首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Protease-activated receptor-1 (PAR1) is a G protein-coupled receptor for the coagulant protease thrombin. Thrombin binds to and cleaves the N terminus of PAR1, generating a new N terminus that functions as a tethered ligand that cannot diffuse away. In addition to rapid desensitization, PAR1 trafficking is critical for the regulation of cellular responses. PAR1 displays constitutive and agonist-induced internalization. Constitutive internalization of unactivated PAR1 is mediated by the clathrin adaptor protein complex-2 (AP-2), which binds to a distal tyrosine-based motif localized within the C-terminal tail (C-tail) domain. Once internalized, PAR1 is sorted from endosomes to lysosomes via AP-3 interaction with a second C-tail tyrosine motif proximal to the transmembrane domain. However, the regulatory processes that control adaptor protein recognition of PAR1 C-tail tyrosine-based motifs are not known. Here, we report that palmitoylation of PAR1 is critical for regulating proper utilization of tyrosine-based motifs and endocytic sorting. We show that PAR1 is basally palmitoylated at highly conserved C-tail cysteines. A palmitoylation-deficient PAR1 mutant is competent to signal and exhibits a marked increase in constitutive internalization and lysosomal degradation compared with wild type receptor. Intriguingly, enhanced constitutive internalization of PAR1 is mediated by AP-2 and requires the proximal tyrosine-based motif rather than the distal tyrosine motif used by wild type receptor. Moreover, palmitoylation-deficient PAR1 displays increased degradation that is mediated by AP-3. These findings suggest that palmitoylation of PAR1 regulates appropriate utilization of tyrosine-based motifs by adaptor proteins and endocytic trafficking, processes that are critical for maintaining appropriate expression of PAR1 at the cell surface.  相似文献   

2.
Hedgehog acyltransferase (Hhat), a member of the membrane-bound O-acyltransferase (MBOAT) family, catalyses the covalent attachment of palmitate to the N-terminus of Hedgehog proteins. Palmitoylation is a post-translational modification essential for Hedgehog signalling. This review explores the mechanisms involved in Hhat acyltransferase enzymatic activity, similarities and differences between Hhat and other MBOAT enzymes, and the role of palmitoylation in Hedgehog signalling. In vitro and cell-based assays for Hhat activity have been developed, and residues within Hhat and Hedgehog essential for palmitoylation have been identified. In cells, Hhat promotes the transfer of palmitoyl-CoA from the cytoplasmic to the luminal side of the endoplasmic reticulum membrane, where Shh palmitoylation occurs. Palmitoylation is required for efficient delivery of secreted Hedgehog to its receptor Patched1, as well as for the deactivation of Patched1, which initiates the downstream Hedgehog signalling pathway. While Hhat loss is lethal during embryogenesis, mutations in Hhat have been linked to disease states or abnormalities in mice and humans. In adults, aberrant re-expression of Hedgehog ligands promotes tumorigenesis in an Hhat-dependent manner in a variety of different cancers, including pancreatic, breast and lung. Targeting hedgehog palmitoylation by inhibition of Hhat is thus a promising, potential intervention in human disease.  相似文献   

3.
hPAR(2) (human proteinase-activated receptor-2) is a member of the novel family of proteolytically activated GPCRs (G-protein-coupled receptors) termed PARs (proteinase-activated receptors). Previous pharmacological studies have found that activation of hPAR(2) by mast cell tryptase can be regulated by receptor N-terminal glycosylation. In order to elucidate other post-translational modifications of hPAR(2) that can regulate function, we have explored the functional role of the intracellular cysteine residue Cys(361). We have demonstrated, using autoradiography, that Cys(361) is the primary palmitoylation site of hPAR(2). The hPAR(2)C361A mutant cell line displayed greater cell-surface expression compared with the wt (wild-type)-hPAR(2)-expressing cell line. hPAR(2)C361A also showed a decreased sensitivity and efficacy (intracellular calcium signalling) towards both trypsin and SLIGKV. In stark contrast, hPAR(2)C361A triggered greater and more prolonged ERK (extracellular-signal-regulated kinase) phosphorylation compared with that of wt-hPAR(2) possibly through Gi, since pertussis toxin inhibited the ability of this receptor to activate ERK. Finally, flow cytometry was utilized to assess the rate and extent of receptor internalization following agonist challenge. hPAR(2)C361A displayed faster internalization kinetics following trypsin activation compared with wt-hPAR(2), whereas SLIGKV had a negligible effect on internalization for either receptor. In conclusion, palmitoylation plays an important role in the regulation of PAR(2) expression, agonist sensitivity, desensitization and internalization.  相似文献   

