首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Netrins   总被引:3,自引:0,他引:3  
  相似文献   

2.
Comment on: Goorden SM, et al. Mol Cell Biol 2011; 31:1672-8.  相似文献   

3.
The brain is remarkably responsive to its interactions with the environment, and its morphology is altered by experience in measurable ways. Histological examination of the brains of animals exposed to either a complex ('enriched') environment or learning paradigm, compared with appropriate controls, has illuminated the nature of experience-induced morphological plasticity in the brain. For example, this research reveals that changes in synapse number and morphology are associated with learning and are stable, in that they persist well beyond the period of exposure to the learning experience. In addition, other components of the nervous system also respond to experience: oligodendrocytes and axonal myelination might also be permanently altered, whereas changes in astrocytes and cerebrovasculature are more transient and appear to be activity- rather than learning-driven. Thus, experience induces multiple forms of plasticity in the brain that are apparently regulated, at least in part, by independent mechanisms.  相似文献   

4.
《Cellular signalling》2014,26(7):1392-1399
In mammals, the KIBRA locus has been associated with memory performance and cognition by genome-wide single nucleotide polymorphism screening. Genetic studies in Drosophila and human cells have identified KIBRA as a novel regulator of the Hippo signaling pathway, which plays a critical role in human tumorigenesis. Recent studies also indicated that KIBRA is involved in other physiological processes including cell polarity, membrane/vesicular trafficking, mitosis and cell migration. At the biochemical level, KIBRA protein is highly phosphorylated by various kinases in epithelial cells. Here, we discuss the updates concerning the function and regulation of KIBRA in the brain and beyond.  相似文献   

5.
6.
Netrins are secreted proteins that were first identified as guidance cues, directing cell and axon migration during neural development. Subsequent findings have demonstrated that netrins can influence the formation of multiple tissues, including the vasculature, lung, pancreas, muscle and mammary gland, by mediating cell migration, cell-cell interactions and cell-extracellular matrix adhesion. Recent evidence also implicates the ongoing expression of netrins and netrin receptors in the maintenance of cell-cell organisation in mature tissues. Here, we review the mechanisms involved in netrin signalling in vertebrate and invertebrate systems and discuss the functions of netrin signalling during the development of neural and non-neural tissues.  相似文献   

7.
The Interphone Study on brain cancer rests upon a case–control design with recall of past exposures recorded with substantial inaccuracy and low participation rates. This commentary questions the wisdom in choosing this design and argues that funding could and should have been used better by setting up a large‐scale cohort study that could address other potential endpoints besides cancer. Bioelectromagnetics 32:164–167, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
9.
Although non-invasive methods such as functional magnetic resonance imaging, electroencephalograms and magnetoencephalograms provide most of the current data about the human brain, their resolution is insufficient to show physiological processes at the cellular level. Clinical approaches sometimes allow invasive recordings to be taken from the human brain, mainly in patients with epilepsy or with movement disorders, and such recordings can sample neural activity at spatial scales ranging from single cells to distributed cell assemblies. In addition to their clinical relevance, these recordings can provide unique insights into brain functions such as movement control, perception, memory, language and even consciousness.  相似文献   

10.
11.
12.
A considerable amount of information is available about the structure and function of the central nervous system in adult crustaceans. However, little effort has been directed toward understanding embryonic and larval neurogenesis in these animals. In the present study we recorded neurogenesis in the brain of laboratory-reared larvae of the spider crab Hyas araneus. Proliferating cells were detected immunocytochemically after in vivo labeling with 5-bromo-2′-deoxyuridine. This method has already been used to study the proliferation of neuroblasts in the ventral nerve cord of spider crab larvae. In the brain, a set of mitotically highly active neuroblasts was found in newly hatched zoea 1 larvae. These neuroblasts are individually identifiable due to their position and therefore a schematic map of the cerebral neuroblasts could be established. The number of active neuroblasts is high from hatching throughout the molt to the zoea 2. This proliferative action then decreases dramatically and has ceased at the time of first metamorphosis toward the megalopa larva. However, many ganglion mother cells born by unequal division of neuroblasts then go through their final division throughout the subsequent megalopa stage. In the brain, all mitotic activity has ceased at the time of second metamorphosis with the exception of a cluster of labeled nuclei within the olfactory lobe cells. In this cluster, the generation of neurons persists beyond the second metamorphosis into the crab 1 stage. Meanwhile, the neuropil volume of the olfactory lobes increases 10-fold from hatching to the crab 1. These results are discussed with regard to reports on neuronal proliferation during adult life in insects and rodents. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
Activity decreases, or deactivations, of midline and parietal cortical brain regions are routinely observed in human functional neuroimaging studies that compare periods of task-based cognitive performance with passive states, such as rest. It is now widely held that such task-induced deactivations index a highly organized 'default-mode network' (DMN): a large-scale brain system whose discovery has had broad implications in the study of human brain function and behavior. In this work, we show that common task-induced deactivations from rest also occur outside of the DMN as a function of increased task demand. Fifty healthy adult subjects performed two distinct functional magnetic resonance imaging tasks that were designed to reliably map deactivations from a resting baseline. As primary findings, increases in task demand consistently modulated the regional anatomy of DMN deactivation. At high levels of task demand, robust deactivation was observed in non-DMN regions, most notably, the posterior insular cortex. Deactivation of this region was directly implicated in a performance-based analysis of experienced task difficulty. Together, these findings suggest that task-induced deactivations from rest are not limited to the DMN and extend to brain regions typically associated with integrative sensory and interoceptive processes.  相似文献   

