首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of hydralazine on the oxygen free radical production was studied in whole cultured murine liver fibroblasts and mitochondrial and microsomal fractions of the cells by ESR spin trapping with DMPO and measurement of Tiron semiquinone formation. Hydralazine itself was found to generate free radicals in phosphate buffer and especially in Eagle's Minimal Essential Medium. Most of the adduct of the spin trap DMPO was due to its reaction with hydralazine-induced hydroxyl radical. Moreover, this compound stimulated free radical formation in fibroblasts. These data suggest that hydralazine alters the cellular free radical metabolism which may have implications for the biological activity of this drug.  相似文献   

2.
Free radical involvement in the oxidative events induced by tert-butyl hydroperoxide in erythrocytes has been demonstrated by the use of the electron spin resonance technique of spin trapping with the spin trap 5.5-dimethyl-1-pyrroline-N-oxide (DMPO). The reactions of tert-butyl hydroperoxide with haemoglobins and intact cell systems were studied. Oxyhaemoglobin-containing system showed exclusive production of the t-butyloxy radical spin adduct of DMPO (DMPO-OBut), indicating t-butyloxy radical production. Methaemoglobin-containing systems showed the production of an oxidised derivative of DMPO, 5,5-dimethyl-2-ketopyrrolidino-1-oxyl (DMPOX)-previously associated with the generation of highly oxidised haem-iron. Carbon monoxyhaemoglobin-containing systems show the production of both DMPO-OBut and DMPOX but markedly slower than in either of the other haemoglobin systems. Generally, free radical production in haemoglobin systems was faster than in intact cell systems, indicating a membrane transport rate-limiting step for the tert-butyl hydroperoxide-mediated effects. Data from the use of free radical scavengers to inhibit DMPO-OBut production was consistent with the known reactivities of the scavengers toward t-butyloxy radicals. These and previously reported results (Trotta, R. J., Sullivan, S. G. and Stern, A. (1981) Biochim. Biophys. Acta 679, 230-237 and (1982) Biochem. J. 204, 405-415) implicate important roles for t-butyloxy radicals and haem intermediates in tert-butyl hydroperoxide-induced lipid peroxidation and haemoglobin oxidation in erythrocytes, respectively.  相似文献   

3.
Microsomal metabolism of ciprofloxacin generates free radicals   总被引:2,自引:0,他引:2  
Ciprofloxacin (CPFX) is a widely used fluoroquinolone antibiotic with a broad spectrum of activity. However, clinical experience has shown a possible incidence of undesirable adverse effects including gastrointestinal, skin, hepatic, and central nervous system (CNS) functions, and phototoxicity. Several examples in the literature data indicate that free radical formation might play a role in the mechanism of some of these adverse effects, including phototoxicity and cartilage defects. The purpose of this study is to investigate free radical formation during the metabolism of CPFX in hepatic microsomes using electron spin resonance (ESR) spectroscopy and spin trapping technique. We then investigate the effects of a cytochrome P450 inhibitor, SKF 525A, Trolox, and ZnCl2 on CPFX-induced free radical production. Our results show that CPFX induces free radical production in a dose- and time-dependent manner. The generation of 4-POBN/radical adduct is dependent on the presence of NADPH, CPFX, and active microsomes. Furthermore, free radical production is completely inhibited by SKF 525A, Trolox, or ZnCl2.  相似文献   

4.
Glyceraldehyde and other simple monosaccharides oxidize oxyhaemoglobin to methaemoglobin in phosphate buffer at pH 7.4 and 37 degrees C, with the concomitant production of H2O2 and an alpha-oxo aldehyde derivative of the monosaccharide. Simple monosaccharides also reduce methaemoglobin to ferrohaemichromes (non-intact haemoglobin) at pH 7.4 and 37 degrees C. Carbonmonoxyhaemoglobin is unreactive towards oxidation by autoxidizing glyceraldehyde. Free-radical production from autoxidizing monosaccharides with haemoglobins was observed by the e.s.r. technique of spin trapping with the spin trap 5,5-dimethyl-l-pyrroline N-oxide. Hydroxyl and l-hydroxyalkyl radical production observed from monosaccharide autoxidation was quenched in the presence of oxyhaemoglobin and methaemoglobin. The haemoglobins appear to quench the free radicals by reaction with the free radicals and/or the ene-diol precursor of the free radical.  相似文献   

