首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the second step of the molybdenum cofactor (Moco) biosynthesis in Escherichia coli, the l-cysteine desulfurase IscS was identified as the primary sulfur donor for the formation of the thiocarboxylate on the small subunit (MoaD) of MPT synthase, which catalyzes the conversion of cyclic pyranopterin monophosphate to molybdopterin (MPT). Although in Moco biosynthesis in humans, the thiocarboxylation of the corresponding MoaD homolog involves two sulfurtransferases, an l-cysteine desulfurase, and a rhodanese-like protein, the rhodanese-like protein in E. coli remained enigmatic so far. Using a reverse approach, we identified a so far unknown sulfurtransferase for the MoeB-MoaD complex by protein-protein interactions. We show that YnjE, a three-domain rhodanese-like protein from E. coli, interacts with MoeB possibly for sulfur transfer to MoaD. The E. coli IscS protein was shown to specifically interact with YnjE for the formation of the persulfide group on YnjE. In a defined in vitro system consisting of MPT synthase, MoeB, Mg-ATP, IscS, and l-cysteine, YnjE was shown to enhance the rate of the conversion of added cyclic pyranopterin monophosphate to MPT. However, YnjE was not an enhancer of the cysteine desulfurase activity of IscS. This is the first report identifying the rhodanese-like protein YnjE as being involved in Moco biosynthesis in E. coli. We believe that the role of YnjE is to make the sulfur transfer from IscS for Moco biosynthesis more specific because IscS is involved in a variety of different sulfur transfer reactions in the cell.  相似文献   

2.
Amino acid sequence comparisons of Escherichia coli MoeB suggested that the MoeB-dependent formation of a C-terminal thiocarboxylate on the MoaD subunit of molybdopterin synthase might resemble the ubiquitin-activating step in the ubiquitin-targeted degradation of proteins in eukaryotes. To determine the exact role of MoeB in molybdopterin biosynthesis, the protein was purified after homologous overexpression. Using purified proteins, we have demonstrated the ATP-dependent formation of a complex of MoeB and MoaD adenylate that is stable to gel filtration. Mass spectrometry of the complex revealed a peak of a molecular mass of 9,073 Da, the expected mass of MoaD adenylate. However, unlike the ubiquitin activation reaction, the formation of a thioester intermediate between MoeB and MoaD could not be observed. There was also no evidence for a MoeB-bound sulfur during the sulfuration of MoaD. Amino acid substitutions were generated in every cysteine residue in MoeB. All of these exhibited activity comparable to the wild type, with the exception of mutations in cysteine residues located in putative Zn-binding motifs. For these cysteines, loss of activity correlated with loss of metal binding.  相似文献   

3.
Splice-specific functions of gephyrin in molybdenum cofactor biosynthesis   总被引:1,自引:0,他引:1  
Gephyrin is a multifunctional protein involved in the clustering of inhibitory neuroreceptors. In addition, gephyrin catalyzes the last step in molybdenum cofactor (Moco) biosynthesis essential for the activities of Mo-dependent enzymes such as sulfite oxidase and xanthine oxidoreductase. Functional complexity and diversity of gephyrin is believed to be regulated by alternative splicing in a tissue-specific manner. Here, we investigated eight gephyrin variants with combinations of seven alternatively spliced exons located in the N-terminal G domain, the central domain, and the C-terminal E domain. Their activity in Moco synthesis was analyzed in vivo by reconstitution of gephyrin-deficient L929 cells, which were found to be defective in the G domain of gephyrin. Individual domain functions were assayed in addition and confirmed that variants containing either an additional C5 cassette or missing the C6 cassette are inactive in Moco synthesis. In contrast, different alterations within the central domain retained the Moco synthetic activity of gephyrin. The recombinant gephyrin G domain containing the C5 cassette forms dimers in solution, binds molybdopterin, but is unable to catalyze molybdopterin (MPT) adenylylation. Determination of Moco and MPT content in different tissues showed that besides liver and kidney, brain was capable of synthesizing Moco most efficiently. Subsequent analysis of cultured neurons and glia cells demonstrated glial Moco synthesis due to the expression of gephyrins containing the cassettes C2 and C6 with and without C3.1.  相似文献   

