首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The IL-12 family of cytokines, which include IL-12, IL-23, and IL-27, play critical roles in the differentiation of Th1 cells and are believed to contribute to the development of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Relatively little is known concerning the expression of IL-12 family cytokines by cells of the CNS, the affected tissue in MS. Previously, we and others demonstrated that peroxisome proliferator-activated receptor (PPAR)-gamma agonists suppress the development of EAE, alter T cell proliferation and phenotype, and suppress the activation of APCs. The present studies demonstrated that PPAR-gamma agonists, including the naturally occurring 15-deoxy-Delta(12,14)-PGJ(2) and the synthetic thiazoladinedione rosiglitazone, inhibited the induction of IL-12p40, IL-12p70 (p35/p40), IL-23 (p19/p40), and IL-27p28 proteins by LPS-stimulated primary microglia. In primary astrocytes, LPS induced the production of IL-12p40, IL-23, and IL-27p28 proteins. However, IL-12p70 production was not detected in these cells. The 15-deoxy-Delta(12,14)-PGJ(2) potently suppressed IL-12p40, IL-23, and IL-27p28 production by primary astrocytes, whereas rosiglitazone suppressed IL-23 and IL-27p28, but not IL-12p40 in these cells. These novel observations suggest that PPAR-gamma agonists modulate the development of EAE, at least in part, by inhibiting the production of IL-12 family cytokines by CNS glia. In addition, we demonstrate that PPAR-gamma agonists inhibit TLR2, MyD88, and CD14 expression in glia, suggesting a possible mechanism by which these agonists modulate IL-12 family cytokine expression. Collectively, these studies suggest that PPAR-gamma agonists may be beneficial in the treatment of MS.  相似文献   

2.
Vascular endothelial growth factor (VEGF), expressed in a variety of mesenchymal cells including vascular smooth muscle cells (VSMC), is a potent mitogen for endothelial cells, and is used clinically applied for ischemic disease of peripheral vessels. To determine whether peroxisome proliferator-activated receptor gamma (PPARgamma) regulates VEGF production in VSMC, we examined VEGF secretion from VSMC treated with PPAR agonists. Troglitazone increased VEGF secretion in a time- and dose-dependent manner (261 +/- 35% with 25 mM of troglitazone for 24 h), and also increased levels of VEGF mRNA. VEGF secretion was also increased by other PPARgamma agonists, pioglitazone, LY171883, and 15d-PGJ2 (224 +/- 17.1%, 247 +/- 36.8% and 171 +/- 7.8%, respectively), but not the PPARgamma agonists bezafibrate and Wy14643 (85.2 +/- 1.5%, 94.6 +/- 3.2, respectively). Our findings suggest that thiazolidinediones might be useful for the therapeutic angiogenesis for ischemic artery disease.  相似文献   

3.
PURPOSE OF REVIEW: The prevalence of type 2 diabetes globally is reaching epidemic proportions. Type 2 diabetes is strongly associated with increased risk of cardiovascular disease. Atherosclerosis is thought to arise as a result of a chronic inflammatory process within the arterial wall. Insulin resistance is central to the pathogenesis of type 2 diabetes and may contribute to atherogenesis, either directly or through associated risk factors. The peroxisome proliferator-activated receptor-gamma agonists, the thiazolidinediones, pioglitazone and rosiglitazone, are insulin sensitizing agents, that are licensed for the management of hyperglycaemia. Growing evidence supports an array of additional effects of thiazolidinedione therapy, both immunomodulatory and antiinflammatory, which may attenuate atherogenesis in type 2 diabetes. RECENT FINDINGS: Studies have shown that thiazolidinedione therapy may lead to risk factor modulation in type 2 diabetes. Thiazolidinediones treatment has been shown to reduce blood pressure, modify the atherogenic lipid profile associated with type 2 diabetes, reduce microalbuminuria and ameliorate the prothrombotic diathesis. Further evidence suggests that thiazolidinediones therapy inhibits the inflammatory processes which may be involved in atherosclerotic plaque initiation, propagation and destabilization. SUMMARY: Modification of insulin resistance by thiazolidinedione therapy in type 2 diabetes and the range of pleiotropic effects may not only impact on incident type 2 diabetes, but also on associated cardiovascular disease. Numerous large clinical endpoint studies are under way to investigate these issues.  相似文献   

