首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Glucose homeostasis, which is controlled by the endocrine cells of the pancreas, is disrupted in both type I and type II diabetes. Deficiency in the number of insulin-producing β cells – a primary cause of type I diabetes and a secondary contributor of type II diabetes – leads to hyperglycemia and hence an increase in the need for insulin. Although diabetes can be controlled with insulin injections, a curative approach is needed. A potential approach to curing diabetes involves regenerating the β-cell mass, e.g. by increasing β-cell proliferation, survival, neogenesis or transdifferentiation. The nucleoside adenosine and its cognate nucleotide ATP have long been known to affect insulin secretion, but have more recently been shown to increase β-cell proliferation during homeostatic control and regeneration of the β-cell mass. Adenosine is also known to have anti-inflammatory properties, and agonism of adenosine receptors can promote the survival of β-cells in an inflammatory microenvironment. In this review, both intracellular and extracellular mechanisms of adenosine and ATP are discussed in terms of their established and putative effects on β-cell regeneration.  相似文献   

2.
《Autophagy》2013,9(2):280-282
Pancreatic β-cells play a key role in glucose homeostasis in mammals. Although large-scale protein synthesis and degradation occur in pancreatic β-cells, the mechanism underlying dynamic protein turnover in β-cells remains largely unknown. We found low-level constitutive autophagy in β-cells of C57BL/6 mice fed a standard diet; however, autophagy was markedly upregulated in mice fed a high-fat diet. β-cells of diabetic db/db mice contained large numbers of autophagosomes, compared with non-diabetic db/misty controls. The functional importance of autophagy was analyzed using β-cell-specific Atg7 knockout mice. Autophagy-deficient mice showed degeneration of β-cells and impaired glucose tolerance with reduced insulin secretion. While a high-fat diet stimulated β-cell autophagy in control mice, it induced a profound deterioration of glucose intolerance in β-cell autophagy-deficient mutants, partly because of the lack of a compensatory increase in β-cell mass. These results suggest that the degradation of unnecessary cellular components by autophagy is essential for maintenance of the architecture and function of β-cells. Autophagy also serves as a crucial element of stress responses to protect β-cells under insulin resistant states. Impairment of autophagic machinery could thus predispose individuals to type 2 diabetes.  相似文献   

3.
Type 2 diabetes occurs when the β-cells do not secrete enough insulin to counter balance insulin resistance. GLP-1 and GIP are insulinotropic peptides which are thought to benefit to β-cell physiology. On one hand sustained pharmacological levels of GLP-1 are achieved by subcutaneous administration of GLP-1 analogs while transient and lower physiological levels of GLP-1 are attained following DPP4 inhibitor (DPP4i) treatment. On the other hand, DPP4i increase GLP-1 concentration into the portal vein to recruit the gut-to brain-to pancreas axis which is not the case with injected analogs. Hence, these differences between GLP-1 analogs and DPP4i indicate that both strategies could differentially impact β-cell behavior. Here, we summarize the effects of GLP-1 analogs and DPP4i on β-cell physiology. We discuss the possibility that production of signaling molecules, such as cAMP, generated into the β-cells by native GLP-1 or pharmacological GLP-1 analogs may vary and engage different downstream signaling networks. Hence, deciphering which signaling networks are engaged following GLP-1 analogs or DPP4i administration appears to be critical to unveil the contribution of each treatment/strategy to engage β-cell cellular processes.  相似文献   