5.
By oxymetry and electron paramagnetic resonance (EPR), we investigated the effects of repeated anoxia/re-oxygenation (A/R) periods on the respiration and production of free radicals by synoviocytes (rabbit HIG-82 cell line and primary equine synoviocytes) and equine articular chondrocytes. Three periods of 20 min anoxia followed by re-oxygenation were applied to 10(7)cells; O(2) consumption was measured before anoxia and after each re-oxygenation. After the last A/R, cellular free radical formation was investigated by EPR spectroscopy with spin trapping technique (n=3 for each cell line). Both types of synoviocytes showed a high O(2) consumption, which was slowered after anoxia. By EPR with the spin trap POBN, we proved a free radical formation. Results were similar for equine and rabbit synoviocytes. For chondrocytes, we observed a low O(2) consumption, unchanged by anoxia, and no free radical production. These observations suggest an oxidant activity of synoviocytes, potentially important for the onset of osteoarthritis.  相似文献   

6.
In the Pseudomonas aeruginosa-induced rodent pneumonia model, it is thought that free radicals are significantly associated with the disease pathogenesis. However, until now there has been no direct evidence of free radical generation in vivo. Here we used electron spin resonance (ESR) and in vivo spin trapping with α-(4-pyridyl-1-oxide)-N-tert-butylnitrone to investigate free radical production in a murine model. We detected and identified generation of lipid-derived free radicals in vivo (a(N) =14.86 ± 0.03 G and a(H)(β) =2.48 ± 0.09 G). To further investigate the mechanism of lipid radical production, we used modulating agents and knockout mice. We found that with GdCl(3) (phagocytic toxicant), NADPH-oxidase knockout mice (Nox2(-)/(-)), allopurinol (xanthine-oxidase inhibitor) and Desferal (metal chelator), generation of lipid radicals was decreased; histopathological and biological markers of acute lung injury were noticeably improved. Our study demonstrates that lipid-derived free radical formation is mediated by NADPH-oxidase and xanthine-oxidase activation and that metal-catalysed hydroxyl radical-like species play important roles in lung injury caused by Pseudomonas aeruginosa.  相似文献   

7.
Previous studies have shown that brain tissue hypoxia results in increased N-methyl-D-aspartate (NMDA) receptor activation and receptor-mediated increase in intracellular calcium which may activate Ca++-dependent nitric oxide synthase (NOS). The present study tested the hypothesis that tissue hypoxia will induce generation of nitric oxide (NO) free radicals in cerebral cortex of newborn guinea pigs. Nitric oxide free radical generation was assayed by electron spin resonance (ESR) spectroscopy. Ten newborn guinea pigs were assigned to either normoxic (FiO2 = 21%, n = 5) or hypoxic (FiO2 = 7%, n = 5) groups. Prior to exposure, animals were injected subcutaneously with the spin trapping agents diethyldithiocarbamate (DETC, 400 mg/kg), FeSO4.7H2O (40 mg/kg) and sodium citrate (200mg/kg). Pretreated animals were exposed to either 21% or 7% oxygen for 60 min. Cortical tissue was obtained, homogenized and the spin adducts extracted. The difference of spectra between 2.047 and 2.027 gauss represents production of NO free radical. In hypoxic animals, there was a difference (16.75 ± 1.70 mm/g dry brain tissue) between the spectra of NO spin adducts identifying a significant increase in NO free radical production. In the normoxic animals, however, there was no difference between the two spectra. We conclude that hypoxia results in Ca2+- dependent NOS mediated increase in NO free radical production in the cerebral cortex of newborn guinea pigs. Since NO free radicals produce peroxynitrite in presence of superoxide radicals that are abundant in the hypoxic tissue, we speculate that hypoxia-induced generation of NO free radical will lead to nitration of a number of cerebral proteins including the NMDA receptor, a potential mechanism of hypoxia-induced modification of the NMDA receptor resulting in neuronal injury.  相似文献   

