首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 733 毫秒
1.
We studied morphological variation, reproductive biology and genetic structure of Senecio carbonensis, a narrow endemic from high elevations of the southern Andes, and compared it to Senecio peteroanus, a closely related widespread congeneric species. Using ANOVAs and discriminant analysis we showed that populations of S. carbonensis were more similar to each other in their morphology, had comparatively limited reproductive capacity and presented lower plant density and more reduced plant cover than populations of S. peteroanus. Similar high genetic variation was found at the population and species level in both species, based on isozyme variation at 14 and 11 putative gene loci that were resolved in S. carbonensis and S. peteroanus, respectively. The two species were genetically distinct. However, the small genetic distance between populations of each species suggests that either they were recently founded and that genetic drift did not have time to promote divergence, or that its effects are masked by significant current gene flow. These results show that ecological and reproductive characteristics of S. carbonensis may limit its extension and abundance. In contrast, high genetic variation at the population level is probably favored by self‐incompatibility. Despite the restricted geographical distribution and low plant density of S. carbonensis populations, genetic characteristics do not seem to be limiting their long‐term persistence. This information suggests that populations of S. carbonensis are not at risk of extinction as a result of genetic factors, although it is important to study and monitor population dynamics to further assess the degree of recruitment through time.  相似文献   

2.
The genus Hypochaeris has a recent evolutionary history caused by long‐distance dispersal in conjunction with adaptive radiation in the South American continent. Hypochaeris lutea is a perennial herb that grows mostly at altitudes of around 1000 m in cold swamps of the southern regions of Brazil. We investigated the amplified fragment length polymorphism (AFLP) in 270 individuals representing 11 Brazilian populations of H. lutea to elucidate the population genetic structure of this species. The frequencies of polymorphic loci and gene diversity ranged from 83.42% to 91.66% and from 0.26 to 0.34, respectively. Analysis of molecular variance revealed that most of the genetic variability was found within (76.67%) rather than among (23.3%) populations, agreeing with the pattern of genetic distribution within and among populations observed in other allogamous species of Hypochaeris. A Mantel test showed no correlation between genetic and geographic distances when all populations were considered. Simulations performed using a Bayesian approach consistently identified two clusters with different admixture proportions of individuals, as also revealed by a UPGMA dendrogram of populations. The pattern of genetic structure observed in H. lutea is consistent with a process of successive colonization events by long‐distance dispersal resembling the rapid and recent radiation that has been proposed to explain the origin of the South American species of Hypochaeris.  相似文献   

3.
The cultivated potato (Solanum tuberosum ssp. tuberosum) has more than 200 related wild species distributed along the Andes, adapted to a wide range of geographical and ecological areas. Since the last century, several collection expeditions were carried out to incorporate genetic variability into the potato germplasm around the world. However, little is known about the reproductive ecology and genetic population structure of natural potato population from field studies. The aim of this work is to study, in the field, the genetic variability and reproductive strategies of populations of one of the most widely distributed potato species in Argentina, Solanum kurtzianum, growing in Mendoza province. AFLP markers showed that the genetic variability is mainly present among plants within populations, indicating that in the sampled populations, sexual reproduction is more relevant than clonal multiplication (by tubers). Additional evidence was obtained evaluating the genetic diversity in populations with a distribution in patches, where several genotypes were always detected. From a field study performed in the Villavicencio Natural Reserve, we found that the average number of plump seeds per fruit was 94.3, identified and calculated the foraging distance of four insect pollinators, and demonstrated the seed dispersal by storm water channels. We argue that the breeding system, the two modes of reproduction and the ecological interaction described here may have a prominent role in determining the genetic structure of S. kurtzianum populations, and discuss the importance of field studies on population genetics, reproductive biology and ecology to design collections and conservation strategies.  相似文献   

4.
Erodium maritimum L. is an annual species presenting heterogeneous, sometimes very small, and distant populations, distributed along a discontinuous coastal strip of the European Atlantic and the central and western Mediterranean basin. The aim of this study is to investigate genetic variation and geographic structure changes across its large distribution. Fourteen populations of E. maritimum were studied using AFLP fingerprints, together with their population sizes, reproductive systems and flower visitors. AFLP markers revealed the genetic structure of the species to be weak. Many individuals from one population clustered together with those of other populations, showing a high degree of genetic admixture. Despite having a self‐compatible reproductive system, populations (especially the largest ones) showed high levels of genetic polymorphism, and the majority of genetic variation was contained within populations. The low genetic structure suggests high levels of gene flow, which might be explained through the dispersability of the species’ fruits. Finally, recommendations are provided for management strategies to facilitate the conservation of this endangered species.  相似文献   