4.
Type 2 diabetes mellitus (T2DM) leads to monocyte dysfunction associated with atherogenesis and defective arteriogenesis. Transforming growth factor (TGF)-β1, placenta growth factor (PlGF)-1 and vascular endothelial growth factor (VEGF)A play important roles in atherogenesis and arteriogenesis. VEGF-receptor (VEGFR)-mediated monocyte migration is inhibited in T2DM (VEGFA resistance), while TGF-β1-induced monocyte migration is fully functional. Therefore, we hypothesize that TGF-β antagonises the VEGFA responses in human monocytes. We demonstrate that monocytes from T2DM patients have an increased migratory response towards low concentrations of TGF-β1, while PlGF-1/VEGFA responses are mitigated. Mechanistically, this is due to increased expression of type II TGF-β receptor in monocytes under high-glucose conditions and increased expression of soluble (s)VEGFR1, which is known to interfere with VEGFA signalling. VEGFA resistance in monocytes from T2DM patients can be rescued by either experimental down-regulation of TGF-β receptor expression in vitro or by functional blocking of TGF-β signalling using either a TGF-β receptor kinase inhibitor or a TGF-β neutralizing antibody. Our data demonstrate that both T2DM and high-glucose potentiate the TGF-β pathway. TGF-β signalling impairs VEGFR-mediated responses in T2DM monocytes and in this way contributes to mononuclear cell dysfunction, provide novel insights into T2DM vascular dysfunction.  相似文献   

5.
Arachidonic acid (AA) is metabolized by cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP) enzymes into eicosanoids, which are involved in diverse diseases, including type 1 and type 2 diabetes. During the last 30 years, evidence has been accumulated that suggests important functions for eicosanoids in the control of pancreatic β-cell function and destruction. AA metabolites of the COX pathway, especially prostaglandin E(2) (PGE(2)), appear to be significant factors to β-cell dysfunction and destruction, participating in the pathogenesis of diabetes and its complications. Several elegant studies have contributed to the sorting out of the importance of 12-LOX eicosanoids in cytokine-mediated inflammation in pancreatic β cells. The role of CYP eicosanoids in diabetes is yet to be explored. A recent publication has demonstrated that stabilizing the levels of epoxyeicosatrienoic acids (EETs), CYP eicosanoids, by inhibiting or deleting soluble epoxide hydrolase (sEH) improves β-cell function and reduces β-cell apoptosis in diabetes. In this review we summarize recent findings implicating these eicosanoid pathways in diabetes and its complications. We also discuss the development of animal models with targeted gene deletion and specific enzymatic inhibitors in each pathway to identify potential targets for the treatment of diabetes and its complications.  相似文献   

6.
Diabetes is a metabolic disease affecting nearly 300 million individuals worldwide. Both types of diabetes (1 and 2) are characterized by loss of functional pancreatic β-cell mass causing different degrees of insulin deficiency. The Bcl-2 family has a double-edged effect in diabetes. These proteins are crucial controllers of the mitochondrial pathway of β-cell apoptosis induced by pro-inflammatory cytokines or lipotoxicity. In parallel, some Bcl-2 members also regulate glucose metabolism and β-cell function. In this review, we describe the role of Bcl-2 proteins in β-cell homeostasis and death. We focus on how these proteins interact, their contribution to the crosstalk between endoplasmic reticulum stress and mitochondrial permeabilization, their context-dependent usage following different pro-apoptotic stimuli, and their role in β-cell physiology.  相似文献   

7.
8.
<正>Type 2 diabetes mellitus is a metabolic disorder that is characterized by high blood glucose due to either insulin resistance or insulin deficiency[1].A direct correlation between D-glucose and diabetic complications has long been established,and is the focus of most research in this field.In contrast,D-Ribose has been overlooked so far as a potential risk player in the development of diabetes.  相似文献   