8.
Summary Using ESR we have demonstrated the formation of the ascorbate free radical from sodium ascorbate, methylene blue and light. In oxygen uptake experiments we have observed the production of hydrogen peroxide while spin trapping experiments have revealed the iron catalyzed production of the hydroxyl free radical in this system. The presence of this highly reactive radical suggests that it could be the radical that initiates free radical damage in this photodynamic system.  相似文献   

9.
Menadione (MD; 2-methyl-1,4-naphthoquinone), a redox cycling quinone was shown to induce single (ss)- and double (ds)-strand DNA breaks in human MCF-7 cells. This DNA damage was mediated via the hydroxyl radical as evidenced by electron spin resonance spectroscopy (ESR) studies utilizing the spin trap, 5,5-dimethyl-1-pyrroline-1-oxide. The free radical production and DNA damage were shown to play a role in MD cytotoxicity as revealed by the reversal of MD toxicity and inhibition of hydroxyl radical production by exogenously added catalase. The role of NADPH quinone acceptor oxidoreductase in the metabolism of MD was evaluated. Purified quinone acceptor oxidoreductase in combination with MD resulted in the production of significant levels of the hydroxyl radical as measured by ESR. Dicumarol, an inhibitor of quinone acceptor oxidoreductase, decreased the production of the hydroxyl radical and attenuated DNA strand breaks in MCF-7 cells treated with MD.  相似文献   

10.
Because short-lived reactive oxygen radicals such as superoxide have been implicated in a variety of disease processes, methods to measure their production quantitatively in biological systems are critical for understanding disease pathophysiology. Electron paramagnetic resonance (EPR) spin trapping is a direct and sensitive technique that has been used to study radical formation in biological systems. Short-lived oxygen free radicals react with the spin trap and produce paramagnetic adducts with much higher stability than that of the free radicals. In many cases, the quantity of the measured adduct is considered to be an adequate measure of the amount of the free radical generated. Although the intensity of the EPR signal reflects the magnitude of free radical generation, the actual quantity of radicals produced may be different due to modulation of the spin adduct kinetics caused by a variety of factors. Because the kinetics of spin trapping in biochemical and cellular systems is a complex process that is altered by the biochemical and cellular environment, it is not always possible to define all of the reactions that occur and the related kinetic parameters of the spin-trapping process. We present a method based on a combination of measured kinetic data for the formation and decay of the spin adduct alone with the parameters that control the kinetics of spin trapping and radical generation. The method is applied to quantitate superoxide trapping with 5-diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide (DEPMPO). In principle, this method is broadly applicable to enable spin trapping-based quantitative determination of free radical generation in complex biological systems.  相似文献   

11.
Zhou G  Li J  Chen Y  Zhao B  Cao Y  Duan X  Cao Y 《Bioresource technology》2009,100(1):505-508
The aim of the present study was to determine whether the radical reaction intermediates--reactive oxygen species (ROS) were formed during the laccase-catalyzed oxidation of wood fibers from Chinese fir (Cunninghamia lanceolata) and to quantify tentatively its production with electron spin resonance (ESR) spectrometry. To investigate the activation pathways triggered by laccase, ESR spin-trapping techniques using N-tert-butyl-alpha-phenylnitrone (PBN) as spin trap followed by ethyl acetate extraction were employed to identify and quantify the free radical intermediates. ROS such as the superoxide and hydroxyl radical was detected and quantified in the laccase catalyzed oxidation of wood fibers, suggesting that ROS is the main free radical intermediates for laccase reaction. Based on the findings of the presence of ROS and previous literature on the free radical reaction of laccase oxidation of wood fibers, a possible reaction mechanism involving ROS-mediated attack on the domains of lignin which is not directly accessible for the enzyme and solubilized low-molecular mass lignins which function as reactive compounds like adhesives and may cling back to the fiber surface, could accordingly describe laccase-catalyzed oxidation of Chinese fir wood fibers.  相似文献   

