首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
SYNOPSIS Catalase activity of Paramecium tetraurelia decreased during autogamy and recovered to normal 5 days later. Autogamy also caused changes in the ciliate's sensitivity to natural ionizing radiations—the decrease in cell growth rate previously described in shielded cultures did not occur when autogamous cells were used. Maximum effect of shielding was observed in 11-day-old postautogamous cells. the role of the catalase in the mechanism of natural irradiation effect is discussed.  相似文献   

2.
We tested the hypothesis that photo-oxidative stress is greater in symbiotic representatives of the freshwater ciliate Paramecium bursaria than in aposymbiotic (i.e., without Chlorella) ones. The level of oxidative stress was determined by assessing reactive oxygen species (ROS) with two fluorescent probes (hydroethidine and dihydrorhodamine123) by flow cytometry in exponential and stationary growth phases of both strains. Photo-oxidative stress was assessed in the laboratory after exposure of the ciliates to photosynthetically active radiation (PAR: 400-700 nm) and PAR+ultraviolet radiation (UVR: 280-400 nm). Additionally, both strains were screened for their antioxidant defenses by measuring the activity of the enzymes catalase, superoxide dismutase (SOD), and glutathione reductase. The results showed that aposymbiotic ciliates had higher levels of PAR-induced oxidative stress than symbiotic ones. Significant differences in PAR-induced oxidative stress were also found in both strains when comparing exponential and stationary growth phases with generally higher values in the former. After exposure to UVR, aposymbiotic ciliates in the stationary phase had the highest levels of ROS despite an increase in SOD activity. By contrast, exposure to UVR decreased catalase activity in both strains. Overall, our results suggest that in this ciliate symbiosis, the presence of symbionts minimizes photo-oxidative stress. This work represents the first assessment of photo-oxidative stress in an algal-ciliate mutualistic symbiosis.  相似文献   

3.
Paramecium cells are usually cultured in a wheat grass powder infusion inoculated with Klebsiella pneumoniae. However, non-bacterized wheat grass powder infusion is toxic to paramecia, and bacteria-derived substance detoxifies the toxic substance. Here, the detoxifying substance from K. pneumoniae, which was found to be proteinaceous, was purified to homogeneity. The protein had an apparent molecular mass of about 200 kDa by gel filtration and 92 kDa by SDS-polyacrylamide gel electrophoresis. Although the amino acid sequence of the amino terminal region did not show a high sequence homology with any reported proteins, amino acid sequences of internal regions of the protein were nearly identical to catalase HPII from Escherichia coli. When the wheat grass powder infusion was treated at 25 degrees C for 1 h with commercially available catalase from bovine liver, the toxicity of the infusion against paramecia was completely abolished. The initial concentration of hydrogen peroxide in the wheat grass powder infusion was about 30 microM and was completely decomposed by the catalase treatment. Therefore, the toxic substance in the wheat grass powder infusion and the detoxifying substance from K. pneumoniae are considered as hydrogen peroxide and catalase, respectively.  相似文献   

4.
An unusual monomeric cGMP-dependent protein kinase, enriched in cilia, was isolated from Paramecium cilia and whole cells. Cilia and whole cell extracts had relatively high ratios of cGMP-dependent to cAMP-dependent protein kinase activity (1:2). The calculated molecular weight of the native enzyme was 88,000. The enzyme was identified on sodium dodecyl sulfate-polyacrylamide gels as a 77,000 molecular weight band based on copurification of this protein with enzyme activity, 8-N3-[32P]cAMP labeling, and autophosphorylation. Based on the size of the native enzyme, it was concluded that the kinase is a monomer with cGMP-binding and catalytic activities on the same polypeptide. Dimer-sized cGMP-dependent protein kinase, like that of the well characterized mammalian enzyme, was never seen, despite stringent efforts to control proteolysis. The structure of the Paramecium cGMP-dependent protein kinase supports a model in which the dimeric vertebrate form of the enzyme evolved from an early monomeric form. The catalytic properties of the Paramecium enzyme differed in several respects from those of the mammalian enzyme: it could use GTP or ATP as the phosphoryl donor, it did not phosphorylate Kemptide effectively, and it had poor histone kinase activity with high Mg2+ concentrations. Quercertin, 5'-guanylyl imidodiphosphate, indomethacin, and the isoquinolinesulfonamide drug H7 inhibited Paramecium cGMP-dependent protein kinase activity. The enzyme had fast and slow binding sites (with kd values of 5-10 x 10(-3)s-1 and 0.44 x 10(-3)s-1) and showed an order of preference for cyclic nucleotides and cyclic nucleotide analogs similar to that of the mammalian enzyme.  相似文献   

