首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poot M  Badea A  Williams RW  Kas MJ 《PloS one》2011,6(5):e18612

Background

Understanding complex networks that modulate development in humans is hampered by genetic and phenotypic heterogeneity within and between populations. Here we present a method that exploits natural variation in highly diverse mouse genetic reference panels in which genetic and environmental factors can be tightly controlled. The aim of our study is to test a cross-species genetic mapping strategy, which compares data of gene mapping in human patients with functional data obtained by QTL mapping in recombinant inbred mouse strains in order to prioritize human disease candidate genes.

Methodology

We exploit evolutionary conservation of developmental phenotypes to discover gene variants that influence brain development in humans. We studied corpus callosum volume in a recombinant inbred mouse panel (C57BL/6J×DBA/2J, BXD strains) using high-field strength MRI technology. We aligned mouse mapping results for this neuro-anatomical phenotype with genetic data from patients with abnormal corpus callosum (ACC) development.

Principal Findings

From the 61 syndromes which involve an ACC, 51 human candidate genes have been identified. Through interval mapping, we identified a single significant QTL on mouse chromosome 7 for corpus callosum volume with a QTL peak located between 25.5 and 26.7 Mb. Comparing the genes in this mouse QTL region with those associated with human syndromes (involving ACC) and those covered by copy number variations (CNV) yielded a single overlap, namely HNRPU in humans and Hnrpul1 in mice. Further analysis of corpus callosum volume in BXD strains revealed that the corpus callosum was significantly larger in BXD mice with a B genotype at the Hnrpul1 locus than in BXD mice with a D genotype at Hnrpul1 (F = 22.48, p<9.87*10−5).

Conclusion

This approach that exploits highly diverse mouse strains provides an efficient and effective translational bridge to study the etiology of human developmental disorders, such as autism and schizophrenia.  相似文献   

2.
3.
Using a data set of protein translations associated with map positions in the human genome, we identified 1520 mapped highly conserved gene families. By comparing sharing of families between genomic windows, we identified 92 potentially duplicated blocks in the human genome containing 422 duplicated members of these families. Using branching order in the phylogenetic trees, we timed gene duplication events in these families relative to the primate-rodent divergence, the amniote-amphibian divergence, and the deuterostome-protostome divergence. The results showed similar patterns of gene duplication times within duplicated blocks and outside duplicated blocks. Both within and outside duplicated blocks, numerous duplications were timed prior to the deuterostome-protostome divergence, whereas others occurred after the amniote-amphibian divergence. Thus, neither gene duplication in general nor duplication of genomic blocks could be attributed entirely to polyploidization early in vertebrate history. The strongest signal in the data was a tendency for intrachromosomal duplications to be more recent than interchromosomal duplications, consistent with a model whereby tandem duplication-whether of single genes or of genomic blocks-may be followed by eventual separation of duplicates due to chromosomal rearrangements. The rate of separation of tandemly duplicated gene pairs onto separated chromosomes in the human lineage was estimated at 1.7 x 10(-9) per gene-pair per year.  相似文献   

4.
5.
6.
The study of conserved gene clusters is important for understanding the forces behind genome organization and evolution, as well as the function of individual genes or gene groups. In this paper, we present a new model and algorithm for identifying conserved gene clusters from pairwise genome comparison. This generalizes a recent model called "gene teams." A gene team is a set of genes that appear homologously in two or more species, possibly in a different order yet with the distance of adjacent genes in the team for each chromosome always no more than a certain threshold. We remove the constraint in the original model that each gene must have a unique occurrence in each chromosome and thus allow the analysis on complex prokaryotic or eukaryotic genomes with extensive paralogs. Our algorithm analyzes a pair of chromosomes in O(mn) time and uses O(m+n) space, where m and n are the number of genes in the respective chromosomes. We demonstrate the utility of our methods by studying two bacterial genomes, E. coli K-12 and B. subtilis. Many of the teams identified by our algorithm correlate with documented E. coli operons, while several others match predicted operons, previously suggested by computational techniques. Our implementation and data are publicly available at euler.slu.edu/ approximately goldwasser/homologyteams/.  相似文献   