5.
Cheirolophus uliginosus is a rare species, endemic to the south‐western Iberian Peninsula, and listed as a characteristic taxon from the temperate Atlantic wet heaths, a priority habitat for conservation by the European Union. The conservation status of this species in most of its distribution area is poorly known, but, in recent times, some populations have disappeared and there has been a reduction in the number of individuals in others. In this context, we analysed the effects of population size on genetic diversity, revealing that genetic erosion and inbreeding depression could be having a significant impact on smaller populations. Furthermore, we studied the patterns of genetic structure and variability at the species level, finding a strikingly low within‐population diversity and high among‐population genetic differentiation. Finally, the genetic structure analyses suggested a long and complex phylogeographical history of C. uliginosus in the region, in agreement with the climate relict status proposed for this species. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 179 , 157–171.  相似文献   

6.
Various historical processes have been put forth as drivers of patterns in the spatial distribution of Amazonian trees and their population genetic variation. We tested whether five widespread tree species show congruent phylogeographic breaks and similar patterns of demographic expansion, which could be related to proposed Pleistocene refugia or the presence of geological arches in western Amazonia. We sampled Otoba parvifolia/glycycarpa (Myristicaceae), Clarisia biflora, Poulsenia armata, Ficus insipida (all Moraceae), and Jacaratia digitata (Caricaceae) across the western Amazon Basin. Plastid DNA (trnH–psbA; 674 individuals from 34 populations) and nuclear ribosomal internal transcribed spacers (ITS; 214 individuals from 30 populations) were sequenced to assess genetic diversity, genetic differentiation, population genetic structure, and demographic patterns. Overall genetic diversity for both markers varied among species, with higher values in populations of shade‐tolerant species than in pioneer species. Spatial analysis of molecular variance (SAMOVA) identified three genetically differentiated groups for the plastid marker for each species, but the areas of genetic differentiation were not concordant among species. Fewer SAMOVA groups were found for ITS, with no detectable genetic differentiation among populations in pioneers. The lack of spatially congruent phylogeographic breaks across species suggests no common biogeographic history of these Amazonian tree species. The idiosyncratic phylogeographic patterns of species could be due instead to species‐specific responses to geological and climatic changes. Population genetic patterns were similar among species with similar biological features, indicating that the ecological characteristics of species impact large‐scale phylogeography.  相似文献   

7.
Microsatellites are powerful markers to infer population genetic parameters. Here, 13 microsatellite loci isolated from a genomic and a cDNA library of Cryphonectria parasitica were used to characterize the genetic diversity and structure of four French populations. Twelve of these loci were polymorphic within populations, and average gene diversity (He) was estimated to be 0.35. There was a lower genetic diversity in a south-eastern population relative to three south-western populations. In these three populations, microsatellite genotypic diversity was higher than vegetative compatibility type diversity. A high genetic differentiation (GST = 0.27) suggested a low gene flow and/or founder effects of French populations which are in agreement with low dispersal of spores and different introductions of this species in southern France. This study demonstrates the significance of these microsatellite loci to assess gene flow and reproductive system in this important pathogen.  相似文献   

8.
Populations of annual killifish of the genus Nothobranchius occur in patchily distributed temporary pools in the East African savannah. Their fragmented distribution and low dispersal ability result in highly structured genetic clustering of their populations. In this study, we examined body shape variation in a widely distributed species, Nothobranchius orthonotus with known phylogeographic structure. We tested whether genetic divergence of major mitochondrial lineages forming two candidate species is congruent with phenotypic diversification, using linear and geometric morphometry analyses of body shape in 23 wild populations. We also conducted a common‐garden experiment with two wild‐derived populations to control for the effect of local environmental conditions on body shape. We identified different allometric trajectories for different mitochondrial lineages and candidate species in both sexes. However, in a principal components analysis of population‐level body shape, the separation among mitochondrial lineages was incomplete. Higher similarity of mitochondrial lineages belonging to different candidate species than that of same candidate species prevented distinction of the two candidate species on the basis of body shape. Analysis at the individual level demonstrated that N. orthonotus express high intrapopulation variability, with major overlap among individuals from all populations. In conclusion, we suggest that N. orthonotus be considered as a single species with an extensive geographic range, strong population genetic structure and high morphological variability.  相似文献   