5.
The AMP-dependent stimulation of the cyanide-insensitive respiration of Paramecium mitochondria was investigated. The nucleotides exhibiting a stimulatory effect on the cyanide-insensitive oxidation of pyruvate (+ malate) in a medium supplemented with EDTA or carboxyatractyloside were, in decreasing order of efficiency, AMP, GMP, IMP, UMP and TMP. On the other hand, ADP, ATP and cyclic AMP were ineffective. In the presence of carboxyatractyloside, addition of AMP to Paramecium mitochondria incubated with pyruvate (+malate) led to an increase in membrane potential. In the absence of light, the photoactivable derivative of AMP, 3'-[4-[N-(4-azido-2-nitrophenyl)amino]butyryl]-AMP (NAP4-AMP) added to Paramecium mitochondria opposed the stimulatory effect of AMP on the cyanide-insensitive respiration; the Ki for NAP4-AMP was much lower than the Km for AMP, 0.2 microM compared with 120 microM. The ADP-stimulated respiration was not affected. Photoirradiation of Paramecium mitochondria in the presence of NAP4-AMP resulted in irreversible inhibition of the AMP-stimulated cyanide-insensitive respiration. No effect on the ADP-stimulated respiration was observed. A heatlabile cyanide-insensitive ubiquinol oxidase was extracted from Paramecium mitochondria with the detergent NN-dimethyl-N-(3-laurylamidopropyl)amine oxide. The quinol oxidase activity was slightly stimulated by AMP.  相似文献   

6.
Forward swimming of the Triton-extracted model of Paramecium is stimulated by cAMP. Backward swimming of the model induced by Ca(2+) is depressed by cAMP. Cyclic AMP and Ca(2+) act antagonistically in setting the direction of the ciliary beat. Some ciliary axonemal proteins from Paramecium caudatum are phosphorylated in a cAMP-dependent manner. In the presence of cAMP, axonemal 29- and 65-kDa polypeptides were phosphorylated by endogenous A-kinase in vitro. These phosphoproteins, however, were not dephosphorylated after in vitro phosphorylation, presumably because of the low endogenous phosphoprotein phosphatase activity associated with isolated axonemes. We purified the protein phosphatase that specifically dephosphorylated the 29- and 65-kDa phosphoproteins from Paramecium caudatum. The molecular weight of the protein phosphatase was 33 kDa. The protein phosphatase had common characteristics as protein phosphatase 2C (PP2C). The characteristics of the protein phosphatase were the same as those of the PP2C from Paramecium tetraurelia (PtPP2C) [Grothe et al., 1998: J. Biol. Chem. 273:19167-19172]. We concluded that the phosphoprotein phosphatase is the PP2C from Paramecium caudatum (PcPP2C). The PcPP2C markedly accelerated the backward swimming of the Triton-extracted model in the presence of Ca(2+). On the other hand, the PcPP2C slightly depressed the forward swimming speed. This indicates that the PP2C plays a role in the cAMP-dependent regulation of ciliary movement in Paramecium caudatum through dephosphorylation of 29- and/or 65-kDa regulatory phosphoproteins by terminating the action of cAMP.  相似文献   

7.
Wild type and mutant Paramecium tetraurelia were grown in monoxenic cultures by first growing Enterobacter aerogenes on a defined medium and then adding the Paramecium to the stationary phase bacterial culture. The bacterial growth was proportional to the concentration of the carbon source (citrate), and the Paramecium growth was dependent upon both the bacterial density and the starting density of Paramecium. The behavior, electrophysiological properties, ciliary lipid composition, and growth characteristics were similar to the commonly used bacterized medium (Cerophyl) except that 5-10 times greater Paramecium yields were reliably obtained.  相似文献   