7.
The Biological Networks Gene Ontology tool (BiNGO) is an open-source Java tool to determine which Gene Ontology (GO) terms are significantly overrepresented in a set of genes. BiNGO can be used either on a list of genes, pasted as text, or interactively on subgraphs of biological networks visualized in Cytoscape. BiNGO maps the predominant functional themes of the tested gene set on the GO hierarchy, and takes advantage of Cytoscape's versatile visualization environment to produce an intuitive and customizable visual representation of the results.  相似文献   

8.
Aim Genetically differentiated insular populations are candidates for independent units for conservation. However, occasional immigration to reduced island populations may occur and potentially have important consequences in their future viability and evolutionary potential. In this study, we investigate the conservation implications of population structure and connectivity of insular and continental populations of a migratory raptor as determined using genetic tools and satellite tracking. Location Western European populations in the Iberian Peninsula and two insular populations in the Mediterranean Sea (Balearic Islands) and Atlantic Ocean (Canary Islands). Methods We genotyped 22 microsatellite loci in 96 Egyptian vultures (Neophron percnopterus) from the Iberian Peninsula, 36 from Menorca (Balearic archipelago) and 242 (85% of the current population) from Fuerteventura (Canary Islands). We analysed genetic variation to estimate structure, gene flow, genetic diversity, effective size and recent demographic history of the populations. Additionally, 19 vultures were marked with satellite transmitters to track their migration routes. Results Insular populations were genetically differentiated from those of the mainland. We detected immigration in the insular populations and within the continental counterpart. We found similar levels of genetic variability between the continent and the islands, and a bottleneck analysis indicated recent sharp population declines in both archipelagos but not on the continent. Main conclusions Our study provides evidence that, in spite of significant differentiation, insular populations of highly mobile species may remain connected with the mainland. Conservation programmes should take into account population connectivity and integrate differentiated units of management within complex units of conservation that can best maintain processes and potential for evolutionary change.  相似文献   

9.
Chloride intracellular channels (CLICs) exist in soluble and membrane bound forms. We have determined the crystal structure of soluble Clic2 from the euryhaline teleost fish Oreochromis mossambicus. Structural comparison of tilapia and human CLIC2 with other CLICs shows that these proteins are highly conserved. We have also compared the expression levels of clic2 in selected osmoregulatory organs of tilapia, acclimated to freshwater, seawater and hypersaline water. Structural conservation of vertebrate CLICs implies that they might play conserved roles. Also, tissue-specific responsiveness of clic2 suggests that it might be involved in iono-osmoregulation under extreme conditions in tilapia.  相似文献   

10.
11.
In the age of whole-genome population genetics, so-called genomic scan studies often conclude with a long list of putatively selected loci. These lists are then further scrutinized to annotate these regions by gene function, corresponding biological processes, expression levels, or gene networks. Such annotations are often used to assess and/or verify the validity of the genome scan and the statistical methods that have been used to perform the analyses. Furthermore, these results are frequently considered to validate "true-positives" if the identified regions make biological sense a posteriori. Here, we show that this approach can be potentially misleading. By simulating neutral evolutionary histories, we demonstrate that it is possible not only to obtain an extremely high false-positive rate but also to make biological sense out of the false-positives and construct a sensible biological narrative. Results are compared with a recent polymorphism data set from Drosophila melanogaster.  相似文献   

