首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Epoxygenase activity and synthesis of epoxyeicosatrienoic acids (EETs) have emerged as important modulators of obesity and diabetes. We examined the effect of the EET-agonist 12-(3-hexylureido)dodec-8(2) enoic acid on mesenchymal stem cell (MSC) derived adipocytes proliferation and differentiation. MSCs expressed substantial levels of EETs and inhibition of soluble epoxide hydrolase (sEH) increased the level of EETs and decreased adipogenesis. EET agonist treatment increased HO-1 expression by inhibiting a negative regulator of HO-1 expression, Bach-1. EET treatment also increased βcatenin and pACC levels while decreasing PPARγ C/EBPα and fatty acid synthase levels. These changes were manifested by a decrease in the number of large inflammatory adipocytes, TNFα, IFNγ and IL-1α, but an increase in small adipocytes and in adiponectin levels. In summary, EET agonist treatment inhibits adipogenesis and decreases the levels of inflammatory cytokines suggesting the potential action of EETs as intracellular lipid signaling modulators of adipogenesis and adiponectin.  相似文献   

2.
Dave S  Kaur NJ  Nanduri R  Dkhar HK  Kumar A  Gupta P 《PloS one》2012,7(1):e30831
The phytotherapeutic protein stem bromelain (SBM) is used as an anti-obesity alternative medicine. We show at the cellular level that SBM irreversibly inhibits 3T3-L1 adipocyte differentiation by reducing adipogenic gene expression and induces apoptosis and lipolysis in mature adipocytes. At the molecular level, SBM suppressed adipogenesis by downregulating C/EBPα and PPARγ independent of C/EBPβ gene expression. Moreover, mRNA levels of adipocyte fatty acid-binding protein (ap2), fatty acid synthase (FAS), lipoprotein lipase (LPL), CD36, and acetyl-CoA carboxylase (ACC) were also downregulated by SBM. Additionally, SBM reduced adiponectin expression and secretion. SBM's ability to repress PPARγ expression seems to stem from its ability to inhibit Akt and augment the TNFα pathway. The Akt-TSC2-mTORC1 pathway has recently been described for PPARγ expression in adipocytes. In our experiments, TNFα upregulation compromised cell viability of mature adipocytes (via apoptosis) and induced lipolysis. Lipolytic response was evident by downregulation of anti-lipolytic genes perilipin, phosphodiestersae-3B (PDE3B), and GTP binding protein G(i)α(1), as well as sustained expression of hormone sensitive lipase (HSL). These data indicate that SBM, together with all-trans retinoic-acid (atRA), may be a potent modulator of obesity by repressing the PPARγ-regulated adipogenesis pathway at all stages and by augmenting TNFα-induced lipolysis and apoptosis in mature adipocytes.  相似文献   

3.
Accumulating evidence suggests that inhibition of mitogen‐activated protein kinase signalling can reduce phosphorylation of peroxisome proliferator‐activated receptor γ (PPARγ) at serine 273, which mitigates obesity‐associated insulin resistance and might be a promising treatment for type 2 diabetes. Dihydromyricetin (DHM) is a flavonoid that has many beneficial pharmacological properties. In this study, mouse fibroblast 3T3‐L1 cells were used to investigate whether DHM alleviates insulin resistance by inhibiting PPARγ phosphorylation at serine 273 via the MEK/ERK pathway. 3T3‐L1 pre‐adipocytes were differentiated, and the effects of DHM on adipogenesis and glucose uptake in the resulting adipocytes were examined. DHM was found to dose dependently increase glucose uptake and decrease adipogenesis. Insulin resistance was then induced in adipocytes using dexamethasone, and DHM was shown to dose and time dependently promote glucose uptake in the dexamethasone‐treated adipocytes. DHM also inhibited phosphorylation of PPARγ and ERK. Inhibition of PPARγ activity with GW9662 potently blocked DHM‐induced glucose uptake and adiponectin secretion. Interestingly, DHM showed similar effects to PD98059, an inhibitor of the MEK/ERK pathway. DHM acted synergistically with PD98059 to improve glucose uptake and adiponectin secretion in dexamethasone‐treated adipocytes. In conclusion, our findings indicate that DHM improves glucose uptake in adipocytes by inhibiting ERK‐induced phosphorylation of PPARγ at serine 273.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
Adipocyte dysfunction is associated with many metabolic diseases such as obesity, insulin resistance and diabetes. Previous studies found that phloretin promotes 3T3-L1 cells differentiation, but the underlying mechanisms for phloretin's effects on adipogenesis remain unclear. In this study, we demonstrated that phloretin enhanced the lipid accumulation in porcine primary adipocytes in a time-dependent manner. Furthermore, phloretin increased the utilization of glucose and nonesterified fatty acid, while it decreased the lactate output. Microarray analysis revealed that genes associated with peroxisome proliferator-activated receptor-γ (PPARγ), mitogen-activated protein kinase and insulin signaling pathways were altered in response to phloretin. We further confirmed that phloretin enhanced expression of PPARγ, CAAT enhancer binding protein-α (C/EBPα) and adipose-related genes, such as fatty acids translocase and fatty acid synthase. In addition, phloretin activated the Akt (Thr308) and extracellular signal-regulated kinase, and therefore, inactivated Akt targets protein. Wortmannin effectively blocked the effect of phloretin on Akt activity and the protein levels of PPARγ, C/EBPα and fatty acid binding protein-4 (FABP4/aP2). Oral administration of 5 or 10 mg/kg phloretin to C57BL BKS-DB mice significantly decreased the serum glucose level and improved glucose tolerance. In conclusion, phloretin promotes the adipogenesis of porcine primary preadipocytes through Akt-associated signaling pathway. These findings suggested that phloretin might be able to increase insulin sensitivity and alleviate the metabolic diseases.  相似文献   