9.
Reproductive strategies can have significant consequences for the viability of plant populations. Still, the effects of lower fruit set due to pollen limitation on plant demography and population persistence have rarely been explored. The objectives of this study were to assess the ecological factors determining female reproductive success and to study the impact of pollen limitation on population growth of Dracocephalum austriacum L. (Lamiaceae), a critically endangered species with a discontinuous distribution across Europe. Despite the significant background information gathered on the population dynamics and genetic diversity of D. austriacum, little is known about its reproductive strategy and the effect it has on population growth. Thus, the reproductive system, pollinator assemblage and pollen limitation were studied in natural populations and the impact of pollen-limited seed production on population growth was assessed using existing transition matrix models. The results revealed that D. austriacum is protandrous self-compatible species that produces very few seeds in the absence of pollinators. The flowers are visited by several insects, including legitimate pollinators (e.g., Bombus hortorum, Osmia spp.) and nectar robbers (other Bombus spp., O. aurulenta). Fruit and seed production was significantly pollen-limited in all populations studied. However, despite the positive effect of pollen supplementation on seed production, the resulting increase in seed number did not significantly increase population growth rates in any of the studied populations. Hence, we conclude that populations are demographically stable and current natural seed production is sufficient for the species’ persistence.  相似文献   

10.
利用叶绿体基因(rbcL和trnS-G)及核糖体DNA内转录间隔区(ITS),对祁连山区狭域分布的特有物种黑虎耳草8个居群(115个个体)进行遗传多样性研究,旨在揭示黑虎耳草的居群遗传结构及其历史进化过程。结果表明:(1)所有取样个体共检测到4个cpDNA单倍型和9个ITS单倍型,其中祁连山东南部的居群固定较多的单倍型和特有单倍型,而西北部居群只固定少数几个广泛分布的单倍型,且遗传多样性普遍较低。(2)基于cpDNA数据和ITS数据的分子变异分析(AMOVA)显示,遗传变异主要来源于居群内。(3)基于cpDNA数据的中性检验表明,Tajima’s D(-1.012 30,P 0.05)和FuLi’s D*(-2.066 77,P 0.05)均为负值,均不显著;歧点分布分析结果显示,黑虎耳草居群经历过近期的扩张事件。根据物种现有遗传分布格局推测,黑虎耳草在第四纪冰期时退缩到祁连山东南部的边缘避难所,间冰期或冰期后回迁到祁连山西北部地区,在回迁过程中由于奠基者效应导致祁连山西北部的居群仅固定少数广泛分布的单倍型,并呈现出较低的遗传多样性;由于居群较小且相互隔离,该物种经历了严重的瓶颈效应和遗传漂变,导致该物种总遗传多样性(H_T)和居群平均遗传多样性(H_S)远低于虎耳草属其他青藏高原-喜马拉雅广域分布的物种。  相似文献   

11.
New Guinea is a topographically and biogeographically complex region that supports unique endemic fauna. Studies describing the population connectivity of species through this region are scarce. We present a population and landscape genetic study on the endemic malaria‐transmitting mosquito, Anopheles koliensis (Owen). Using mitochondrial and nuclear sequence data, as well as microsatellites, we show the evidence of geographically discrete population structure within Papua New Guinea (PNG). We also confirm the existence of three rDNA ITS2 genotypes within this mosquito and assess reproductive isolation between individuals carrying different genotypes. Microsatellites reveal the clearest population structure and show four clear population units. Microsatellite markers also reveal probable reproductive isolation between sympatric populations in northern PNG with different ITS2 genotypes, suggesting that these populations may represent distinct cryptic species. Excluding individuals belonging to the newly identified putative cryptic species (ITS2 genotype 3), we modeled the genetic differences between A. koliensis populations through PNG as a function of terrain and find that dispersal is most likely along routes with low topographic relief. Overall, these results show that A. koliensis is made up of geographically and genetically discrete populations in Papua New Guinea with landscape topography being important in restricting dispersal.  相似文献   

