首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the effects of 4-chlorobiphenyl and biphenyl on the physiology, morphology and proteome of the polychlorobiphenyl-degrader Burkholderia xenovorans LB400. The exposure to 4-chlorobiphenyl decreases the growth of LB400 on glucose, and cells exhibit irregular outer membranes, a larger periplasmic space and electron-dense granules in the cytoplasm. Additionally, lysis of cells was observed during incubation with 4-chlorobiphenyl or biphenyl. Proteome of B. xenovorans LB400 exposed to biphenyl and 4-chlorobiphenyl were analysed by two-dimensional gel electrophoresis. Besides induction of the Bph enzymes of biphenyl catabolic pathways, incubation with 4-chlorobiphenyl or biphenyl results in the induction of the molecular chaperones DnaK and GroEL. Induction of these chaperones, which were also induced during heat shock, strongly suggests that exposure to (chloro)biphenyls constitutes stress conditions for LB400. During growth of LB400 on biphenyl, oxidative stress was evidenced by the induction of alkyl hydroperoxide reductase AhpC, which was also induced during exposure to H(2)O(2). 4-chlorobiphenyl and biphenyl induced catechol 1,2-dioxygenase, as well as polypeptides involved in energy production, amino acid metabolism and transport.  相似文献   

2.
Polychlorobiphenyls (PCBs) are classified as “high-priority pollutants.” Diverse microorganisms are able to degrade PCBs. However, bacterial degradation of PCBs is generally incomplete, leading to the accumulation of chlorobenzoates (CBAs) as dead-end metabolites. To obtain a microorganism able to mineralize PCB congeners, the bph locus of Burkholderia xenovorans LB400, which encodes one of the most effective PCB degradation pathways, was incorporated into the genome of the CBA-degrading bacterium Cupriavidus necator JMP134-X3. The bph genes were transferred into strain JMP134-X3, using the mini-Tn5 transposon system and biparental mating. The genetically modified derivative, C. necator strain JMS34, had only one chromosomal insertion of bph locus, which was stable under nonselective conditions. This modified bacterium was able to grow on biphenyl, 3-CBA and 4-CBA, and degraded 3,5-CBA in the presence of m-toluate. The strain JMS34 mineralized 3-CB, 4-CB, 2,4′-CB, and 3,5-CB, without accumulation of CBAs. Bioaugmentation of PCB-polluted soils with C. necator strain JMS34 and with the native B. xenovorans LB400 was monitored. It is noteworthy that strain JMS34 degraded, in 1 week, 99% of 3-CB and 4-CB and approximately 80% of 2,4′-CB in nonsterile soil, as well as in sterile soil. Additionally, the bacterial count of strain JMS34 increased by almost two orders of magnitude in PCB-polluted nonsterile soil. In contrast, the presence of native microflora reduced the degradation of these PCBs by strain LB400 from 73% (sterile soil) to approximately 50% (nonsterile soil). This study contributes to the development of improved biocatalysts for remediation of PCB-contaminated environments.  相似文献   

3.
Biphenyl dioxygenase from Burkholderia (Pseudomonas) sp. strain LB400 catalyzes the first reaction of a pathway for the degradation of biphenyl and a broad range of chlorinated biphenyls (CBs). The effect of chlorine substituents on catalysis was determined by measuring the specific activity of the enzyme with biphenyl and 18 congeners. The catalytic oxygenase component was purified and incubated with individual CBs in the presence of electron transport proteins and cofactors that were required for enzyme activity. The rate of depletion of biphenyl from the assay mixture and the rate of formation of cis-biphenyl 2,3-dihydrodiol, the oxidation product, were almost equal, indicating that the assay accurately measured enzyme-specific activity. Four classes of CBs were defined based on their oxidation rates. Class I contained 3-CB and 2,5-CB, which gave rates that were approximately twice that of biphenyl. Class II contained 2,5,3',4'-CB, 2,3,2',5'-CB, 2,3,4,5-CB, 2,3,2',3'-CB, 2,4, 5,2',5'-CB, 2,5,3'-CB, 2,5,4'-CB, 2-CB, and 3,4,5-CB, which gave rates that ranged from 97 to 35% of the biphenyl rate. Class III contained only 2,3,4,2',5'-CB, which gave a rate that was 4% of the biphenyl rate. Class IV contained 2,4,4'-CB, 2,4,2',4'-CB, 3,4,5, 2'-CB, 3,4,5,3'-CB, 3,5,3',5'-CB, and 3,4,5,2',5'-CB, which showed no detectable depletion. Rates were not significantly correlated with the aqueous solubilities of the CBs or the number of chlorine substituents on the rings. Oxidation products were detected for all class I, II, and III congeners and were identified as chlorinated cis-dihydrodiols for classes I and II. The specificity of biphenyl dioxygenase for the CBs examined in this study was determined by the relative positions of the chlorine substituents on the aromatic rings rather than the number of chlorine substituents on the rings.  相似文献   