4.
The crystal structure of Cnx1G, an enzyme involved in the biosynthesis of the molybdenum cofactor (Moco) in Arabidopsis thaliana, revealed the remarkable feature of a copper ion bound to the dithiolene unit of a molybdopterin intermediate (Kuper et al. Nature 430:803-806, 2004). To characterize further the role of copper in Moco biosynthesis, we examined the in vivo and/or in vitro activity of two Moco-dependent enzymes, dimethyl sulfoxide reductase (DMSOR) and nitrate reductase (NR), from cells grown under a variety of copper conditions. We found the activities of DMSOR and NR were not affected when copper was depleted from the media of either Escherichia coli or Rhodobacter sphaeroides. These data suggest that while copper may be utilized during Moco biosynthesis when it is available, copper does not appear to be strictly required for Moco biosynthesis in these two organisms.  相似文献   

5.
Molybdenum cofactor (Moco) biosynthesis is an evolutionarily conserved pathway in archaea, eubacteria, and eukaryotes, including humans. Genetic deficiencies of enzymes involved in this biosynthetic pathway trigger an autosomal recessive disease with severe neurological symptoms, which usually leads to death in early childhood. The MogA protein exhibits affinity for molybdopterin, the organic component of Moco, and has been proposed to act as a molybdochelatase incorporating molybdenum into Moco. MogA is related to the protein gephyrin, which, in addition to its role in Moco biosynthesis, is also responsible for anchoring glycinergic receptors to the cytoskeleton at inhibitory synapses. The high resolution crystal structure of the Escherichia coli MogA protein has been determined, and it reveals a trimeric arrangement in which each monomer contains a central, mostly parallel beta-sheet surrounded by alpha-helices on either side. Based on structural and biochemical data, a putative active site was identified, including two residues that are essential for the catalytic mechanism.  相似文献   

6.
The human MOCS3 gene encodes a protein involved in activation and sulfuration of the C terminus of MOCS2A, the smaller subunit of the molybdopterin (MPT) synthase. MPT synthase catalyzes the formation of the dithiolene group of MPT that is required for the coordination of the molybdenum atom in the last step of molybdenum cofactor (Moco) biosynthesis. The two-domain protein MOCS3 catalyzes both the adenylation and the subsequent generation of a thiocarboxylate group at the C terminus of MOCS2A by its C-terminal rhodanese-like domain (RLD). The low activity of MOCS3-RLD with thiosulfate as sulfur donor and detailed mutagenesis studies showed that thiosulfate is most likely not the physiological sulfur source for Moco biosynthesis in eukaryotes. It was suggested that an l-cysteine desulfurase might be involved in the sulfuration of MOCS3 in vivo. In this report, we investigated the involvement of the human l-cysteine desulfurase Nfs1 in sulfur transfer to MOCS3-RLD. A variant of Nfs1 was purified in conjunction with Isd11 in a heterologous expression system in Escherichia coli, and the kinetic parameters of the purified protein were determined. By studying direct protein-protein interactions, we were able to show that Nfs1 interacted specifically with MOCS3-RLD and that sulfur is transferred from l-cysteine to MOCS3-RLD via an Nfs1-bound persulfide intermediate. Because MOCS3 was shown to be located in the cytosol, our results suggest that cytosolic Nfs1 has an important role in sulfur transfer for the biosynthesis of Moco.  相似文献   