12.
Adiponectin is an important insulin‐sensitizing adipokine with multiple beneficial effects on obesity‐associated medical complications. It is secreted from adipocytes into circulation as high, medium, and low molecular weight forms (HMW, MMW, and LMW). Each oligomeric form of adiponectin exerts non‐overlapping biological functions, with the HMW oligomer possessing the most potent insulin‐sensitizing activity. In this study, we reported that emodin, a natural product and active ingredient of various Chinese herbs, activates AMPK in both 3T3‐L1 adipocytes and 293T cells. Activation of AMPK by emodin promotes the assembly of HMW adiponectin and increases the ratio of HMW adiponectin to total adiponectin in 3T1‐L1 adipocytes. Emodin might activate AMPK by an indirect mechanism similar to berberine. We also found that emodin activates PPARγ and promotes differentiation and adiponectin expression during differentiation of 3T3‐L1 preadipocytes. Therefore, emodin is a novel AMPK activator with PPARγ‐agonist activity. Our results demonstrate that the effects of emodin on adiponectin expression and multimerization are the ultimate effects resulting from both AMPK activation and PPARγ activation. The dual‐activity makes emodin or the derivatives potential drug candidates for the treatment of type 2 diabetes and other obesity‐related metabolic diseases. J. Cell. Biochem. 113: 3547–3558, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
Peroxisome proliferator-activated receptor-α (PPARα) is a key regulator for maintaining whole-body energy balance. However, the physiological functions of PPARα in adipocytes have been unclarified. We examined the functions of PPARα using human multipotent adipose tissue-derived stem cells as a human adipocyte model. Activation of PPARα by GW7647, a potent PPARα agonist, increased the mRNA expression levels of adipocyte differentiation marker genes such as PPARγ, adipocyte-specific fatty acid-binding protein, and lipoprotein lipase and increased both GPDH activity and insulin-dependent glucose uptake level. The findings indicate that PPARα activation stimulates adipocyte differentiation. However, lipid accumulation was not changed, which is usually observed when PPARγ is activated. On the other hand, PPARα activation by GW7647 treatment induced the mRNA expression of fatty acid oxidation-related genes such as CPT-1B and AOX in a PPARα-dependent manner. Moreover, PPARα activation increased the production of CO2 and acid soluble metabolites, which are products of fatty acid oxidation, and increased oxygen consumption rate in human adipocytes. The data indicate that activation of PPARα stimulates both adipocyte differentiation and fatty acid oxidation in human adipocytes, suggesting that PPARα agonists could improve insulin resistance without lipid accumulation in adipocytes. The expected effects of PPARα activation are very valuable for managing diabetic conditions accompanied by obesity, because PPARγ agonists, usually used as antidiabetic drugs, induce excessive lipid accumulation in adipocytes in addition to improvement of insulin resistance.  相似文献   