4.
The transformation of 20 polychlorinated biphenyls (PCBs) through the meta-cleavage pathway by recombinant Escherichia coli cells expressing the bphEFGBC locus from Burkholderia cepacia LB400 and the bphA genes from different sources was compared. The analysis of PCB congeners for which hydroxylation was observed but no formation of the corresponding yellow meta-cleavage product demonstrated that only lightly chlorinated congeners including one tetrachlorobiphenyl (2,2',4,4'-CB) were transformed into their corresponding yellow meta-cleavage products. Although many other tetrachlorobiphenyls (2, 2',5,5'-CB, 2,2',3,5'-CB, 2,4,4',5-CB, 2,3',4',5-CB, 2,3',4,4'-CB) and one pentachlorobiphenyl (2,2',4,5,5'-CB) tested were depleted from resting cell suspensions, no yellow meta-cleavage products were observed. For most of these congeners, dihydrodiol compounds accumulated as the endproducts, indicating that the bphB-encoded biphenyl-2,3-dihydrodiol-2,3-dehydrogenase is a key limiting step for further degradation of highly chlorinated congeners. These results suggest that engineering the biphenyl dioxygenase alone is insufficient for an improved removal of PCB. Rather, improved degradation of PCBs is more likely to be achieved with recombinant strains containing metabolic pathways not only specifically engineered for expanding the initial dioxygenation but also for the mineralization of PCBs.  相似文献   

5.
Burkholderia xenovorans LB400是一株多氯联苯(polychlorinated biphenyls,PCBs)降解菌,可以氧化含有1?6个氯取代基的多氯联苯。近年来,由于其广泛的底物谱和优异的降解性能,菌株LB400已成为研究原核生物降解多氯联苯的生物化学和分子生物学方面的模式生物。目前关于PCBs的微生物降解研究已不再局限于对微生物资源的挖掘,而是更多地聚焦在LB400等降解菌的PCBs降解基因、降解酶的酶学特性以及酶的人工分子进化等方面。同时,LB400作为早期发现的降解菌,其对多氯联苯的降解途径、底物范围及相关机制也被广泛探讨;但是对于PCBs降解相关基因的调控研究较少。因此,本文以Burkholderia xenovorans LB400对多氯联苯降解为核心,通过综述其代谢途径、代谢相关基因和酶系以及降解应用等方面的研究进展,以期为深入探讨Burkholderia xenovorans LB400的应用以及进一步在遗传、分子和生化水平研究其他多氯联苯降解菌株提供借鉴。  相似文献   

6.
The polychlorinated biphenyl (PCB)-degrading Pseudomonas sp. B4 was tested for its motility and ability to sense and respond to biphenyl, its chloroderivatives and chlorobenzoates in chemotaxis assays. Pseudomonas sp. B4 was attracted to biphenyl, PCBs and benzoate in swarm plate and capillary assays. Chemotaxis towards these compounds correlated with their use as carbon and energy sources. No chemotactic effect was observed in the presence of 2- and 3-chlorobenzoates. Furthermore, a toxic effect was observed when the microorganism was exposed to 3-chlorobenzoate. A nonmotile Pseudomonas sp. B4 transformant and Burkholderia xenovorans LB400, the laboratory model strain for PCB degradation, were both capable of growing in biphenyl as the sole carbon source, but showed a clear disadvantage to access the pollutants to be degraded, compared with the highly motile Pseudomonas sp. B4, stressing the importance of motility and chemotaxis in this environmental biodegradation.  相似文献   