7.
The biosynthesis of the molybdenum cofactor (Moco) is highly conserved among all kingdoms of life. In all molybdoenzymes containing Moco, the molybdenum atom is coordinated to a dithiolene group present in the pterin-based 6-alkyl side chain of molybdopterin (MPT). In general, the biosynthesis of Moco can be divided into four steps in in bacteria: (i) the starting point is the formation of the cyclic pyranopterin monophosphate (cPMP) from 5′-GTP, (ii) in the second step the two sulfur atoms are inserted into cPMP leading to the formation of MPT, (iii) in the third step the molybdenum atom is inserted into MPT to form Moco and (iv) in the fourth step bis-Mo-MPT is formed and an additional modification of Moco is possible with the attachment of a nucleotide (CMP or GMP) to the phosphate group of MPT, forming the dinucleotide variants of Moco. This review presents an update on the well-characterized Moco biosynthesis in the model organism Escherichia coli including novel discoveries from the recent years.  相似文献   

8.
Matthies A  Nimtz M  Leimkühler S 《Biochemistry》2005,44(21):7912-7920
The human MOCS3 protein contains an N-terminal domain similar to the Escherichia coli MoeB protein and a C-terminal segment displaying similarities to the sulfurtransferase rhodanese. MOCS3 is proposed to catalyze both the adenylation and the subsequent generation of a thiocarboxylate group at the C-terminus of the smaller subunit of molybdopterin (MPT) synthase during Moco biosynthesis in humans. Recent studies have shown that the MOCS3 rhodanese-like domain (MOCS3-RLD) catalyzes the transfer of sulfur from thiosulfate to cyanide and is also able to provide the sulfur for the thiocarboxylation of MOCS2A in a defined in vitro system for the generation of MPT from precursor Z. MOCS3-RLD contains four cysteine residues of which only C412 in the six amino acid active loop is conserved in homologous proteins from other organisms. ESI-MS/MS studies gave direct evidence for the formation of a persulfide group that is exclusively formed on C412. Simultaneous mutagenesis of the remaining three cysteine residues showed that none of them is involved in the sulfur transfer reaction in vitro. A disulfide bridge was identified to be formed between C316 and C324, and possible roles of the three noncatalytic cysteine residues are discussed. By ESI-MS/MS a partially gluconoylated N-terminus of the His6-tagged MOCS3-RLD was identified (mass increment of 178 Da) which resulted in a heterogeneity of the protein but did not influence sulfurtransferase activity.  相似文献   

9.
In almost all biological life forms, molybdenum and tungsten are coordinated by molybdopterin (MPT), a tricyclic pyranopterin containing a cis-dithiolene group. Together, the metal and the pterin moiety form the redox reactive molybdenum cofactor (Moco). Mutations in patients with deficiencies in Moco biosynthesis usually occur in the enzymes catalyzing the first and second steps of biosynthesis, leading to the formation of precursor Z and MPT, respectively. The second step is catalyzed by the heterotetrameric MPT synthase protein consisting of two large (MoaE) and two small (MoaD) subunits with the MoaD subunits located at opposite ends of a central MoaE dimer. Previous studies have determined that the conversion of the sulfur- and metal-free precursor Z to MPT by MPT synthase involves the transfer of sulfur atoms from a C-terminal MoaD thiocarboxylate to the C-1' and C-2' positions of precursor Z. Here, we present the crystal structures of non-thiocarboxylated MPT synthase from Staphylococcus aureus in its apo form and in complex with precursor Z. A comparison of the two structures reveals conformational changes in a loop that participates in interactions with precursor Z. In the complex, precursor Z is bound by strictly conserved residues in a pocket at the MoaE dimer interface in close proximity of the C-terminal glycine of MoaD. Biochemical evidence indicates that the first dithiolene sulfur is added at the C-2' position.  相似文献   