12.
Free radicals produced during myocardial post-ischemic reperfusion are aggravating factors for functional disturbances and cellular injury. The aim of our work was to investigate the significance of the secondary free radical release during non ischemic perfusion and post-ischemic reperfusion and to evaluate the cardiovascular effects of the spin trap used. For that purpose, isolated perfused rat hearts underwent 0, 20, 30 or 60 min of a total ischemia, followed by 30 min of reperfusion. The spin trap: α-phenyl N-tert-butylnitrone (PBN) was used (3 mM). Functional parameters were recorded and samples of coronary effluents were collected and analyzed using Electron Paramagnetic Resonance (EPR) to identify and quantify the amount of spin adducts produced. During non ischemic perfusion, almost undetectable levels of free radical release were observed. Conversely, a large and long-lasting (30 min) release of spin adducts was detected from the onset of reperfusion. The free radical species were identified as alkyl and alkoxyl radicals with amounts reaching 40 times the pre-ischemic values. On the other hand, PBN showed a cardioprotective effect, allowing a significant reduction of rhythm disturbances and a better post-ischemic recovery for the hearts which were submitted to 20 min of ischemia. When the duration of ischemia increased, the protective effects of PBN disappeared and toxic effects became more important. Our results have therefore confirmed the antioxidant and protective properties of a spin trap agent such as PBN. Moreover, we demonstrated that the persistent post-ischemic dysfunction was associated with a sustained production and release of free radical species.  相似文献   

13.
Free radicals produced during myocardial post-ischemic reperfusion are aggravating factors for functional disturbances and cellular injury. The aim of our work was to investigate the significance of the secondary free radical release during non ischemic perfusion and post-ischemic reperfusion and to evaluate the cardiovascular effects of the spin trap used. For that purpose, isolated perfused rat hearts underwent 0, 20, 30 or 60 min of a total ischemia, followed by 30 min of reperfusion. The spin trap: alpha-phenyl N-tert-butylnitrone (PBN) was used (3 mM). Functional parameters were recorded and samples of coronary effluents were collected and analyzed using Electron Paramagnetic Resonance (EPR) to identify and quantify the amount of spin adducts produced. During non ischemic perfusion, almost undetectable levels of free radical release were observed. Conversely, a large and long-lasting (30 min) release of spin adducts was detected from the onset of reperfusion. The free radical species were identified as alkyl and alkoxyl radicals with amounts reaching 40 times the pre-ischemic values. On the other hand, PBN showed a cardioprotective effect, allowing a significant reduction of rhythm disturbances and a better post-ischemic recovery for the hearts which were submitted to 20 min of ischemia. When the duration of ischemia increased, the protective effects of PBN disappeared and toxic effects became more important. Our results have therefore confirmed the antioxidant and protective properties of a spin trap agent such as PBN. Moreover, we demonstrated that the persistent post-ischemic dysfunction was associated with a sustained production and release of free radical species.  相似文献   

14.
Experiments were conducted to determine which free radicals are generated during the metabolism of adriamycin (ADM) by canine tracheal epithelial (CTE) cells, guinea pig enterocytes, and rat hepatocytes. The technique employed in this study was spin trapping; the spin trap utilized was 5,5-dimethyl-1-pyrroline-1-oxide (DMPO). The spin adduct 2-hydroxy-5,5-dimethyl-1-pyrrolidinyloxyl (DMPO-OH) was observed during the metabolism of ADM by CTE cells. However, the addition of dimethyl sulfoxide to the in vitro system suggested that superoxide is initially spin trapped by the nitrone, and that the adduct 2-hydroperoxy-5,5-dimethyl-1-pyrrolidinyloxyl (DMPO-OOH) is rapidly bioreduced to afford DMPO-OH. The addition of superoxide dismutase to the system indicated that superoxide generation was primarily intracellular. The adriamycin semiquinone free radical (ADM-SQ) was produced during the metabolism by enterocytes and hepatocytes. The rate of the production of ADM-SQ was enhanced under anaerobic conditions, suggesting that molecular oxygen was responsible for the degradation of this carbon-centered free radical. However, spin trapping of oxygen radicals was not observed; this observation suggests that these reactive intermediates are not produced at concentrations sufficient for detection by spin-trapping experiments.  相似文献   