14.
Enolase enzymes are abundantly expressed, cytosolic carbon-oxygen lyases known for their role in glucose metabolism. Recently, enolase has been shown to possess a variety of different regulatory functions, beyond glycolysis and gluconeogenesis, associated with hypoxia, ischemia, and Alzheimer's disease (AD). AD is an age-associated neurodegenerative disorder characterized pathologically by elevated oxidative stress and subsequent damage to proteins, lipids, and nucleic acids, appearance of neurofibrillary tangles and senile plaques, and loss of synapse and neuronal cells. It is unclear if development of a hypometabolic environment is a consequence of or contributes to AD pathology, as there is not only a significant decline in brain glucose levels in AD, but also there is an increase in proteomics identified oxidatively modified glycolytic enzymes that are rendered inactive, including enolase. Previously, our laboratory identified α-enolase as one the most frequently up-regulated and oxidatively modified proteins in amnestic mild cognitive impairment (MCI), early-onset AD, and AD. However, the glycolytic conversion of 2-phosphoglycerate to phosphoenolpyruvate catalyzed by enolase does not directly produce ATP or NADH; therefore it is surprising that, among all glycolytic enzymes, α-enolase was one of only two glycolytic enzymes consistently up-regulated from MCI to AD. These findings suggest enolase is involved with more than glucose metabolism in AD brain, but may possess other functions, normally necessary to preserve brain function. This review examines potential altered function(s) of brain enolase in MCI, early-onset AD, and AD, alterations that may contribute to the biochemical, pathological, clinical characteristics, and progression of this dementing disorder.  相似文献   

15.
16.
17.
18.
The development of many organs, including the lung, depends upon a process known as branching morphogenesis, in which a simple epithelial bud gives rise to a complex tree-like system of tubes specialized for the transport of gas or fluids. Previous studies on lung development have highlighted a role for fibroblast growth factors (FGFs), made by the mesodermal cells, in promoting the proliferation, budding, and chemotaxis of the epithelial endoderm. Here, by using a three-dimensional culture system, we provide evidence for a novel role for Netrins, best known as axonal guidance molecules, in modulating the morphogenetic response of lung endoderm to exogenous FGFs. This effect involves inhibition of localized changes in cell shape and phosphorylation of the intracellular mitogen-activated protein kinase(s) (ERK1/2, for extracellular signal-regulated kinase-1 and -2), elicited by exogenous FGFs. The temporal and spatial expression of netrin 1, netrin 4, and Unc5b genes and the localization of Netrin-4 protein in vivo suggest a model in which Netrins in the basal lamina locally modulate and fine-tune the outgrowth and shape of emergent epithelial buds.  相似文献   

19.
In this review, we aim to convey a brief, select history of the development of cholesterol-lowering therapies. We focus particularly on the highly successful statins as well as setbacks that should serve as cautionary tales. We go on to preview recent developments that may complement, if not one day replace, the statins. Our focus is on pharmacological interventions, particularly those targeting the cholesterol biosynthetic pathway. Also, we examine therapies under current investigation that target the assembly of atherogenic lipoproteins (via apolipoprotein B or microsomal triglyceride transfer protein), the stability of the low-density lipoprotein-receptor (via PCSK9, proprotein convertase subtilisin kexin 9), or are designed to increase high-density lipoprotein-cholesterol (via inhibition of cholesteryl ester transfer protein).  相似文献   

20.
Transgenic mice have had a tremendous impact on biomedical research. Most researchers are familiar with transgenic mice that carry Cre recombinase (Cre) and how they are used to create conditional knockouts. However, some researchers are less familiar with many of the other types of transgenic mice and their applications. For example, transgenic mice can be used to study biochemical and molecular pathways in primary cultures and cell suspensions derived from transgenic mice, cell-cell interactions using multiple fluorescent proteins in the same mouse, and the cell cycle in real time and in the whole animal, and they can be used to perform deep tissue imaging in the whole animal, follow cell lineage during development and disease, and isolate large quantities of a pure cell type directly from organs. These novel transgenic mice and their applications provide the means for studying of molecular and biochemical events in the whole animal that was previously limited to cell cultures. In conclusion, transgenic mice are not just for generating knockouts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号