10.
The molybdenum co-factor (Moco) is an essential part of all eukaryotic molybdoenzymes. It is a molybdopterin and reveals the same principal structure in eubacteria, archaebacteria and eukaryotes. This paper reports the isolation of cnx1 , a cDNA clone of Arabidopsis thaliana which complements the Escherichia coli Moco mutant mogA . The mapping data of this cDNA correlate well with the mapping position of the A. thaliana molybdenum cofactor locus chl6 . As mutants in chl6 are known to be repairable by high concentrations of molybdate, the defective gene is very likely to be involved in the last step of Moco biosynthesis, that is, the insertion of molybdenum into molybdopterin. The protein encoded by cnx1 shows a two-domain structure: the N-terminal domain is homologous to the E. coli Moco protein MoeA, the C-terminal domain is homologous to the E. coli Moco proteins MoaB and MogA, respectively. These homologies show that part of the prokaryotic Moco biosynthetic pathway accomplished by monofunctional proteins in E. coli , is performed by a single multifunctional protein in eukaryotes. In addition Cnx1 is homologous to the eukaryotic proteins Gephyrin, a rat neuroprotein, and Cinnamon, a Drosophila protein with a function in Moco biosynthesis. These proteins also show a two-domain structure but the order of the domains is inversed as compared with Cnx1. Southern analysis indicates the existence of at least one further member, in addition to the cnx1 gene, of this novel gene family in the Arabidopsis genome.  相似文献   

11.
In Escherichia coli, the MoaD protein plays a central role in the conversion of precursor Z to molybdopterin (MPT) during molybdenum cofactor biosynthesis. MoaD has a fold similar to that of ubiquitin and contains a highly conserved C-terminal Gly-Gly motif, which in its active form contains a transferrable sulfur in the form of a thiocarboxylate group. During MPT biosynthesis, MoaD cycles between two different heterotetrameric complexes, one with MoaE to form MPT synthase and the other with MoeB, a protein similar to E1 in the ubiquitin pathway, to regenerate its transferrable sulfur. To determine the specific roles of each of the two terminal Gly residues with regard to the MoaD cycle, variants at the penultimate (Gly80) or terminal (Gly81) residues of both MoaD and thiocarboxylated MoaD were created. These variants were analyzed to determine their effects on complex formation with MoaE and MoeB, formation of the MoaD-acyl-adenylate complex, transfer of sulfur to precursor Z to form MPT, and total cofactor biosynthesis. The combined results show that while conservative substitutions at Gly80 had little effect on any of the processes that were examined, the terminal MoaD residue (Gly81) is important for transfer of sulfur to precursor Z and essential for formation of the MoaD-AMP complex. These results further our understanding of the mechanistic similarities of the MoaD-MoeB reaction to that of the ubiquitin-E1 system.  相似文献   

12.
The persulfide sulfur formed on an active site cysteine residue of pyridoxal 5′-phosphate-dependent cysteine desulfurases is subsequently incorporated into the biosynthetic pathways of a variety of sulfur-containing cofactors and thionucleosides. In molybdenum cofactor biosynthesis, MoeB activates the C terminus of the MoaD subunit of molybdopterin (MPT) synthase to form MoaD-adenylate, which is subsequently converted to a thiocarboxylate for the generation of the dithiolene group of MPT. It has been shown that three cysteine desulfurases (CsdA, SufS, and IscS) of Escherichia coli can transfer sulfur from l-cysteine to the thiocarboxylate of MoaD in vitro. Here, we demonstrate by surface plasmon resonance analyses that IscS, but not CsdA or SufS, interacts with MoeB and MoaD. MoeB and MoaD can stimulate the IscS activity up to 1.6-fold. Analysis of the sulfuration level of MoaD isolated from strains defective in cysteine desulfurases shows a largely decreased sulfuration level of the protein in an iscS deletion strain but not in a csdA/sufS deletion strain. We also show that another iscS deletion strain of E. coli accumulates compound Z, a direct oxidation product of the immediate precursor of MPT, to the same extent as an MPT synthase-deficient strain. In contrast, analysis of the content of compound Z in ΔcsdA and ΔsufS strains revealed no such accumulation. These findings indicate that IscS is the primary physiological sulfur-donating enzyme for the generation of the thiocarboxylate of MPT synthase in MPT biosynthesis.  相似文献   