12.
The nuclear arrangement of the ABL, c-MYC, and RB1 genes was quantitatively investigated in human undifferentiated HL-60 cells and in a terminally differentiated population of human granulocytes. The ABL gene was expressed in both cell types, the c-MYC gene was active in HL-60 cells and down-regulated in granulocytes, and expression of the RB1 gene was undetectable in HL-60 cells but up-regulated in granulocytes. The distances of these genes to the nuclear center (membrane), to the center of the corresponding chromosome territory, and to the nearest centromere were determined. During granulopoesis, the majority of selected genetic structures were repositioned closer to the nuclear periphery. The nuclear reposition of the genes studied did not correlate with the changes of their expression. In both cell types, the c-MYC and RB1 genes were located at the periphery of the chromosome territories regardless of their activity. The centromeres of chromosomes 8 and 13 were always positioned more centrally within the chromosome territory than the studied genes. Close spatial proximity of the c-MYC and RB1 genes with centromeric heterochromatin, forming the chromocenters, correlated with gene activity, although the nearest chromocenter of the silenced RB1 gene did not involve centromeric heterochromatin of chromosome 13 where the given gene is localized. In addition, the role of heterochromatin in gene silencing was studied in retinoblastoma cells. In these differentiated tumor cells, one copy of the RB1 gene was positioned near the heterochromatic chromosome X, and reduced RB1 gene activity was observed. In the experiments presented here, we provide evidence that the regulation of gene activity during important cellular processes such as differentiation or carcinogenesis may be realized through heterochromatin-mediated gene silencing.  相似文献   

13.
14.
A highly conserved sequence in yeast heat shock gene promoters.   总被引:16,自引:2,他引:14       下载免费PDF全文
  相似文献   

15.
Li L  Zhang Y  Zou L  Li C  Yu B  Zheng X  Zhou Y 《PloS one》2012,7(1):e31057
With the rapid increase of protein sequences in the post-genomic age, it is challenging to develop accurate and automated methods for reliably and quickly predicting their subcellular localizations. Till now, many efforts have been tried, but most of which used only a single algorithm. In this paper, we proposed an ensemble classifier of KNN (k-nearest neighbor) and SVM (support vector machine) algorithms to predict the subcellular localization of eukaryotic proteins based on a voting system. The overall prediction accuracies by the one-versus-one strategy are 78.17%, 89.94% and 75.55% for three benchmark datasets of eukaryotic proteins. The improved prediction accuracies reveal that GO annotations and hydrophobicity of amino acids help to predict subcellular locations of eukaryotic proteins.  相似文献   

16.
Using a phylogenetic approach, we identified highly conserved sequences within intron 3 of the human TNF-alpha gene. These sequences form cell type-specific DNase I hypersensitivity sites and display cell type-specific DNA-protein contacts in in vivo genomic footprints. Consistent with these results, intron 3 confers specific activity upon a TNF-alpha reporter gene in Jurkat T cells, but not THP-1 monocytic cells. Thus, using a combinatorial approach of phylogenetic analysis, DNase I hypersensitivity analysis, in vivo footprinting, and transfection analysis, we demonstrate that intronic regulatory elements are involved in the cell type-specific regulation of TNF-alpha gene expression.  相似文献   

17.
Skin pigmentation is a human phenotype that varies greatly among human populations and it has long been speculated that this variation is adaptive. We therefore expect the genes that contribute to these large differences in phenotype to show large allele frequency differences among populations and to possibly harbor signatures of positive selection. To identify the loci that likely contribute to among-population human skin pigmentation differences, we measured allele frequency differentiation among Europeans, Chinese and Africans for 24 human pigmentation genes from 2 publicly available, large scale SNP data sets. Several skin pigmentation genes show unusually large allele frequency differences among these populations. To determine whether these allele frequency differences might be due to selection, we employed a within-population test based on long-range haplotype structure and identified several outliers that have not been previously identified as putatively adaptive. Most notably, we identify the DCT gene as a candidate for recent positive selection in the Chinese. Moreover, our analyses suggest that it is likely that different genes are responsible for the lighter skin pigmentation found in different non-African populations. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

18.
19.
The presence of a CA repeat within the 3'-untranslated region (UTR) of the dystrophin gene has been reported previously in several species. Because microsatellites showing high cross-species homology can be conveniently used as markers in those species for which detailed linkage maps have not yet been developed, we evaluated whether the CA repeat could be amplified from a wide variety of mammalian species. Using a single pair of canine-specific oligonucleotide primers, we successfully amplified the 3'-UTR from 18 different carnivore and six additional species (human, chimpanzee, goat, cow, rabbit and mouse) and show conservation of the CA repeat in the dystrophin gene from a wide range of evolutionarily diverse mammalian species.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号