9.
Type 2 diabetes (T2D) is more prevalent among African-American (AA) than European-American (EA) women for reasons that are unknown. Ethnic differences in physiological processes related to insulin sensitivity (S(I)) and secretion, and age-related changes in these processes, may play a role. The purpose of this study was to identify ethnicity- and age-related differences in S(I) and β-cell responsivity among AA and EA females, and to determine whether these differences are independent of body composition and fat distribution. Healthy, normoglycemic females aged 7-12 years (n = 62), 18-32 years (n = 57), and 40-70 years (n = 49) were recruited for entry into this study. Following an overnight fast, S(I), intravenous glucose tolerance (Kg), acute C-peptide secretion (X0), and basal, first-phase, second-phase, and total β-cell responsivity to glucose (PhiB, Phi1, Phi2, and Phi(TOT), respectively) were measured by an intravenous glucose tolerance test. Total % body fat was assessed by dual-energy X-ray absorptiometry, and intra-abdominal adiposity (IAAT) by computed tomography. Main effects of age group and ethnicity were measured with analysis of covariance, adjusting for % fat, IAAT, and S(I) as indicated. AA had lower S(I), and higher Kg, X0, Phi1, and Phi(TOT) (P < 0.05), which remained after adjustment for % fat and IAAT. Greater X0, Phi1, and Phi(TOT) among AA were independent of S(I). Advancing age was associated with greater Phi2 among both EA and AA. To conclude, inherent ethnic differences in β-cell function exist independently of adiposity and S(I). Future research should examine whether ethnic differences in β-cell physiology contribute to disparities in T2D risk.  相似文献   

10.
The eSMT rat is a new spontaneous model of type 2 diabetes that develops a progressive diabetic syndrome with a stronger incidence in males than in females. We decide to investigate the progression of the pancreatic histopathological changes during the lifespan of the eSMT rat, especially those associated with islet cell populations. Besides that, some plasmatic parameters were evaluated in order to correlate them with the morphological findings. Male eSMT and Sprague-Dawley control rats were used.The results showed a dramatic decrease of the volume density (VD) of endocrine tissue in the eSMT rats without evidence of insulitis. Islets became fragmented structures with strong presence of interstitial fibrosis. Consequently, plasma insulin levels showed a significant decrease, while plasma glucose, cholesterol and triglyceride levels were increased. Normal rats showed no significant changes in the VD of endocrine tissue, except for the older animals, where the VD of β-cell population was increased.Early derangements observed in islets, together with the progressive decrease of endocrine tissue and the metabolic disorders described, would be responsible for an irreversible pathologic condition which avoids the animal survival beyond about 18 months of age.However, there is still a need to investigate the causes of endocrine tissue decrease and its possible association with an inflammatory process that it could be associated with the development and progression of fibrosis.  相似文献   

11.
Type 2 diabetes (T2D) is a growing health problem worldwide. While peripheral insulin resistance is common during obesity and aging in both animals and people, progression to T2D is largely due to insulin secretory dysfunction and significant apoptosis of functional β-cells, leading to an inability to compensate for insulin resistance. It is recognized that environmental factors and nutrition play an important role in the pathogenesis of diabetes. However, our knowledge surrounding molecular mechanisms by which these factors trigger β-cell dysfunction and diabetes is still limited. Recent discoveries raise the possibility that epigenetic changes in response to environmental stimuli may play an important role in the development of diabetes. In this paper, we review emerging knowledge regarding epigenetic mechanisms that may be involved in β-cell dysfunction and pathogenesis of diabetes, including the role of nutrition, oxidative stress and inflammation. We will mainly focus on the role of DNA methylation and histone modifications but will also briefly review data on miRNA effects on the pancreatic islets. Further studies aimed at better understanding how epigenetic regulation of gene expression controls β-cell function may reveal potential therapeutic targets for prevention and treatment of diabetes.  相似文献   

12.
《Epigenetics》2013,8(8):841-852
Type 2 diabetes (T2D) is a growing health problem worldwide. While peripheral insulin resistance is common during obesity and aging in both animals and people, progression to T2D is largely due to insulin secretory dysfunction and significant apoptosis of functional β-cells, leading to an inability to compensate for insulin resistance. It is recognized that environmental factors and nutrition play an important role in the pathogenesis of diabetes. However, our knowledge surrounding molecular mechanisms by which these factors trigger β-cell dysfunction and diabetes is still limited. Recent discoveries raise the possibility that epigenetic changes in response to environmental stimuli may play an important role in the development of diabetes. In this paper, we review emerging knowledge regarding epigenetic mechanisms that may be involved in β-cell dysfunction and pathogenesis of diabetes, including the role of nutrition, oxidative stress and inflammation. We will mainly focus on the role of DNA methylation and histone modifications but will also briefly review data on miRNA effects on the pancreatic islets. Further studies aimed at better understanding how epigenetic regulation of gene expression controls β-cell function may reveal potential therapeutic targets for prevention and treatment of diabetes.  相似文献   