12.
There have been few investigations of the number of founding sources and amount of genetic variability that lead to a successful nonindigenous species invasion, although genetic diversity is believed to play a central role. In the present study, population genetic structure, diversity and divergence patterns were analysed for the zebra mussel Dreissena polymorpha [n=280 samples and 63 putative randomly amplified polymorphic DNA (RAPDs) gene loci] and the quagga mussel D. bugensis (n=136 and 52 loci) from 10 nonindigenous North American and six Eurasian sampling sites, representing their present‐day ranges. Results showed that exotic populations of zebra and quagga mussels had surprisingly high genetic variability, similar to those in the Eurasian populations, suggesting large numbers of founding individuals and consistent with the hypothesis of multiple colonizations. Patterns of genetic relationships indicate that the North American populations of D. polymorpha likely were founded by multiple source populations from north‐western and northcentral Europe, but not from southcentral or eastern Europe. Sampling areas within North America also were significantly divergent, having levels of gene flow and migration about twice those separating long‐established Eurasian populations. Samples of D. bugensis in Lakes Erie and Ontario were significantly different, with the former being more closely related to a native population from the Dnieper River, Ukraine. No evidence for a founder effect was discerned for either species.  相似文献   

13.
14.
Monitoring temporal changes in population genetic diversity and effective population size can provide vital information on future viability. The dusky gopher frog, Lithobates sevosus, is a critically endangered species found only in coastal Mississippi, with low genetic variability as a consequence of isolation and population size reduction. Conservation management practices have been implemented, but their efficacy has not been addressed. We genotyped individuals collected 1997–2014 to determine temporal trends in population genetic variation, structure, and effective size. Observed and expected heterozygosity and allelic richness revealed temporally stable, but low, levels of genetic variation. Positive levels of inbreeding were found in each year. There was weak genetic structure among years, which can be attributed to increased effects of genetic drift and inbreeding in small populations. L. sevosus exhibited an increase in effective population size, and currently has an estimated effective size of 33.0–58.6 individuals, which is approximately half the census size. This large ratio could possibly be explained by genetic compensation. We found that management practices have been effective at maintaining and improving effective size and genetic diversity, but that additional strategies need to be implemented to enhance viability of the species.  相似文献   

15.
  • All known populations of the Sardinian endemic Centaurea filiformis Viv. (Asteraceae) were studied in order to understand the impact of both geographic and ecological factors on the genetic structuring of this species.
  • Fourteen populations and 234 individuals were sampled. The demographic structure of the populations and the reproductive ecology were estimated in 28 plots. Population genetic analyses were based on SSR markers. Genetic structure was investigated by spatial Bayesian methods.
  • Average densities of 0.51 individuals m?2 were detected, with a prevalence of adults. Ten species of pollinators were identified; C. filiformis ability to self‐pollinate and myrmecochory were demonstrated experimentally. The populations displayed an average heterozygosity value of H e = 0.576 and high genetic differentiation (overall F ST = 0.218). Bayesian analysis suggests that five is the most probable number of gene pools of origin. A strong correlation between geographic distances and genetic distances among populations was highlighted.
  • The demographic population structure of C. filiformis is dominated by adults, suggesting that it is a stable‐regressive or senile species, investing more in local persistence than colonisation ability. Despite the scattered distribution, the populations studied do not present evidence of genetic erosion. The analysis of genetic differentiation reveals very high differentiation levels among populations, thus indicating that effective barriers exist against gene flow. A general conclusion is that population distribution results in a clear genetic structure for the populations studied, and that geography and not ecology is shaping the present distribution of this species.
  相似文献   

16.
Low levels of genetic diversity in endemic species are generally attributable to the small size of their populations. This lack of genetic variability will, predictably, be more evident in those species that occur in only one or a very few localities with a total population consisting of a few dozen individuals, or sometimes fewer (i.e. ‘extremely narrow endemics’, ENEs). We used allozyme electrophoresis to survey the genetic variability of Coristospermum huteri, an endemic species from the island of Majorca (Balearic Islands, W. Mediterranean Basin) with a single natural population of about 100 individuals. As expected, allozyme variability was virtually nil for this species (P = 8.3 %, A = 1.08, H e = 0.022), which seems to be a general rule for ENEs (mean H e = 0.057). A founder effect associated with a dispersal event from the continent is probably behind the lack of genetic diversity in this highly threatened species. Preservation of the mountain summit where the plant is found (Puig Major) is essential for the survival of C. huteri, and would also guarantee the conservation of other ENEs and rare and threatened species.  相似文献   