15.
The effect of zinc on lipid peroxidation initiated by either ferric-nitrilotriacetate, t-butyl hydroperoxide, or 3-methylindole was studied using primary monolayer cultures of rat liver parenchymal cells. The malondialdehyde content of the cells and culture medium was used to estimate the extent of lipid peroxidation. As the zinc concentration of the culture medium was increased from 1 to 48 microM, peroxidation was diminished. Cellular zinc and metallothionein levels were proportionally increased by supplemental zinc. Zinc supplementation of the medium inhibited NADPH-cytochrome c reductase activity and stimulated glutathione peroxidase activity. The uptake of iron into the hepatocytes was significantly reduced as the level of zinc was raised, suggesting that zinc antagonizes uptake of chelated iron into isolated hepatocytes and in this way blocks iron-induced peroxidation. Furthermore, induction of metallothionein synthesis by zinc may contribute to the reduction in free radicals. Spectra from electron spin resonance studies, using phenylbutylnitrone as a spin-trapping reagent, demonstrated that free radical production was inversely related to the zinc concentration of the culture medium. Spin trap data suggest that metallothionein added to lysed cells in vitro decreases free radical production. Studies using the spin trap, 3,3,5,5-tetramethylpyrroline-N-oxide indicated that cumulatively the predominant radical present in the cultures was a phenyl radical with hydroperoxide or methylindole. Collectively, our data demonstrate that zinc inhibits free radical production and lipid peroxidation in cultured hepatocytes. The mode of action of zinc could occur via free radical scavenging by zinc-induced metallothionein and/or by processes related to cytochrome P-450 and glutathione peroxidase, since these were also found to be sensitive to zinc supplementation levels of the culture medium.  相似文献   

16.
One of the reasons of rheumatoid arthritis (RA) development is widely recognized the relation of free radical reactions in tissue injuries. The aim of this study was to evaluate the location where in vivo free radical reactions was enhanced in adjuvant arthritis (AA) model rats using in vivo electron spin resonance (ESR)/nitroxyl spin probe technique. The signal decay after intravenous injection of spin probe was enhanced in AA than that in control and suppressed by the pre-treatment of dexamethasone (DXT). Interestingly, the decay in joint cavity occurred prior to paw swelling of AA and suppressed by a simultaneous injection of free radical scavengers, indicating that the enhancement of free radical reactions in joint cavity of AA rats. This technique would be useful tool to determine the location of the enhanced free radical reactions and evaluate the activity of antioxidant medicine with non-invasive real-time measurement.  相似文献   

17.
The detection of protein free radicals using the specific free radical reactivity of nitrone spin traps in conjunction with nitrone-antibody sensitivity and specificity greatly expands the utility of the spin trapping technique, which is no longer dependent on the quantum mechanical electron spin resonance (ESR). The specificity of the reactions of nitrone spin traps with free radicals has already made spin trapping with ESR detection the most universal, specific tool for the detection of free radicals in biological systems. Now the development of an immunoassay for the nitrone adducts of protein radicals brings the power of immunological techniques to bear on free radical biology. Polyclonal antibodies have now been developed that bind to protein adducts of the nitrone spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO). In initial studies, anti-DMPO was used to detect DMPO protein adducts produced on myoglobin and hemoglobin resulting from self-peroxidation by H2O2. These investigations demonstrated that myoglobin forms the predominant detectable protein radical in rat heart supernatant, and hemoglobin radicals form inside red blood cells. In time, all of the immunological techniques based on antibody-nitrone binding should become available for free radical detection in a wide variety of biological systems.  相似文献   

18.
One of the reasons of rheumatoid arthritis (RA) development is widely recognized the relation of free radical reactions in tissue injuries. The aim of this study was to evaluate the location where in vivo free radical reactions was enhanced in adjuvant arthritis (AA) model rats using in vivo electron spin resonance (ESR)/nitroxyl spin probe technique. The signal decay after intravenous injection of spin probe was enhanced in AA than that in control and suppressed by the pre-treatment of dexamethasone (DXT). Interestingly, the decay in joint cavity occurred prior to paw swelling of AA and suppressed by a simultaneous injection of free radical scavengers, indicating that the enhancement of free radical reactions in joint cavity of AA rats. This technique would be useful tool to determine the location of the enhanced free radical reactions and evaluate the activity of antioxidant medicine with non-invasive real-time measurement.  相似文献   