13.
BACKGROUND: The molybdenum cofactor (Moco) is an essential component of a large family of enzymes involved in important transformations in carbon, nitrogen and sulfur metabolism. The Moco biosynthetic pathway is evolutionarily conserved and found in archaea, eubacteria and eukaryotes. In humans, genetic deficiencies of enzymes involved in this pathway trigger an autosomal recessive and usually deadly disease with severe neurological symptoms. The MoaC protein, together with the MoaA protein, is involved in the first step of Moco biosynthesis. RESULTS: MoaC from Escherichia coli has been expressed and purified to homogeneity and its crystal structure determined at 2 A resolution. The enzyme is organized into a tightly packed hexamer with 32 symmetry. The monomer consists of an antiparallel, four-stranded beta sheet packed against two long alpha helices, and its fold belongs to the ferredoxin-like family. Analysis of structural and biochemical data strongly suggests that the active site is located at the interface of two monomers in a pocket that contains several strictly conserved residues. CONCLUSIONS: Asp128 in the putative active site appears to be important for catalysis as its replacement with alanine almost completely abolishes protein activity. The structure of the Asp128-->Ala variant reveals substantial conformational changes in an adjacent loop. In the human MoaC ortholog, substitution of Thr182 with proline causes Moco deficiency, and the corresponding substitution in MoaC severely compromises activity. This residue is located near the N-terminal end of helix alpha4 at an interface between two monomers. The MoaC structure provides a framework for the analysis of additional dysfunctional mutations in the corresponding human gene.  相似文献   

14.
The molybdenum cofactor (Moco) exists in different variants in the cell and can be directly inserted into molybdoenzymes utilizing the molybdopterin (MPT) form of Moco. In bacteria such as Rhodobacter capsulatus and Escherichia coli, MPT is further modified by attachment of a GMP nucleotide, forming MPT guanine dinucleotide (MGD). In this work, we analyzed the distribution and targeting of different forms of Moco to their respective user enzymes by proteins that bind Moco and are involved in its further modification. The R. capsulatus proteins MogA, MoeA, MobA, and XdhC were purified, and their specific interactions were analyzed. Interactions between the protein pairs MogA-MoeA, MoeA-XdhC, MoeA-MobA, and XdhC-MobA were identified by surface plasmon resonance measurements. In addition, the transfer of Moco produced by the MogA-MoeA complex to XdhC was investigated. A direct competition of MobA and XdhC for Moco binding was determined. In vitro analyses showed that XdhC bound to MobA, prevented the binding of Moco to MobA, and thereby inhibited MGD biosynthesis. The data were confirmed by in vivo studies in R. capsulatus cells showing that overproduction of XdhC resulted in a 50% decrease in the activity of bis-MGD-containing Me(2)SO reductase. We propose that, in bacteria, the distribution of Moco in the cell and targeting to the respective user enzymes are accomplished by specific proteins involved in Moco binding and modification.  相似文献   

15.
Because of mechanistic parallels in the activation of ubiquitin and the biosynthesis of several sulfur-containing cofactors, we have characterized the human Urm1 and Saccharomyces cerevisiae Uba4 proteins, which are very similar in sequence to MOCS2A and MOCS3, respectively, two proteins essential for the biosynthesis of the molybdenum cofactor (Moco) in humans. Phylogenetic analyses of MOCS3 homologues showed that Uba4 is the MOCS3 homologue in yeast and thus the only remaining protein of the Moco biosynthetic pathway in this organism. Because of the high levels of sequence identity of human MOCS3 and yeast Uba4, we purified Uba4 and characterized the catalytic activity of the protein in detail. We demonstrate that the C-terminal domain of Uba4, like MOCS3, has rhodanese activity and is able to transfer the sulfur from thiosulfate to cyanide in vitro. In addition, we were able to copurify stable heterotetrameric complexes of Uba4 with both human Urm1 and MOCS2A. The N-terminal domain of Uba4 catalyzes the activation of either MOCS2A or Urm1 by formation of an acyl-adenylate bond. After adenylation, persulfurated Uba4 was able to form a thiocarboxylate group at the C-terminal glycine of either Urm1 or MOCS2A. The formation of a thioester intermediate between Uba4 and Urm1 or MOCS2A was not observed. The functional similarities between Uba4 and MOCS3 further demonstrate the evolutionary link between ATP-dependent protein conjugation and ATP-dependent cofactor sulfuration.  相似文献   