8.
Ca2+-regulated guanylate cyclase in ciliary membranes from Paramecium contained tightly bound calmodulin. Antisera against calmodulin from Tetrahymena and soybean inhibited enzyme activity. EGTA did not easily release calmodulin; however, La3+ inhibited guanylate cyclase by dissociation of calmodulin. While La could not replace Ca in the activation of guanylate cyclase, it substituted for Ca2+ in the activation of calmodulin-dependent phosphodiesterase from pig brain independently of whether homologous or Paramecium calmodulin was used. After removal of endogenous calmodulin from guanylate cyclase, reconstitution was achieved with calmodulin from Paramecium, Tetrahymena, pig brain, and soybean. Ca2+-binding proteins lacking trimethyllysine like calmodulin from Dictyostelium, parvalbumin, and troponin C failed to restore enzyme activity. The properties of the native and reconstituted guanylate cyclase/calmodulin complex were compared. Reassociation of calmodulin with its target enzyme was weak since all calmodulin remained in the supernatant after a single centrifugation. While most enzyme characteristics remained unchanged in the reconstituted complex, the inhibition by Ca greater than 100 microM was of a mixed-type compared to noncompetitive inhibition in the native enzyme. The regulation of the enzyme by cations was also altered. Whereas Ca was the most potent and specific activator of the native enzyme, in the reconstituted system Sr was far more effective.  相似文献   

9.
Deciliation of Paramecium tetraurelia by a Ca2+ shock procedure releases a discrete set of proteins which represent about 1% of the total cell protein. Marker enzymes for cytoplasm (hexokinase), endoplasmic reticulum (glucose-6-phosphatase), peroxisomes (catalase), and lysosomes (acid phosphatase) were not released by this treatment. Among the proteins selectively released is a Ca2+-dependent ATPase. This enzyme has a broad substrate specificity which includes GTP, ATP, and UTP, and it can be activated by Ca2+, Sr2+, or Ba2+, but not by Mg2+ or by monovalent cations. The crude enzyme has a specific activity of 2-3 mumol/min per mg; the optimal pH for activity is 7.5. ATPase, GTPase, and UTPase all reside in the same protein, which is inhibited by ruthenium red, is irreversibly denatured at 50 degrees C, and which has a sedimentation coefficient of 8-10 S. This enzyme is compared with other surface-derived ATPases of ciliated protozoans, and its possible roles are discussed.  相似文献   

10.
The type II cAMP-dependent protein kinase (cAMP-PK-II) from cilia of Paramecium, purified free of type I cAMP-PK (cAMP-PK-I) and of cGMP-dependent protein kinase (cGMP-PK), phosphorylated several basic proteins and a heptapeptide containing serine (Kemptide). The enzyme was partially inhibited by the protein kinase inhibitor (Walsh inhibitor), but only at relatively high inhibitor concentrations. Half-maximal activation of cAMP-PK-II occurred at 15-25 nM cAMP. Several cAMP analogs were tested for ability to bind and activate the enzyme. 8-bromo-cGMP, a potent activator of Paramecium cGMP-PK, was a poor activator of Paramecium cAMP-PK-II. Activation of cAMP-PK-II was influenced by the phosphorylation assay buffer. Phosphate buffers provided increased activation by cAMP but decreased total activity relative to that measured in Mops-Tris buffer. The kinase was cAMP-independent when the pH of the assay buffer was high. Preincubation of cAMP-PK-II with histones also activated the enzyme in the absence of cAMP. The cAMP-PK-II bound cAMP with a Kd of 23 nM, and bound cAMP was released with a biphasic time course, suggesting two non-identical binding sites. The properties of the cAMP-PK of this ciliated protozoan appear to be closely similar to those of vertebrates.  相似文献   

11.
In this paper we demonstrate the presence and localization of calmodulin, a calcium-dependent regulatory protein, in the ciliated protozoan Paramecium tetraurelia. Calmodulin is demonstrated by several criteria: (a) the ability of whole cell Paramecium extracts to stimulate mammalian phosphodiesterase activity, (b) the presence of an acidic, thermostable, 17,000-dalton polypeptide whose mobility shifts in SDS polyacrylamide gel electrophoresis in the presence of Ca2+, and (c) the affinity of antibodies against mammalian calmodulin for a Paramecium component as demonstrated by both indirect immunofluorescent localization and radioimmunoassay. Indirect immunofluorescence studies reveal that Paramecium calmodulin is distributed in three distinct regions of the cell, i.e., (a) large, spherical cytoplasmic organelles representing perhaps the food vacuoles or other vacuolar inclusions of the cell, (b) along the entire length of oral and somatic cilia, and (c) along a linear punctate pattern corresponding to the kinetics (basal bodies) of the cell.  相似文献   