4.
Palmitoylation is a protein modification for trafficking to lipid raft. Without palmitoylation, linker for activation of T cells (LAT), an adaptor molecule mediating T cell receptor signaling, is unable to localize in lipid rafts and to mediate T cell activation. We here show a novel role for palmitoylation in LAT trafficking to the plasma membrane and in the stability of the LAT protein. The human LAT mutant lacking palmitoylation was unable to traffic to the plasma membrane despite the presence of transmembrane portion. The mouse LAT mutant lacking palmitoylation was unstable and susceptible to degradation via the proteasome pathway. The human LAT mutant became unstable when the extracellular portion was swapped for that from mouse, indicating that both palmitoylation and the extracellular portion regulate the stability of LAT. These results suggest that palmitoylation has an important role in trafficking to the plasma membrane and the stability of LAT.  相似文献   

5.
Nicotinic acetylcholine receptor (nAChR) cell surface expression levels are modulated during nicotine dependence and multiple disorders of the nervous system, but the mechanisms underlying nAChR trafficking remain unclear. To determine the role of cysteine residues, including their palmitoylation, on neuronal α4 nAChR subunit maturation and cell surface trafficking, the cysteines in the two intracellular regions of the receptor were replaced with serines using site-directed mutagenesis. Palmitoylation is a post-translational modification that regulates membrane receptor trafficking and function. Metabolic labeling with [(3)H]palmitate determined that the cysteine in the cytoplasmic loop between transmembrane domains 1 and 2 (M1-M2) is palmitoylated. When this cysteine is mutated to a serine, producing a depalmitoylated α4 nAChR, total protein expression decreases, but surface expression increases compared with wild-type α4 levels, as determined by Western blotting and enzyme-linked immunoassays, respectively. The cysteines in the M3-M4 cytoplasmic loop do not appear to be palmitoylated, but replacing all of the cysteines in the loop with serines increases total and cell surface expression. When all of the intracellular cysteines in both loops are mutated to serines, there is no change in total expression, but there is an increase in surface expression. Calcium accumulation assays and high affinity binding for [(3)H]epibatidine determined that all mutants retain functional activity. Thus, our results identify a novel palmitoylation site on cysteine 273 in the M1-M2 loop of the α4 nAChR and determine that cysteines in both intracellular loops are regulatory factors in total and cell surface protein expression of the α4β2 nAChR.  相似文献   

6.
Hayashi T  Rumbaugh G  Huganir RL 《Neuron》2005,47(5):709-723
Modification of AMPA receptor function is a major mechanism for the regulation of synaptic transmission and underlies several forms of synaptic plasticity. Post-translational palmitoylation is a reversible modification that regulates localization of many proteins. Here, we report that palmitoylation of the AMPA receptor regulates receptor trafficking. All AMPA receptor subunits are palmitoylated on two cysteine residues in their transmembrane domain (TMD) 2 and in their C-terminal region. Palmitoylation on TMD 2 is upregulated by the palmitoyl acyl transferase GODZ and leads to an accumulation of the receptor in the Golgi and a reduction of receptor surface expression. C-terminal palmitoylation decreases interaction of the AMPA receptor with the 4.1N protein and regulates AMPA- and NMDA-induced AMPA receptor internalization. Moreover, depalmitoylation of the receptor is regulated by activation of glutamate receptors. These data suggest that regulated palmitoylation of AMPA receptor subunits modulates receptor trafficking and may be important for synaptic plasticity.  相似文献   