13.
Cholesterol plays an essential role in determining cell membrane physico-chemical characteristics and functions. A proper membrane structure is critical in pancreatic β-cells for glucose-mediated insulin secretion, and alterations in cellular cholesterol content may negatively affect this process, leading to β-cell dysfunction. The low density lipoprotein receptor (LDL-R) appears to play a relevant role in ß-cell dysfunction due to cholesterol accumulation. This observation raised the question of whether hypocholesterolemic drugs which increase LDL-R expression might bear diabetogenic properties, thus increasing the risk of new-onset diabetes or worsen glycaemic parameters in diabetic patients.Being at higher cardiovascular risk, diabetic patients are usually treated with hypolipidemic drugs to correct the atherogenic dyslipidemia characteristic of this pathological condition. Statin therapy has been associated with an increased incidence of new-onset diabetes (NOD), being the diabetogenic effect depending on the type and dose of statin. However, it is worth noting that the benefits on cardiovascular mortality largely exceed the increased risk associated with the development of diabetes. Although genetic variants associated with lower levels of LDL-C are also associated with an increased NOD risk, clinical trials with lipid-lowering drugs other than statins, namely ezetimibe or monoclonal antibodies against PCSK9, did not observe an increase of developing diabetes.In summary, molecular evidence clearly points to a key role for cholesterol homeostasis in pancreatic β-cell function which, in humans, is negatively affected by statins. Available data exclude that this could be the case for other hypocholesterolemic approaches, but long-term studies are warranted to explore this critical aspect.  相似文献   

14.
Multiple studies have reported different methods in treating gestational diabetes mellitus (GDM); however, the relationship between miR-335-5p and GDM still remains unclear. Here, this study explores the effect of miR-335-5p on insulin resistance and pancreatic islet β-cell secretion via activation of the TGFβ signaling pathway by downregulating VASH1 expression in GDM mice. The GDM mouse model was established and mainly treated with miR-335-5p mimic, miR-335-5p inhibitor, si-VASH1, and miR-335-5p inhibitor + si-VASH1. Oral glucose tolerance test (OGTT) was conducted to detect fasting blood glucose (FBG) fasting insulin (FINS). The OGTT was also used to calculate a homeostasis model assessment of insulin resistance (HOMA-IR). A hyperglycemic clamp was performed to measure the glucose infusion rate (GIR), which estimated β-cell function. Expressions of miR-335-5p, VASH1, TGF-β1, and c-Myc in pancreatic islet β-cells were determined by RT-qPCR, western blot analysis, and insulin release by ELISA. The miR-335-5p mimic and si-VASH1 groups showed elevated blood glucose levels, glucose area under the curve (GAUC), and HOMA-IR, but a reduced GIR and positive expression of VASH1. Overexpression of miR-335-5p and inhibition of VASH1 contributed to activated TGFβ1 pathway, higher c-Myc, and lower VASH1 expressions, in addition to downregulated insulin and insulin release levels. These findings provided evidence that miR-335-5p enhanced insulin resistance and suppressed pancreatic islet β-cell secretion by inhibiting VASH1, eventually activating the TGF-β pathway in GDM mice, which provides more clinical insight on the GDM treatment.  相似文献   