12.
This is the first attempt to resolve the phylogenetic relationship between different syngens of Paramecium bursaria and to investigate at a molecular level the intraspecific differentiation of strains originating from very distant geographical locations. Herein we introduce a new collection of five P. bursaria syngens maintained at St Petersburg State University, as the international collection of syngens was lost in the 1960s. To analyze the degree of speciation within Paramecium bursaria, we examined 26 strains belonging to five different syngens from distant and geographically isolated localities using rDNA (ITS1-5.8S-ITS2-5'LSU) fragments, mitochondrial cytochrome c oxidase subunit I (COI), and H4 gene fragments. It was shown that P. bursaria strains of the same syngens cluster together in all three inferred molecular phylogenies. The genetic diversity among the studied P. bursaria strains based on rDNA sequences was rather low. The COI divergence of Paramecium bursaria was also definitely lower than that observed in the Paramecium aurelia complex. The nucleotide sequences of the H4 gene analyzed in the present study indicate the extent of genetic differences between the syngens of Paramecium bursaria. Our study demonstrates the diagnostic value of molecular markers, which are important tools in the identification of Paramecium bursaria syngens.  相似文献   

13.
Komala Z 《Folia biologica》2000,48(1-2):47-48
The seepage of water on the Gubernasówka clearing in the forest (alt. about 850 m) was investigated from the point of view of the occurrence of the Paramecium aurelia species complex and other zooplanktonic organisms. Though, none of the species of the complex was found, another morphological species of the Paramecium genus, i.e. Paramecium caudatum was registered.  相似文献   

14.
为观察小鼠组织中过氧化氢酶的活性与年龄的关系,采用高锰酸钾滴定法测定不同年龄(1、4、18月龄)小鼠肝、肾、肺、心、脾、胃、脑组织中过氧化氢酶的活性。结果显示:小鼠过氧化氢酶在不同组织中活性不同,活性高低顺序基本表现为:肝>肾>肺>心、脾、胃>脑;小鼠肺、心、脾、胃、脑各组织中过氧化氢酶的活性在1~4月龄间随年龄增加而增加,在4~18月龄间随年龄增加而降低;小鼠肝、肾组织中过氧化氢酶的活性在1~4月龄间与年龄相关性不显著,在4~18月龄间随年龄增加而降低。结果表明,小鼠肝、肾、肺、心、脾、胃、脑等组织中过氧化氢酶的活性随年龄变化而变化,机体过氧化氢酶活性的降低与机体衰老密切相关。  相似文献   

15.
Voltage-gated Ca(2+) channels play a critical role in controlling Ca(2+) entry in various cells. Ciliary reversal in Paramecium depends on the Ca(2+) influx through voltage-gated Ca(2+) channels on the ciliary membrane. One of the voltage-gated Ca(2+) channel mutants in Paramecium caudatum, cnrC, neither produces Ca(2+) action potentials nor responds to any depolarizing stimuli. Here, we report that the cnrC(+) gene product is P. caudatum centrin (Pccentrin1p), a member of the Ca(2+)-binding EF-hand protein superfamily. The Pccentrin1p gene of cnrC was found to contain a single-base deletion, a mutation that caused the loss of the fourth EF-hand of Pccentrin1p. Moreover, the wild-type Ca(2+) channel function was impaired by Pccentrin1p gene silencing, leading to the loss of current-evoked Ca(2+) action potentials and stimulated ciliary reversal. These results demonstrate that Pccentrin1p is indispensable for the activity of the voltage-gated Ca(2+) channels that control ciliary reversal in Paramecium.  相似文献   

16.
Diallyl sulfide (DAS) is a flavor compound derived from garlic and is active in the inhibition of chemically induced cytotoxicity and carcinogenicity in animal models. This study was conducted to examine the effects of the treatment of DAS and garlic homogenates on the activities of catalase, glutathione peroxidase, and superoxide dismutase. Male Sprague-Dawley rats were treated with DAS i.g. at daily doses of 50 or 200 mg/kg for 8 days, causing the hepatic catalase activity to decrease by 55 and 95%, respectively. Such a decrease in hepatic catalase activity was also observed when the DAS treatment was extended to 29 days. Western blot analysis showed that the DAS treatments resulted in corresponding decreases in the liver catalase protein level. No significant change in the catalase activity in the kidney, lung, and brain was observed with the treatments, but a slight decrease in heart catalase activity was observed. These treatments did not cause significant changes in superoxide dismutase and glutathione peroxidase activities in these tissues. Treatment with DAS at a daily dose of 200 mg/kg for 1-7 days resulted in a gradual decrease in the liver catalase activity to 5% of the control level, but it did not decrease the erythrocyte catalase activity. Treatment of rats with fresh garlic homogenates (2 or 4 g/kg, i.g., daily for 7 days) caused a 35% decrease in liver catalase activity. A/J mice treated with DAS and garlic homogenates also showed a decrease in the liver catalase activity. Diallyl sulfone (DASO2), a DAS metabolite, however, did not effectively decrease catalase activity in mice. The catalase activity was not inhibited by either DAS or DASO2 in vitro. The present results demonstrate that treatment with DAS and garlic homogenates decrease the hepatic catalase level in rats and mice.  相似文献   