7.
Palmitoylation is a posttranslational modification that regulates protein trafficking and stability. In this study we investigated whether the endosomal soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) proteins syntaxin 7 and syntaxin 8 are modified with palmitate. Using metabolic labeling and site-directed mutagenesis, we show that human syntaxins 7 and 8 are modified with palmitate through a thioester linkage. Palmitoylation is dependent upon cysteine 239 of human syntaxin 7 and cysteine 214 of syntaxin 8, residues that are located on the cytoplasmic face of the transmembrane domain (TMD). Palmitoylation of syntaxin 8 is minimally affected by the Golgi-disturbing agent brefeldin A (BFA), whereas BFA dramatically inhibits palmitoylation of syntaxin7. The differential effect of BFA suggests that palmitoylation of syntaxins 7 and 8 occurs in distinct subcellular compartments. Palmitoylation does not affect the rate of protein turnover of syntaxins 7 and 8 nor does it influence the steady-state localization of syntaxin 8 in late endosomes. Syntaxin 7 actively cycles between endosomes and the plasma membrane. Palmitoylation-defective syntaxin 7 is selectively retained on the plasma membrane, suggesting that palmitoylation is important for intercompartmental transport of syntaxin 7.  相似文献   

8.
Palmitoylation is a prevalent feature amongst G protein-coupled receptors. In this study we sought to establish whether the TPalpha and TPbeta isoforms of the human prostanoid thromboxane (TX) A2 receptor (TP) are palmitoylated and to assess the functional consequences thereof. Consistent with the presence of three cysteines within its unique carboxyl-terminal domain, metabolic labelling and site-directed mutagenesis confirmed that TPbeta is palmitoylated at Cys347 and, to a lesser extent, at Cys373,377 whereas TPalpha is not palmitoylated. Impairment of palmitoylation did not affect TPbeta expression or its ligand affinity. Conversely, agonist-induced [Ca2+]i mobilization by TPbetaC347S and the non-palmitoylated TPbetaC347,373,377S, but not by TPbetaC373S or TPbetaC373,377S, was significantly reduced relative to the wild type TPbeta suggesting that palmitoylation at Cys347 is specifically required for efficient Gq/phospholipase Cbeta effector coupling. Furthermore, palmitoylation at Cys373,377 is critical for TPbeta internalization with TPbetaC373S, TPbetaC373,377S and TPbetaC347,373,377S failing to undergo either agonist-induced or temperature-dependent tonic internalization. On the other hand, whilst TPbetaC347S underwent reduced agonist-induced internalization, it underwent tonic internalization to a similar extent as TPbeta. The deficiency in agonist-induced internalization by TPbetaC347S, but not by TPbetaC373,377 nor TPbeta(C347,373,377S), was overcome by over-expression of either beta-arrestin1 or beta-arrestin2. Taken together, data herein suggest that whilst palmitoylation of TPbeta at Cys373,377 is critical for both agonist- and tonic-induced internalization, palmitoylation at Cys347 has a role in determining which pathway is followed, be it by the beta-arrestin-dependent agonist-induced pathway or by the beta-arrestin-independent tonic internalization pathway.  相似文献   

9.
Palmitoylation is postulated to regulate Ras signaling by modulating its intracellular trafficking and membrane microenvironment. The mechanisms by which palmitoylation contributes to these events are poorly understood. Here, we show that dynamic turnover of palmitate regulates the intracellular trafficking of HRas and NRas to and from the Golgi complex by shifting the protein between vesicular and nonvesicular modes of transport. A combination of time-lapse microscopy and photobleaching techniques reveal that in the absence of palmitoylation, GFP-tagged HRas and NRas undergo rapid exchange between the cytosol and ER/Golgi membranes, and that wild-type GFP-HRas and GFP-NRas are recycled to the Golgi complex by a nonvesicular mechanism. Our findings support a model where palmitoylation kinetically traps Ras on membranes, enabling the protein to undergo vesicular transport. We propose that a cycle of depalmitoylation and repalmitoylation regulates the time course and sites of Ras signaling by allowing the protein to be released from the cell surface and rapidly redistributed to intracellular membranes.  相似文献   