4.
The pathophysiology of cystic fibrosis (CF) inflammatory lung disease is not well understood. CF airway epithelial cells respond to inflammatory stimuli with increased production of proinflammatory cytokines as a result of increased NF-kappaB activation. Peroxisome proliferator-activated receptor-gamma (PPARgamma) inhibits NF-kappaB activity and is reported to be reduced in CF. If PPARgamma participates in regulatory dysfunction in the CF lung, perhaps PPARgamma ligands might be useful therapeutically. Cell models of CF airway epithelium were used to evaluate PPARgamma expression and binding to NF-kappaB at basal and under conditions of inflammatory stimulation by Pseudomonas aeruginosa or TNFalpha/IL-1beta. An animal model of CF was used to evaluate the potential of PPARgamma agonists as therapeutic agents in vivo. In vitro, PPARgamma agonists reduced IL-8 and MMP-9 release from airway epithelial cells in response to PAO1 or TNFalpha/IL-1beta stimulation. Less NF-kappaB bound to PPARgamma in CF than normal cells, in two different assays; PPARgamma agonists abrogated this reduction. PPARgamma bound less to its target DNA sequence in CF cells. To test the importance of the reported PPARgamma inactivation by phosphorylation, we observed that inhibitors of ERK, but not JNK, were synergistic with PPARgamma agonists in reducing IL-8 secretion. In vivo, administration of PPARgamma agonists reduced airway inflammation in response to acute infection with P. aeruginosa in CF, but not wild-type, mice. In summary, PPARgamma inhibits the inflammatory response in CF, at least in part by interaction with NF-kappaB in airway epithelial cells. PPARgamma agonists may be therapeutic in CF.  相似文献   

5.
6.
Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) ligands constitute important insulin sensitizers that have already been used for the treatment of human metabolic disorders, exerting also pleiotropic effects on inflammatory related diseases and cancer. Ischemia-reperfusion injury that is mainly associated with organ transplantation constitutes a serious complication with a great relevance in clinical practice. Accumulating experimental data have recently revealed that natural and synthetic PPAR-gamma ligands exert beneficial effects against ischemia-reperfusion injury. The present review summarizes the available information on the role of PPAR-gamma ligands in ischemia-reperfusion injury amongst the different organ systems. Taking into consideration the data so far, PPAR-gamma ligands seem to represent potential therapeutic agents in the aim to reduce or even prevent injury associated with ischemia-reperfusion.  相似文献   

7.
8.
Pancreatic stellate cells (PSCs) play a key role in the development of pancreatic fibrosis, a constant feature of chronic pancreatitis and pancreatic cancer. In response to pro-fibrogenic mediators, PSCs undergo an activation process that involves proliferation, enhanced production of extracellular matrix proteins and a phenotypic transition towards myofibroblasts. Ligands of the peroxisome proliferator-activated receptor gamma (PPARgamma), such as thiazolidinediones, are potent inhibitors of stellate cell activation and fibrogenesis in pancreas and liver. The effects of PPARgamma ligands, however, are at least in part mediated through PPARgamma-independent pathways. Here, we have chosen a different approach to study regulatory functions of PPARgamma in PSCs. Using immortalised rat PSCs, we have established a model of tetracycline (tet)-regulated PPARgamma overexpression. Induction of PPARgamma expression strongly inhibited proliferation and enhanced the rate of apoptotic cell death. Furthermore, PPARgamma-overexpressing cells synthesised less collagen than controls. To monitor effects of PPARgamma on PSC gene expression, we employed Affymetrix microarray technology. Using stringent selection criteria, we identified 21 up- and 19 down-regulated genes in PPARgamma-overexpressing cells. Most of the corresponding gene products are either involved in lipid metabolism, play a role in signal transduction, or are secreted molecules that regulate cell growth and differentiation. In conclusion, our data suggest an active role of PPARgamma in the induction of a quiescent PSC phenotype. PPARgamma-regulated genes in PSCs may serve as novel targets for the development of antifibrotic therapies.  相似文献   

9.
10.
11.
Osteonecrosis of the femoral head (ONFH) is a multifactorial disease to which certain individuals are more at risk. Altered lipid metabolism is one of the major risk factors for osteonecrosis, especially corticosteroid therapy and alcoholism. Peroxisome Proliferator-Activated Receptor-gamma (PPARgamma) plays a crucial role in differentiation of mesenchymal cells to adipocytes, lipid homeostasis, and bone metabolism. To investigate the possible association between PPARgamma gene variants and susceptibility to ONFH, we genotyped three common polymorphisms (-796A > G, +34C > G[Pro12Ala], and +82466C > T[His477His]) in 448 ONFH patients and 336 control subjects. Genotypes, allele frequencies, and haplotypes of the polymorphisms in the complete set of patients as well as in subgroups by sex or etiology were not significantly different from those in the control group. This suggests that the examined polymorphisms and haplotypes of the PPARgamma gene are unlikely to be associated with susceptibility to ONFH.  相似文献   