15.
《Chronobiology international》2013,30(9):1017-1023
“Morningness” and “Eveningness” represent lifestyle patterns including sleep–wake patterns. Although previous studies described a relationship between the morningness–eveningness trait and glycemic control in patients with type 2 diabetes mellitus (T2DM), the mechanism underlying this association remains unknown. The study participants comprised 725 Japanese T2DM outpatients free of history of cardiovascular diseases. Various lifestyles were analyzed using self-reported questionnaires, including morningness–eveningness questionnaire (MEQ). The relationships between morningness–eveningness trait and various biochemical parameters were investigated by linear regression analysis and logistic regression analysis. We classified the study patients into three groups, morning type (n?=?117), neither type (n?=?424) and evening type (n?=?184). Subjects of the evening type had high levels of alanine aminotransferase, triglyceride, fasting blood glucose and HbA1c and low high-density lipoprotein-cholesterol level in a model adjusted for age and gender. Furthermore, multivariate analysis showed that the evening type was associated with high HbA1c and estimated glomerular filtration rate even after adjustment for other lifestyle factors known to affect metabolic control. The results suggest that T2DM patients with eveningness trait are under inadequate metabolic control independent of other lifestyle factors. Thus, the evening trait of T2DM patients represents an important target for intervention to ensure appropriate metabolic function.  相似文献   

16.
Human islets exhibit distinct islet architecture with intermingled alpha- and beta-cells particularly in large islets. In this study, we quantitatively examined pathological changes of the pancreas in patients with type 2 diabetes (T2D). Specifically, we tested a hypothesis that changes in endocrine cell mass and composition are islet-size dependent. A large-scale analysis of cadaveric pancreatic sections from T2D patients (n = 12) and non-diabetic subjects (n = 14) was carried out combined with semi-automated analysis to quantify changes in islet architecture. The method provided the representative islet distribution in the whole pancreas section that allowed us to examine details of endocrine cell composition in individual islets. We observed a preferential loss of large islets (>60 µm in diameter) in T2D patients compared to non-diabetic subjects. Analysis of islet cell composition revealed that the beta-cell fraction in large islets was decreased in T2D patients. This change was accompanied by a reciprocal increase in alpha-cell fraction, however total alpha-cell area was decreased along with beta-cells in T2D. Delta-cell fraction and area remained unchanged. The computer-assisted quantification of morphological changes in islet structure minimizes sampling bias. Significant beta-cell loss was observed in large islets in T2D, in which alpha-cell ratio reciprocally increased. However, there was no alpha-cell expansion and the total alpha-cell area was also decreased. Changes in islet architecture were marked in large islets. Our method is widely applicable to various specimens using standard immunohistochemical analysis that may be particularly useful to study large animals including humans where large organ size precludes manual quantitation of organ morphology.  相似文献   

17.
Deterioration of functional islet β-cell mass is the final step in progression to Type 2 diabetes. We previously reported that overexpression of Nkx6.1 in rat islets has the dual effects of enhancing glucose-stimulated insulin secretion (GSIS) and increasing β-cell replication. Here we show that Nkx6.1 strongly upregulates the prohormone VGF in rat islets and that VGF is both necessary and sufficient for Nkx6.1-mediated enhancement of GSIS. Moreover, the VGF-derived peptide TLQP-21 potentiates GSIS in rat and human islets and improves glucose tolerance in vivo. Chronic injection of TLQP-21 in prediabetic ZDF rats preserves islet mass and slows diabetes onset. TLQP-21 prevents islet cell apoptosis by a pathway similar to that used by GLP-1, but independent of the GLP-1, GIP, or VIP receptors. Unlike GLP-1, TLQP-21 does not inhibit gastric emptying or increase heart rate. We conclude that TLQP-21 is a targeted agent for enhancing islet β-cell survival and function.  相似文献   