10.
Classic models of receptor desensitization and internalization have been largely based on the behavior of Family A G-protein-coupled receptors (GPCRs). The glucagon-like peptide-2 receptor (GLP-2R) is a member of the Family B glucagon-secretin GPCR family, which exhibit significant sequence and structural differences from the Family A receptors in their intracellular and extracellular domains. To identify structural motifs that regulate GLP-2R signaling and cell surface receptor expression, we analyzed the functional properties of a series of mutant GLP-2Rs. The majority of the C-terminal receptor tail was dispensable for GLP-2-induced cAMP accumulation, ERK1/2 activation, and endocytosis in transfected cells. However, progressive truncation of the C terminus reduced cell surface receptor expression, altered agonist-induced GLP-2R trafficking, and abrogated protein kinase A-mediated heterologous receptor desensitization. Elimination of the distal 21 amino acids of the receptor was sufficient to promote constitutive receptor internalization and prevent agonist-induced recruitment of beta-arrestin-2. Site-directed mutagenesis identified specific amino acid residues within the distal GLP-2R C terminus that mediate the stable association with beta-arrestin-2. Surprisingly, although the truncated mutant receptors failed to interact with beta-arrestin-2, they underwent homologous desensitization and subsequent resensitization with kinetics similar to that observed with the wild-type GLP-2R. Our data suggest that, although the GLP-2R C terminus is not required for coupling to cellular machinery regulating signaling or desensitization, it may serve as a sorting signal for intracellular trafficking. Taken together with the previously demonstrated clathrin and dynamin-independent, lipid-raft-dependent pathways for internalization, our data suggest that GLP-2 receptor signaling has evolved unique structural and functional mechanisms for control of receptor trafficking, desensitization, and resensitization.  相似文献   

11.
Palmitoylation is a well-conserved posttranslational modification among members of the G protein-coupled receptor superfamily. The present study examined the role of palmitoylation in endocytosis and postendocytic trafficking of the human LH receptor (LHR). Palmitoylation of the LHR was determined by incorporation of [3H]palmitic acid into wild-type (WT) or mutant receptor in which the potential palmitoylation sites, C643 and C644, were mutated to glycine residues. The WT receptor showed incorporation of [3H]palmitic acid into the mature 90-kDa form of the receptor whereas mutation of the two Cys residues abrogated this incorporation, indicating that Cys 643 and C644 are the sites of palmitoylation. The role of palmitoylation on endocytosis and postendocytic processing was examined by testing the ability of the WT and mutant receptor to undergo internalization, recycling, and lysosomal degradation. Compared with the WT receptor, the mutant receptor showed increased internalization and decreased recycling, suggesting that retention of palmitic acid residues at Cys 643 and 644 promotes LHR recycling. The role of palmitoylation on receptor recycling was substantiated by demonstrating that a different mutant, D578H LHR, which is deficient in palmitoylation, also recycled less efficiently. Furthermore, the data show that palmitoylation, not the rate of internalization, determines the efficiency of recycling. The present study shows that palmitoylation of cysteine residues 643 and 644 of the human LHR is a determinant of recycling.  相似文献   

