion mutant.  相似文献   

18.
19.
Autographa californica multiple nucleopolyhedrovirus (AcMNPV) lef-3 is one of nine genes required for viral DNA replication in transient assays. LEF-3 is predicted to contain several domains related to its functions, including nuclear localization, single-strand DNA binding, oligomerization, interaction with P143 helicase, and interaction with a viral alkaline nuclease. To investigate the essential nature of LEF-3 and the roles it may play during baculovirus DNA replication, a lef-3 null bacmid (bKO-lef3) was constructed in Escherichia coli and characterized in Sf21 cells. The results showed that AcMNPV lef-3 is essential for DNA replication, budded virus production, and late gene expression in vivo. Cells transfected with the lef-3 knockout bacmid produced low levels of early proteins (P143, DNA polymerase, and early GP64) and no late proteins (P47, VP39, or late GP64). To investigate the functional role of domains within the LEF-3 open reading frame in the presence of the whole viral genome, plasmids expressing various LEF-3 truncations were transfected into Sf21 cells together with bKO-lef3 DNA. The results showed that expression of AcMNPV LEF-3 amino acids 1 to 125 was sufficient to stimulate viral DNA replication and to support late gene expression. Expression of Choristoneura fumiferana MNPV lef-3 did not rescue any LEF-3 functions. The construction of a LEF-3 amino acid 1 to 125 rescue bacmid revealed that this region of LEF-3, when expressed in the presence of the rest of the viral genome, stimulated viral DNA replication and late and very late protein expression, as well as budded virus production.Members of the family Baculoviridae are large rod-shaped enveloped viruses containing a circular double-stranded DNA genome that varies in size from 80 to 180 kb (3). Baculoviruses are unique viruses that only replicate in invertebrates. In general, isolates of each baculovirus species exhibit a narrow host range. For example, Choristoneura fumiferana nucleopolyhedrovirus (CfMNPV) is known to infect only the spruce budworm (Choristoneura fumiferana), but Autographa californica multiple nucleopolyhedrovirus (AcMNPV) replicates in hosts derived from several families of Lepidoptera (14). The restriction of baculovirus replication in nonpermissive hosts has been studied, and a number of genes, expressed at different points in the virus replication cycle, have been identified as playing some role in this restriction (40). Most of these identified genes are associated with viral DNA replication and late gene expression.Nine AcMNPV genes (ie-1, ie-2, p143, dnapol, lef-1, lef-2, lef-3, pe38, and p35) are required for directing transient replication of plasmids in transfected cells, suggesting that these genes are involved in baculovirus DNA replication (19, 27, 46). Only two of these genes, p143 and dnapol, have been shown to be essential for AcMNPV DNA replication in vivo (26, 41). Another gene, lef-11, although not essential for replication in transient assays, is also essential for DNA replication in vivo (24), indicating that questions concerning DNA replication need to be studied within the context of the whole virus genome.LEF-3 is a single-stranded DNA-binding protein (SSB) that self-localizes to the nucleus (15, 45). LEF-3 is also responsible for transporting P143, a predicted DNA unwinding (helicase) protein, into the nucleus, where it is required for viral DNA replication (26, 29, 45). LEF-3 may also regulate the activity of a viral alkaline nuclease (AN) during viral DNA replication (32). We have previously mapped the region carrying the nuclear localization signal of LEF-3 to residues 26 to 32 within the N-terminal 56-amino-acid domain (1, 7). By fusing this domain in frame with P143 and testing the construct in transient plasmid replication assays, we showed that additional functions of LEF-3 are required during replication, in addition to interacting with P143 to transport it into the nucleus. In fact, we have demonstrated that there is a close interaction between LEF-3 and P143 (as well as the immediate-early 1 [IE-1] protein) on viral DNA in the nucleus (17), suggesting that direct interaction of LEF-3 and P143 is required during viral DNA replication. The LEF-3 domain necessary for directing P143 to the nucleus is included within the N-terminal 125 amino acids (7). Two conserved cysteine residues in this region (C82 and C106) are not essential for this function, so it is unknown which specific amino acids are involved in the LEF-3-P143 interaction (1).In this study, a lef-3 knockout genome was constructed by exploiting a baculovirus shuttle vector (bacmid) system. Bacmids (a baculovirus genome carrying independent origins for replication in either bacteria or insect cells) were originally developed to prepare recombinant baculoviruses in Escherichia coli prior to transfection into insect cells (28). The system takes advantage of the site-specific transposition properties of the Tn7 transposon to simplify and enhance the process of generating recombinant bacmid DNA. In our case, we used the AcMNPV-derived bacmid as a template for deletion of the AcMNPV lef-3 gene and then examined the effect of this deletion on viral protein synthesis, budded virus (BV) production, and viral DNA replication. We also examined the ability of LEF-3 from another Alphabaculovirus species member, CfMNPV, to substitute for AcMNPV in a recombinant bacmid.  相似文献   

20.
To construct the Bac-to-Bac expression system of Bombyx mori nucleopolyhedrovirus(BmNPV),a transfer vector was constructed which contained an Escherichia coli(E.coli)mini-F replicon and a lacZ:attTN7:lacZ cassette within the upstream and downstream regions of the BmNPV polyhedrin gene.B.mori larvae were cotransfected with wild-type BmNPV genomic DNA and the transfer vector through subcutaneous injection to generate recombinant viruses by homologous recombination in vivo.The genomic DNA of budded viruses extracted from the hemolymph of the transfected larvae was used to transform E.coli DH10B.Recombinant bacmids were screened by kanamycin resistance,PCR and restriction enzyme(REN)digestion.One of the bacmid colonies,BmBacJS13,which had similar REN profiles to that of wild-type BmNPV,was selected for further research.To investigate the infectivity of BmBacJS13,the polyhedrin gene was introduced into the bacmid and the resultant recombinant(BmBacJS13-ph)was transfected to BmN cells.The budded viruses were collected from the supernatant of the transfected cells and used for infecting BmN cells.Growth curve analysis indicated that BmBacJS13-ph had a similar growth curve to that of wild-type BmNPV.Bio-assays indicated that BmBacJS13-ph was also infectious to B.mori larvae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号