19.
Free radical production from the reaction of hydrazine and 1-acetyl-2-phenylhydrazine (AcPhHZ) with oxyhaemoglobin and with human red blood cells, has been observed by the electron spin resonance technique of spin trapping. Using the spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), the free radical intermediates detected depended on the hydrazine derivative, oxyhaemoglobin and the oxyhaem/hydrazine derivative concentration ratio.

The reaction of hydrazine with oxyhaemoglobin in the presence of DMPO gave a nitroxide which was identified as a reduced dimer of DMPO. Whereas hydrazine-treated red blood cells, in the presence of DMPO, gave a nitroxide spin adduct which was identified as the hydroxyl radical spin adduct of DMPO, 5,5-dimethyl-1-pyrrolidino-1-oxyl (DMPO-OH).

The reaction of AcPhHZ with oxyhaemoglobin, in the presence of DMPO, gave DMPO-OH, the phenyl radical spin adduct of DMPO, 5,5-dimethyl-2-phenylpyrrolidino-1-oxyl (DMPO-Ph) and an oxidised derivative of DMPO, 5,5-dimethyl-2-pyrrolidone-1-oxyl (DMPOX). The amounts of DMPO-Ph, DMPO-OH and DMPOX observed depended on the 1-acetyl-2-phenyl-hydrazine/oxyhaemoglobin concentration ratio; DMPOX replaced DMPO-OH as the concentration of AcPhHZ was decreased. DMPOX production has been previously associated with the production of highly oxidised haem iron-oxygen intermediates. AcPhHZ treated red blood cells gave DMPO-Ph and DMPO-OH spin adducts in the presence of DMPO.

DMPO had little to no effect on the rate of oxygen consumption by oxyhaemoglobin with hydrazine and AcPhHZ. Moreover, the rate of oxyhaemoglobin oxidation induced by hydrazine, was not decreased by DMPO whereas the rate of oxyhaemoglobin oxidation induced by AcPhHZ was decreased approx. 40% by DMPO. DMPO (10 mM) gave a small decrease in haemolysis and lipid peroxidation induced by 1 mM hydrazine and AcPhHZ in a 1% suspension of red blood cells.  相似文献   


20.
The NADPH-supported enzymatic reduction of molecular oxygen by ferredoxin-ferredoxin:NADP+ oxidoreductase was investigated. The ESR spin trapping technique was employed to identify the free radical metabolites of oxygen. The spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) was used to trap and identify the oxygen-derived free radicals. [17O]Oxygen was employed to demonstrate that the oxygen-centered radicals arose from molecular oxygen. From the data, the following scheme is proposed: (Formula:see text). The formation of the free hydroxyl radical during the reduction of oxygen was demonstrated with quantitative competition experiments. The hydroxyl radical abstracted hydrogen from ethanol or formate, and the resulting scavenger-derived free radical was trapped with known rate constants. If H2O2 was added to the enzymatic reaction, a stimulation of the production of the hydroxyl radical was obtained. This stimulation was manifested in both the concentration and the rate of formation of the DMPO/hydroxyl radical adduct. Catalase was shown to inhibit formation of the hydroxyl radical adduct, further supporting the formation of hydrogen peroxide as an intermediate during the reduction of oxygen. All three components, ferredoxin, ferredoxin:NADP+ oxidoreductase, and NADPH, were required for reduction. Ferredoxin:NADP+ oxidoreductase reduces ferredoxin, which in turn is responsible for the reduction of oxygen to hydrogen peroxide and ultimately the hydroxyl radical. The effect of transition metal chelators on the DMPO/hydroxyl radical adduct concentration suggests that the reduction of chelated iron by ferredoxin is responsible for the reduction of hydrogen peroxide to the hydroxyl radical via Fenton-type chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号