12.
Palmitoylation is a post-translational lipid modification involving the attachment of a 16-carbon saturated fatty acid, palmitate, to cysteine residues of substrate proteins through a labile thioester bond [reviewed in1]. Palmitoylation of a substrate protein increases its hydrophobicity, and typically facilitates its trafficking toward cellular membranes. Recent studies have shown palmitoylation to be one of the most common lipid modifications in neurons1, 2, suggesting that palmitate turnover is an important mechanism by which these cells regulate the targeting and trafficking of proteins. The identification and detection of palmitoylated substrates can therefore better our understanding of protein trafficking in neurons.Detection of protein palmitoylation in the past has been technically hindered due to the lack of a consensus sequence among substrate proteins, and the reliance on metabolic labeling of palmitoyl-proteins with 3H-palmitate, a time-consuming biochemical assay with low sensitivity. Development of the Acyl-Biotin Exchange (ABE) assay enables more rapid and high sensitivity detection of palmitoylated proteins2-4, and is optimal for measuring the dynamic turnover of palmitate on neuronal proteins. The ABE assay is comprised of three biochemical steps (Figure 1): 1) irreversible blockade of unmodified cysteine thiol groups using N-ethylmaliemide (NEM), 2) specific cleavage and unmasking of the palmitoylated cysteine''s thiol group by hydroxylamine (HAM), and 3) selective labeling of the palmitoylated cysteine using a thiol-reactive biotinylation reagent, biotin-BMCC. Purification of the thiol-biotinylated proteins following the ABE steps has differed, depending on the overall goal of the experiment.Here, we describe a method to purify a palmitoylated protein of interest in primary hippocampal neurons by an initial immunoprecipitation (IP) step using an antibody directed against the protein, followed by the ABE assay and western blotting to directly measure palmitoylation levels of that protein, which is termed the IP-ABE assay. Low-density cultures of embryonic rat hippocampal neurons have been widely used to study the localization, function, and trafficking of neuronal proteins, making them ideally suited for studying neuronal protein palmitoylation using the IP-ABE assay. The IP-ABE assay mainly requires standard IP and western blotting reagents, and is only limited by the availability of antibodies against the target substrate. This assay can easily be adapted for the purification and detection of transfected palmitoylated proteins in heterologous cell cultures, primary neuronal cultures derived from various brain tissues of both mouse and rat, and even primary brain tissue itself.  相似文献   

13.
Protease-activated receptor 2 (PAR2) is a G protein-coupled receptor irreversibly activated by extracellular proteases. Activated PAR2 couples to multiple heterotrimeric G-protein subtypes including Gαq, Gαi, and Gα12/13. Most activated G protein-coupled receptors are rapidly desensitized and internalized following phosphorylation and β-arrestin binding. However, the role of phosphorylation in regulation of PAR2 signaling and trafficking is not known. To investigate the function of phosphorylation, we generated a PAR2 mutant in which all serines and threonines in the C-tail were converted to alanines and designated it PAR2 0P. In mammalian cells, the addition of agonist induced a rapid and robust increase in phosphorylation of wild-type PAR2 but not the 0P mutant, suggesting that the major sites of phosphorylation occur within the C-tail domain. Moreover, desensitization of PAR2 0P signaling was markedly impaired compared with the wild-type receptor. Wild-type phosphorylated PAR2 internalized through a canonical dynamin, clathrin- and β-arrestin-dependent pathway. Strikingly, PAR2 0P mutant internalization proceeded through a dynamin-dependent but clathrin- and β-arrestin-independent pathway in both a constitutive and agonist-dependent manner. Collectively, our studies show that PAR2 phosphorylation is essential for β-arrestin binding and uncoupling from heterotrimeric G-protein signaling and that the presence of serine and threonine residues in the PAR2 C-tail hinder constitutive internalization through a non-canonical pathway. Thus, our studies reveal a novel function for phosphorylation that differentially regulates PAR2 desensitization and endocytic trafficking.  相似文献   

14.
Palmitoylation (S-acylation) is the reversible conjugation of a fatty acid (usually C16 palmitate) to intracellular cysteine residues of proteins via a thioester linkage. Palmitoylation anchors intracellular regions of proteins to membranes because the palmitoylated cysteine is recruited to the lipid bilayer. NCX1 is palmitoylated at a single cysteine in its large regulatory intracellular loop. The presence of an amphipathic α-helix immediately adjacent to the NCX1 palmitoylation site is required for NCX1 palmitoylation. The NCX1 palmitoylation site is conserved through most metazoan phlya. Although palmitoylation does not regulate the normal forward or reverse ion transport modes of NCX1, NCX1 palmitoylation is required for its inactivation: sodium-dependent inactivation and inactivation by PIP2 depletion are significantly impaired for unpalmitoylatable NCX1. Here we review the role of palmitoylation in regulating NCX1 activity, and highlight future questions that must be addressed to fully understand the importance of this regulatory mechanism for sodium and calcium transport in cardiac muscle.  相似文献   