12.
Panadero M  Herrera E  Bocos C 《Biochimie》2000,82(8):723-726
The expression of the peroxisome proliferator-activated receptor-alpha (PPARalpha) as well as of some related genes was studied in rat liver at different stages of development (from 19-day-old fetuses to 1 month-old rats). The level of PPARalpha mRNA appeared higher in neonates than in fetuses or 1 month-old rats. Whereas the pattern for phosphoenolpyruvate carboxykinase (PEPCK) mRNA level was similar to that of PPARalpha, the mRNA level of both acyl-CoA oxidase (ACO) and apolipoprotein CIII (apo CIII) showed diverse profiles. Western blotting analysis also revealed an increased level of PPARalpha protein in liver of suckling rats. Similarities of mRNA PEPCK and PPARalpha expression indicate a common control mechanism, where both nutritional and hormonal factors may be involved.  相似文献   

13.
14.
15.
The main etiologic factor for chronic bronchitis is cigarette smoke. Exposure to cigarette smoke is reported to induce goblet cell hyperplasia and mucus production. Mucin synthesis in airways has been reported to be regulated by the EGFR system. Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) is a member of the ligand-activated nuclear receptor superfamily. PPAR-gamma is implicated in anti-inflammatory responses, but mechanisms underlying these varied roles remain ill-defined. Recently, reports have shown that upregulation of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) might be one of the mechanisms through which PPAR-gamma agonists exert their anti-inflammatory actions. However, no data are available on the role of PPAR-gamma in smoke-induced mucin production. In this study, we investigated the effect of PPAR-gamma agonist (rosiglitazone) on smoke-induced mucin production in NCI-H292 cells. Exposure to cigarette smoke causes a significant decrease in PTEN expression and increases dose-dependent EGFR-specific tyrosine phosphorylation, resulting in MUC5AC mucin production in NCI-H292 cells. PPAR-gamma agonists or specific inhibitors of phosphoinositide 3-kinase exert inhibition of cigarette smoke-induced mucin production, with the upregulation of PTEN signaling and downregulation of Akt expression. This study demonstrates that PPAR-gamma agonist functions as a regulator of epithelial cell inflammation that may result in reduction of mucin-producing cells in airway epithelium.  相似文献   

16.
17.
Activation of peroxisome proliferator-activated receptor gamma (PPAR gamma) after balloon injury significantly inhibits VSMC proliferation and neointima formation. However, the precise mechanisms of this inhibition have not been determined. We hypothesized that activation of PPAR gamma in vascular injury could attenuate VSMC growth and matrix production during vascular lesion formation. Since connective tissue growth factor (CTGF) is a key factor regulating extracellular matrix production, abrogation of transforming growth factor beta (TGF-beta)-induced CTGF production by PPAR gamma activation may be one of the mechanisms through which PPAR gamma agonists inhibit neointima formation after vascular injury. In this study, we demonstrate that the PPAR gamma natural ligand (15-deoxyprostaglandin J(2)) and a synthetic ligand (GW7845) significantly inhibit TGF-beta-induced CTGF production in a dose-dependent manner in HASMCs. In addition, suppression of CTGF mRNA expression is relieved by pretreatment with an antagonist of PPAR gamma (GW9662), suggesting that the inhibition of CTGF expression is mediated by PPAR gamma. To elucidate further the molecular mechanism by which PPAR gamma inhibits CTGF expression, an approximately 2-kilobase pair CTGF promoter was cloned. We found that PPAR gamma activation inhibits TGF-beta-induced CTGF promoter activity in a dose-dependent manner, and suppression of CTGF promoter activity by PPAR gamma activation is completely rescued by overexpression of Smad3, but not by Smad4. Furthermore, PPAR gamma physically interacts with Smad3 but not Smad4 in vitro in glutathione S-transferase pull-down experiments. Taken together, the data suggest that PPAR gamma inhibits TGF-beta-induced CTGF expression in HASMCs by directly interfering with the Smad3 signaling pathway.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号