14.
采用细胞转染、油红O染色、油红O染色提取法、GPDH活性测定、semi-qRT-PCR等方法研究了视黄酸X受体α (retinoic acid X receptor α, RXRα)在猪原代前体脂肪细胞分化中的作用及其机理.结果表明,转染pRXRα-EGFP促进了猪前体脂肪细胞RXRα 的表达,脂肪细胞分化能力随之增强, 脂肪细胞GPDH活性、分化转录因子PPARγ和C/EBPαmRNA表达水平均显著升高(P<0.05). 结果提示,RXRα可能通过调控过氧化物酶体增殖物激活受体γ(peroxisome proliferators-activated receptor-γ, PPARγ)和CAAT/增强子结合蛋白家族(CCAAT/enhancer binding proteins, C/EBP)C/EBPα 基因表达变化促进猪前体脂肪细胞分化.  相似文献   

15.
16.
17.
Adiponectin, an anti‐inflammatory and insulin‐sensitizing protein secreted from adipose tissue, may be modulated by dietary fatty acids, although the mechanism is not fully known. Our objective was to investigate the effect of long‐chain n‐3 polyunsaturated fatty acids (PUFAs) on adiponectin in cultured human adipocytes, and to elucidate the role of peroxisome proliferator‐activated receptor‐γ (PPARγ) in this regulation. Isolated human adipocytes were cultured for 48 h with 100 µmol/l eicosapentaenoic acid (C20:5n‐3, EPA), docosahexaenoic acid (C22:6n‐3, DHA), palmitic acid (C16:0), 100 µmol/l EPA plus 100 µmol/l DHA, or bovine serum albumin (control). Additionally, adipocytes were treated for 48 h with a PPARγ antagonist (BADGE) or agonist (rosiglitazone) in isolation or in conjunction with either EPA or DHA. At 48 h, EPA and DHA increased (P < 0.05) adiponectin secretion by 88 and 47%, respectively, while EPA, but not DHA, also increased (136%, P < 0.001) cellular adiponectin protein. Interestingly, PPARγ antagonism completely abolished the DHA‐mediated increase in secreted adiponectin, but only partially attenuated the EPA‐mediated response. Thus, EPA's effects on adiponectin do not appear to be entirely PPARγ mediated. Rosiglitazone increased (P < 0.001) the secreted and cellular adiponectin protein (90 and 582%, respectively). Finally, the effects of EPA and rosiglitazone on adiponectin secretion were additive (+230% at 48 h combined, compared to 121 and 124% by EPA or rosiglitazone alone, respectively). Overall, our findings emphasize the therapeutic importance of long‐chain n‐3 PUFA alone, or in combination with a PPARγ agonist, as a stimulator of adiponectin, a key adipokine involved in obesity and related diseases.  相似文献   

18.
19.
鸡PPARγ基因的表达特性及其对脂肪细胞增殖分化的影响   总被引:1,自引:0,他引:1  
为分析鸡PPARγ基因的组织表达特性及其在脂肪细胞增殖和分化过程中的功能,文章以东北农业大学高、低腹脂双向选择品系肉鸡为实验材料,利用Western blotting方法,检测PPARγ基因的组织表达特性及其在高、低脂系肉鸡腹部脂肪组织间的表达差异;采用RNAi技术,在鸡原代脂肪细胞中抑制PPARγ基因的表达后,通过MTT和油红O提取比色的方法,研究鸡PPARγ基因对脂肪细胞增殖和分化的调控作用;利用Real-timePCR和Western blotting技术,分析PPARγ基因表达下调后,其他脂肪细胞分化转录因子以及与脂肪细胞分化相关的重要基因的表达变化情况。结果表明,PPARγ基因在7周龄高脂系肉鸡腹部脂肪组织、肌胃、脾脏、肾脏组织中表达量较高,在心脏中表达量较低,在肝脏、胸肌、腿肌、十二指肠中未检测到表达信号;与高脂系相比,PPARγ基因在5和7周龄低脂系肉鸡腹部脂肪组织中的表达量较低(P<0.05);PPARγ基因的表达量下降后,鸡脂肪细胞的增殖能力增强,分化能力减弱;同时,C/EBPα、SREBP1、A-FABP、Perilipin1、LPL、IGFBP-2基因的表达量均下降(P<0.05)。由此可见,PPARγ基因的表达可能与肉鸡腹部脂肪的沉积有一定的关系,该基因可能是调控鸡脂肪细胞增殖与分化的关键因子。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号