15.
Signaling by protease-activated receptor-1 (PAR1), a G protein-coupled receptor (GPCR) for thrombin, is regulated by desensitization and internalization. PAR1 desensitization is mediated by β-arrestins, like most classic GPCRs. In contrast, internalization of PAR1 occurs through a clathrin- and dynamin-dependent pathway independent of β-arrestins. PAR1 displays two modes of internalization. Constitutive internalization of unactivated PAR1 is mediated by the clathrin adaptor protein complex-2 (AP-2), where the μ2-adaptin subunit binds directly to a tyrosine-based motif localized within the receptor C-tail domain. However, AP-2 depletion only partially inhibits agonist-induced internalization of PAR1, suggesting a function for other clathrin adaptors in this process. Here, we now report that AP-2 and epsin-1 are both critical mediators of agonist-stimulated PAR1 internalization. We show that ubiquitination of PAR1 and the ubiquitin-interacting motifs of epsin-1 are required for epsin-1-dependent internalization of activated PAR1. In addition, activation of PAR1 promotes epsin-1 de-ubiquitination, which may increase its endocytic adaptor activity to facilitate receptor internalization. AP-2 also regulates activated PAR1 internalization via recognition of distal C-tail phosphorylation sites rather than the canonical tyrosine-based motif. Thus, AP-2 and epsin-1 are both required to promote efficient internalization of activated PAR1 and recognize discrete receptor sorting signals. This study defines a new pathway for internalization of mammalian GPCRs.  相似文献   

16.
The widely expressed beta-arrestin isoforms 1 and 2 bind phosphorylated G protein-coupled receptors (GPCRs) and mediate desensitization and internalization. Phosphorylation of protease-activated receptor-1 (PAR1), a GPCR for thrombin, is important for desensitization and internalization, however, the role of beta-arrestins in signaling and trafficking of PAR1 remains unknown. To assess beta-arrestin function we examined signaling and trafficking of PAR1 in mouse embryonic fibroblasts (MEFs) derived from beta-arrestin (betaarr) knockouts. Desensitization of PAR1 signaling was markedly impaired in MEFs lacking both betaarr1 and betaarr2 isoforms compared with wild-type cells. Strikingly, in cells lacking only betaarr1 PAR1 desensitization was also significantly impaired compared with betaarr2-lacking or wild-type cells. In wild-type MEFs, activated PAR1 was internalized through a dynamin- and clathrin-dependent pathway and degraded. Surprisingly, in cells lacking both betaarr1 and betaarr2 activated PAR1 was similarly internalized through a dynamin- and clathrin-dependent pathway and degraded, whereas the beta(2)-adrenergic receptor (beta(2)-AR) failed to internalize. A PAR1 cytoplasmic tail mutant defective in agonist-induced phosphorylation failed to internalize in both wild-type and beta-arrestin knockout cells. Thus, PAR1 appears to utilize a distinct phosphorylation-dependent but beta-arrestin-independent pathway for internalization through clathrin-coated pits. Together, these findings strongly suggest that the individual beta-arrestin isoforms can differentially regulate GPCR desensitization and further reveal a novel mechanism by which GPCRs can internalize through a dynamin- and clathrin-dependent pathway that is independent of arrestins.  相似文献   