16.
The molybdenum cofactor (Moco) is a prosthetic group required by a number of enzymes, such as nitrate reductase, sulfite oxidase, xanthine dehydrogenase, and aldehyde oxidase. Its biosynthesis in eukaryotes can be divided into four steps, of which the last three are proposed to occur in the cytosol. Here, we report that the mitochondrial ABC transporter ATM3, previously implicated in the maturation of extramitochondrial iron-sulfur proteins, has a crucial role also in Moco biosynthesis. In ATM3 insertion mutants of Arabidopsis thaliana, the activities of nitrate reductase and sulfite oxidase were decreased to ∼50%, whereas the activities of xanthine dehydrogenase and aldehyde oxidase, whose activities also depend on iron-sulfur clusters, were virtually undetectable. Moreover, atm3 mutants accumulated cyclic pyranopterin monophosphate, the first intermediate of Moco biosynthesis, but showed decreased amounts of Moco. Specific antibodies against the Moco biosynthesis proteins CNX2 and CNX3 showed that the first step of Moco biosynthesis is localized in the mitochondrial matrix. Together with the observation that cyclic pyranopterin monophosphate accumulated in purified mitochondria, particularly in atm3 mutants, our data suggest that mitochondria and the ABC transporter ATM3 have a novel role in the biosynthesis of Moco.  相似文献   

17.
The final stages of bacterial molybdenum cofactor (Moco) biosynthesis correspond to molybdenum chelation and nucleotide attachment onto an unique and ubiquitous structure, the molybdopterin. Using a bacterial two-hybrid approach, here we report on the in vivo interactions between MogA, MoeA, MobA, and MobB implicated in several distinct although linked steps in Escherichia coli. Numerous interactions among these proteins have been identified. Somewhat surprisingly, MobB, a GTPase with a yet unclear function, interacts with MogA, MoeA, and MobA. Probing the effects of various mo. mutations on the interaction map allowed us (i) to distinguish Moco-sensitive interactants from insensitive ones involving MobB and (ii) to demonstrate that molybdopterin is a key molecule triggering or facilitating MogA-MoeA and MoeA-MobA interactions. These results suggest that, in vivo, molybdenum cofactor biosynthesis occurs on protein complexes rather than by the separate action of molybdenum cofactor biosynthetic proteins.  相似文献   

18.
The relationship between activities of enzymes involved in cysteine oxidation and the apparent conversion of cysteine to taurine in vivo were investigated in the rat and cat. Both hepatic cysteinesulfinate decarboxylase activity and the oxidation in vivo of cysteine to taurine were lower in the kitten than in the adult female rat and lower in the latter than in the young male rat. Our data support the hypothesis that cysteinesulfinate decarboxylase plays a rate-limiting role in taurine biosynthesis.  相似文献   

19.
20.
Lantibiotics are a unique class of peptide antibiotics. Recent studies of the proteins involved in the elaborate post-translational modifications of lantibiotics have revealed that these enzymes have relaxed substrate specificity. These modifications include the dehydration of serine and threonine residues followed by the intramolecular addition of cysteine thiols to the unsaturated amino acids to create an intricate polycyclic peptide. The use of peptide engineering in vivo and in vitro has allowed investigation of their biosynthetic machinery. Several members utilize a unique mode of biological action that involves the sequestration of lipid II, a crucial intermediate in peptidoglycan biosynthesis, to form pores in bacterial membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号