18.
Inflammatory factors produced and secreted by adipose tissue, in particular peri-pancreatic adipose tissue (P-WAT), may influence pancreatic β-cell dysfunction. Using the ZDF Rat model of diabetes, we show the presence of infiltrating macrophage (ED1 staining) on pancreatic tissue and P-WAT in the pre-diabetes stage of the disease. Then, when the T2D is installed, infiltrating cells decreased. Meanwhile, the P-WAT conditioned-medium composition, in terms of inflammatory factors, varies during the onset of the T2D. Using chemiarray technology, we observed an over expression of CXCL-1, -2, -3, CCL-3/MIP-1α and CXCL-5/LIX and TIMP-1 in the 9?weeks old obese ZDF pre-diabetic rat model. Surprisingly, the expression profile of these factors decreased when animals become diabetic (12?weeks obese ZDF rats). The expression of these inflammatory proteins is highly associated with inflammatory infiltrate. P-WAT conditioned-medium from pre-diabetes rats stimulates insulin secretion, cellular proliferation and apoptosis of INS-1 cells. However, inhibition of conditioned-medium chemokines acting via CXCR2 receptor do not change cellular proliferation apoptosis and insulin secretion of INS-1 cells induced by P-WAT conditioned-medium. Taken together, these results show that among the secreted chemokines, increased expression of CXCL-1, -2, -3 and CXCL-5/LIX in P-WAT conditioned-medium is concomitant with the onset of the T2D but do not exerted a direct effect on pancreatic β-cell dysfunction.  相似文献   

19.
《Insulin》2008,3(2):78-94
Background: Type 2 diabetes mellitus (DM) is a new epidemic in South Asia and is the result of societal influences and changing lifestyles. Epidemiologic studies suggest that the prevalence of DM has increased exponentially in urban and rural populations.Objective: This study was conducted to determine trends in the prevalence of DM in various countries in South Asia.Methods: We performed an extensive, systematic MEDLINE search for primary articles that reported on the epidemiology of DM in South Asia. Additional articles were obtained from personal collections and references cited in the primary articles. No formal meta-analysis was performed because of differing methodologies and diagnostic criteria.Results: Epidemiologic studies conducted in India during the 1960s and 1970s, using random and postload blood glucose estimations, reported DM in 1% to 4% of urban populations and 1% to 2% of rural populations. More standardized epidemiologic studies in adults since the late 1980s reported DM in 5% to 15% of urban populations, 4% to 6% of semiurban populations, and 2% to 5% of rural populations. A significantly increasing trend has been observed in urban populations (exponential trend R2 = 0.74), whereas the increase is slower (R2 = 0.29) in rural populations. The diabetes scenario is similar in other South Asian countries. Current prevalence rates are 5% to 16% in urban areas and 2% to 8% in rural areas. Risk factors for DM in this region are increasing sedentariness, dietary excess, obesity (especially high waist-to-hip ratio), low birth weight, and genetic influences.Conclusions: DM is a major public health problem in South Asia. The prevalence is higher in urban areas than in rural areas and is increasing. Population-based measures to control the epidemic of DM include avoidance of adiposity through enhanced physical activity and regulated calorie intake. A comprehensive national chronic care program is needed.  相似文献   

20.
The "Barker hypothesis" suggests that low birth weight might predict future risk of developing obesity, cardiovascular disease, and type 2 diabetes. Identification of the causes of fetal growth restriction (FGR) is critical for preventive and management strategies. Some studies indicate that maternal carbohydrate metabolism might be involved in FGR development. We aimed to evaluate, in a large number of normotensive pregnant women with normal glucose tolerance, the effect of insulin sensitivity and β-cell function on unexplained fetal growth. A total of 1,814 Caucasian pregnant women with normal prepregnancy body mass index were tested with a 75-g, 2-h glucose load (24-28 gestation wk). Insulin sensitivity was evaluated with fasting (QUICKI) and dynamic index (OGIS) and β-cell function with a modified insulinogenic index as ΔAUC(insulin)/ΔAUC(glucose) and disposition index. FGR was a birth weight below the 5th percentile for gestational age. FGR developed in 99 (5.5%) pregnant women that showed significantly higher QUICKI, OGIS, insulinogenic, and disposition index with respect to women with normal-weight babies (P < 0.0001). By using multiple regression analysis in the FRG group, QUICKI and OGIS appeared as significant independent variables (P < 0.0001 and P < 0.0366, respectively). We conclude that elevated insulin sensitivity seems to be one of the factors involved in determining unexplained fetal growth retardation; its assessment, even only in the fasting state, could be useful to guide any possible monitoring and therapeutic strategies to reduce fetal complications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号