17.
Protein palmitoylation is a reversible lipid modification that plays important roles for many proteins involved in signal transduction, but relatively little is known about the regulation of this modification and the cellular location where it occurs. We demonstrate that the human delta opioid receptor is palmitoylated at two distinct cellular locations in human embryonic kidney 293 cells and undergoes dynamic regulation at one of these sites. Although palmitoylation could be readily observed for the mature receptor (Mr 55,000), [3H]palmitate incorporation into the receptor precursor (Mr 45,000) could be detected only following transport blockade with brefeldin A, nocodazole, and monensin, indicating that the modification occurs initially during or shortly after export from the endoplasmic reticulum. Blocking of palmitoylation with 2-bromopalmitate inhibited receptor cell surface expression, indicating that it is needed for efficient intracellular transport. However, cell surface biotinylation experiments showed that receptors can also be palmitoylated once they have reached the plasma membrane. At this location, palmitoylation is regulated in a receptor activation-dependent manner, as was indicated by the opioid agonist-promoted increase in the turnover of receptor-bound palmitate. This agonist-mediated effect did not require receptor-G protein coupling and occurred at the cell surface without the need for internalization or recycling. The activation-dependent modulation of receptor palmitoylation may thus contribute to the regulation of receptor function at the plasma membrane.  相似文献   

18.
Lipid modifications such as palmitoylation or myristoylation target intracellular proteins to cell membranes. Secreted ligands of the Hedgehog and Wnt families are also palmitoylated; this modification, which requires the related transmembrane acyltransferases Rasp and Porcupine, can enhance their secretion, transport, or activity. We show here that rasp is also essential for the developmental functions of Spitz, a ligand for the Drosophila epidermal growth factor receptor (EGFR). In cultured cells, Rasp promotes palmitate addition to the N-terminal cysteine residue of Spitz, and this cysteine is required for Spitz activity in vivo. Palmitoylation reduces Spitz secretion and enhances its plasma membrane association, but does not alter its ability to activate the EGFR in vitro. In vivo, overexpressed unpalmitoylated Spitz has an increased range of action but reduced activity. These data suggest a role for palmitoylation in restricting Spitz diffusion, allowing its local concentration to reach the threshold required for biological function.  相似文献   

19.
Protein S-palmitoylation, the reversible thioester linkage of a 16-carbon palmitate lipid to an intracellular cysteine residue, is rapidly emerging as a fundamental, dynamic, and widespread post-translational mechanism to control the properties and function of ligand- and voltage-gated ion channels. Palmitoylation controls multiple stages in the ion channel life cycle, from maturation to trafficking and regulation. An emerging concept is that palmitoylation is an important determinant of channel regulation by other signaling pathways. The elucidation of enzymes controlling palmitoylation and developments in proteomics tools now promise to revolutionize our understanding of this fundamental post-translational mechanism in regulating ion channel physiology.  相似文献   

20.
Proteases cleave proteinase-activated receptors (PARs) to expose N-terminal tethered ligands that bind and activate the cleaved receptors. The tethered ligand, once exposed, is always available to interact with its binding site. Thus, efficient mechanisms must prevent continuous activation, including receptor phosphorylation and uncoupling from G-proteins, receptor endocytosis, and lysosomal degradation. beta-Arrestins mediate uncoupling and endocytosis of certain neurotransmitter receptors, which are activated in a reversible manner. However, the role of beta-arrestins in trafficking of PARs, which are irreversibly activated, and the effects of proteases on the subcellular distribution of beta-arrestins have not been examined. We studied trafficking of PAR2 and beta-arrestin1 coupled to green fluorescent protein. Trypsin induced the following: (a) redistribution of beta-arrestin1 from the cytosol to the plasma membrane, where it co-localized with PAR2; (b) internalization of beta-arrestin1 and PAR2 into the same early endosomes; (c) redistribution of beta-arrestin1 to the cytosol concurrent with PAR2 translocation to lysosomes; and (d) mobilization of PAR2 from the Golgi apparatus to the plasma membrane. Overexpression of a C-terminal fragment of beta-arrestin-319-418, which interacts constitutively with clathrin but does not bind receptors, inhibited agonist-induced endocytosis of PAR2. Our results show that beta-arrestins mediate endocytosis of PAR2 and support a role for beta-arrestins in uncoupling of PARs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号