17.
畜禽粪便堆肥过程中酶活性及微生物数量的变化研究   总被引:8,自引:0,他引:8  
实验选取鸡粪和猪粪进行好氧堆肥发酵,研究畜禽粪便腐熟过程中酶活性和微生物的变化趋势以及相互联系。结果表明:过氧化氢酶活性和纤维素酶活性在堆肥初期较高,随后迅速降低,最终过氧化氢酶维持在9~12ml/g之间,纤维素酶维持在12.37~15.07mg/(kg·h)之间,而脲酶活性变化趋势为"升高-降低-升高"。细菌数量变化趋势为"低-高-低";放线菌为"高-低";真菌为"高-低-高"。通过相关分析发现,放线菌可能是影响堆肥中过氧化氢酶和纤维素酶的关键因素。鸡粪中放线菌与过氧化氢酶呈极显著正相关;猪粪中放线菌与过氧化氢酶和纤维素酶呈显著正相关;鸡粪+猪粪中放线菌与过氧化氢酶和纤维素酶呈极显著正相关。  相似文献   

18.
The different steps of the gravity signal-transduction chain on the cellular level are not identified. In our experiments performed up to now we mainly stressed our attention on the last step, the response of the cells. Swimming behavior is a suitable indicator for the physiological status of a Paramecium cell. Depending on membrane potential and/or concentrations of Ca++, cGMP and cAMP the beating direction and the beating velocity of the cilia are influenced in a characteristical way leading to a changed swimming activity of the cell. The behavior of Paramecium is influenced by various stimuli from their environment. Previous studies have demonstrated that under controlled conditions Paramecium shows a clear gravity-dependent behavior resulting in negative gravitaxis and gravikinesis (speed regulation in dependence of gravity). By changing the orienting stimulus (gravity) we expected changes of the swimming behavior. Additional experiments were performed using pawn mutant d4-500r. Due to defective Ca(2+)-channels the membrane of this mutant cannot depolarize. As a consequence d4-500r cannot perform phobic responses and swim backwards. Comparative experiments are also performed with the ciliate Loxodes striatus. In contrast to Paramecium this ciliate possesses statocyst-like organelles--the Müller Organelles.  相似文献   

19.
Inositol glycerolipids make up less than 10% of total phospholipids of Paramecium tetraurelia cells. Unlike inositol lipids found in mammalian and other cell types, these lipids from Paramecium lack arachidonic acid. It was demonstrated that kinase and possibly phosphatase enzymes that interconvert phosphatidylinositol (PI), phosphatidylinositol phosphate (PI-P) and phosphatidylinositol-bis-phosphate (PI-P2) exist in ciliary membranes of this ciliate. When exogenous soybean PI and [gamma-32P]ATP were provided as substrates, isolated cilia preparations exhibited PI and PI-P kinase activities as demonstrated by the incorporation of radiolabel into PI-P and PI-P2. Kinase activity was activated by millimolar [Mg2+] and inhibited by millimolar [Ca2+]. Significant inhibition of kinase activity in the presence of unlabeled excess ATP suggested that ATP is the preferred phosphate donor for this reaction. Of 4 suborganellar fractions of isolated cilia, the membrane fraction had the greatest kinase activity indicating that the enzyme(s) is membrane-associated.  相似文献   

20.
Bete-adrenergic agonists isoproterenol and norepinephrine enhanced phagocytosis in Paramecium. Stimulation was stereospecific, dose-dependent and inhibited by the beta-agonists propranolol and alprenolol. Phorbol ester and forskolin potentiated the stimulatory effect of catecholamines on Paramecium phagocytosis. The dansyl analogue of propranolol (DAPN) was used for fluorescent visualization of the beta-adrenergic receptor sites in Paramecium which have been found to be localized at the cell membrane and within the membrane of the nascent digestive vacuoles. The appearance of the characteristic fluorescent pattern has been blocked by 1-propranolol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号