17.
Paspalum has many multiploid species displaying a wide range of ploidy levels and reproductive systems including apomixis. However, not much is known about the genetic structure of natural populations of the apomictic species of Paspalum. The aim of this work was to evaluate the genetic diversity of several natural populations belonging to five species of Paspalum. A total of 13 populations were analyzed using amplified fragment length polymorphism (AFLP). The AFLP data revealed maximal genotypic diversity and significant levels of genetic diversity in diploid and mixed diploid–tetraploid populations of P. denticulatum and P. rufum, where all individuals represent different genotypes. This may be mainly due to the reproductive system of diploid members and the gene flow from diploids to polyploids. The pure populations of tetraploids consist of either multiple genotypes (P. nicorae) or of one dominant genotype with a few deviated genotypes (P. denticulatum and P. lividum). Here, the main source of variability may be the residual sexuality, which continues generating new genotypic combinations. The hexaploid populations of P. buckleyanum consist of a single AFLP genotype and each population represents a particular genotype suggesting that populations arose from independent polyploidization events. This study represents one of the first reports of genetic diversity in natural populations of several Paspalum agamic complexes. Apomixis in these five species may be acting as a successful method for the dispersion of better adapted genotypes.  相似文献   

18.
The reasons for plant rarity have been the focus of many studies, especially because rare species are more prone to extinction than common species. Under the same habitat conditions, rare plants are expected to attract fewer flower visitors and to show some limitation in their reproductive success. Here, using one of the most emblematic Neotropical plant genus (Tibouchina) we tested whether narrow endemic and threatened species in Ecuador have a lower reproductive success or are visited by fewer pollinators than common species, in 13 populations monitored from 2011 to 2013. We also assessed whether interspecific gene flow could be considered a threat to the rare species. However, contrary to expectations, we found that few pollinators visited the flowers, independently of species rarity. Natural outcross pollinations were always very low in all small‐size populations, leading to high levels of pollen limitation. Interspecific crossing experiments also revealed weak reproductive barriers in some species. This study reveals that both narrow and common species of Tibouchina have similar reproductive and pollinator patterns in Ecuador and, therefore, other causes of the rarity of these species should be considered.  相似文献   

19.
The recognition of individual animals is essential for many types of ecological research, as it enables estimates of demographic parameters such as population size, survival and reproductive rates. A popular method of visually identifying individuals uses natural variations in spot, stripe or scar markings. Although several studies have assessed the accuracy of these methods in mammals, crustaceans and fish, there have been few attempts to determine whether phenotypic characteristics are accurate when used for birds. Furthermore, even less is known about whether shed or moulted body parts can be reliably used to visually identify individuals. Here we assessed the accuracy of using phenotypic characteristics to identify avian individuals using a double‐marking experiment, whereby nine microsatellite genetic markers and natural markings on shed feathers were used to independently identify northern goshawks Accipiter gentilis. Phenotypic and genetic identification of individuals was consistent in 94.4% (51/54) comparisons. Our results suggest that the phenotypic characteristics of shed feathers can be reliably used as a non‐invasive and relatively inexpensive technique to monitor populations of an elusive species, the northern goshawk, without having to physically re‐capture or re‐sight individuals. We posit that using natural markings on shed feathers will also be a reliable method of identifying individuals in avian species with similar phenotypic characteristics, such as other Accipiter species.  相似文献   

20.
Triplophysa orientalis (Herzenstein) is one of the Nemacheilinae (Cypriniformes: Balitoridae) fish species distributed in the Tibetan Plateau area. In order to understand the impact of plateau uplift on population history and the isolation effect of plateau lakes on T. orientalis, we examined its genetic structure and phylogenetic relationships. A total of 98 individuals from five wild populations, three from plateau lakes and two from branch rivers in upper reaches of the Yangtze River, in the eastern peripheral of the Tibetan Plateau were sampled. An 848 base pair fragment from the mitochondrial DNA (mtDNA) control region was sequenced for analyses. Overall, very high intra-population genetic variability was found in all populations except for one lake population (Rannicuo); nucleotide diversity ranged from 0.0025 to 0.0159 and haplotype diversity ranged from 0.641 to 0.879. Furthermore, the genetic distance between river populations (0.0326) was much higher than that among lake populations (Rannicuo and Barencuo 0.0035, Bannicuo and Yibicuo 0.0038, Rannicuo and Yibicuo 0.0049). Additionally, the analysis of molecular variance demonstrated that most of the observed genetic variability occurred among populations, accompanied with significant Fst values except for that between the Yibicuo and Barencuo populations. This evidence suggested a strong population structure of the species and a lack of inter-population connection. Lastly, the rate of migration indicated there were large historic gene flows among lake populations. Demographic analysis also indicated there were bottlenecks or expansions in three lake populations, suggesting a potential isolation effect of plateau lakes on population differentiation. Molecular dating of intra-specific divergence showed the plateau uplift has shaped the genetic structure of T. orientalis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号