7.
2,2'-Dichlorobiphenyl (CB) is transformed by the biphenyl dioxygenase of Burkholderia xenovorans LB400 (LB400 BPDO) into two metabolites (1 and 2). The most abundant metabolite, 1, was previously identified as 2,3-dihydroxy-2'-chlorobiphenyl and was presumed to originate from the initial attack by the oxygenase on the chlorine-bearing ortho carbon and on its adjacent meta carbon of one phenyl ring. 2,3,2',3'-Tetrachlorobiphenyl is transformed by LB400 BPDO into two metabolites that had never been fully characterized structurally. We determined the precise identity of the metabolites produced by LB400 BPDO from 2,2'-CB and 2,3,2',3'-CB, thus providing new insights on the mechanism by which 2,2'-CB is dehalogenated to generate 2,3-dihydroxy-2'-chlorobiphenyl. We reacted 2,2'-CB with the BPDO variant p4, which produces a larger proportion of metabolite 2. The structure of this compound was determined as cis-3,4-dihydro-3,4-dihydroxy-2,2'-dichlorobiphenyl by NMR. Metabolite 1 obtained from 2,2'-CB-d(8) was determined to be a dihydroxychlorobiphenyl-d(7) by gas chromatographic-mass spectrometric analysis, and the observed loss of only one deuterium clearly shows that the oxygenase attack occurs on carbons 2 and 3. An alternative attack at the 5 and 6 carbons followed by a rearrangement leading to the loss of the ortho chlorine would have caused the loss of more than one deuterium. The major metabolite produced from catalytic oxygenation of 2,3,2',3'-CB by LB400 BPDO was identified by NMR as cis-4,5-dihydro-4,5-dihydroxy-2,3,2',3'-tetrachlorobiphenyl. These findings show that LB400 BPDO oxygenates 2,2'-CB principally on carbons 2 and 3 and that BPDO regiospecificity toward 2,2'-CB and 2,3,2,',3'-CB disfavors the dioxygenation of the chlorine-free ortho-meta carbons 5 and 6 for both congeners.  相似文献   

8.
Burkholderia xenovorans strain LB400, which possesses the biphenyl pathway, was engineered to contain the oxygenolytic ortho dehalogenation (ohb) operon, allowing it to grow on 2-chlorobenzoate and to completely mineralize 2-chlorobiphenyl. A two-stage anaerobic/aerobic biotreatment process for Aroclor 1242-contaminated sediment was simulated, and the degradation activities and genetic stabilities of LB400(ohb) and the previously constructed strain RHA1(fcb), capable of growth on 4-chlorobenzoate, were monitored during the aerobic phase. The population dynamics of both strains were also followed by selective plating and real-time PCR, with comparable results; populations of both recombinants increased in the contaminated sediment. Inoculation at different cell densities (10(4) or 10(6) cells g(-1) sediment) did not affect the extent of polychlorinated biphenyl (PCB) biodegradation. After 30 days, PCB removal rates for high and low inoculation densities were 57% and 54%, respectively, during the aerobic phase.  相似文献   

9.
Three hydroxylated derivatives of PCBs, 2′-hydroxy-4-chlorobiphenyl (2′-OH-4-CB), 3′-hydroxy-4-chlorobiphenyl (3′-OH-4-CB), and 4′-hydroxy-4-chlorobiphenyl (4′-OH-4-CB), were transformed by the PCB degrader, Burkholderia xenovorans. When the bacterium was growing on biphenyl (biphenyl pathway-inducing conditions), all three hydroxylated isomers were transformed. However, only 2′-OH-4-CB was transformed by the bacterium growing on succinate (conditions non-inductive of the biphenyl pathway). Gene expression analyses showed a strong induction of key genes of the biphenyl pathway (bph) when cells were grown on biphenyl, which is consistent with the transformation of the three isomers by biphenyl-grown cells. When cells were grown on succinate, only exposure to 2′-OH-4-CB resulted in expression of biphenyl pathway genes, which suggests that this isomer was capable of inducing the biphenyl pathway. These results provide the first evidence that bacteria are able to metabolize PCB derivatives hydroxylated on the non-chlorinated ring.  相似文献   

10.
The biphenyl dioxygenase of Burkholderia xenovorans LB400 (BphAE(LB400)) catalyzes the dihydroxylation of biphenyl and of several polychlorinated biphenyls (PCBs) but it poorly oxidizes dibenzofuran. In this work we showed that BphAE(RR41), a variant which was previously found to metabolize dibenzofuran more efficiently than its parent BphAE(LB400), metabolized a broader range of PCBs than BphAE(LB400). Hence, BphAE(RR41) was able to metabolize 2,6,2',6'-, 3,4,3',5'- and 2,4,3',4'-tetrachlorobiphenyl that BphAE(LB400) is unable to metabolize. BphAE(RR41) was obtained by changing Thr335Phe336Asn338Ile341Leu409 of BphAE(LB400) to Ala335Met336Gln338Val341Phe409. Site-directed mutagenesis was used to create combinations of each substitution, in order to assess their individual contributions. Data show that the same Asn338Glu/Leu409Phe substitution that enhanced the ability to metabolize dibenzofuran resulted in a broadening of the PCB substrates range of the enzyme. The role of these substitutions on regiospecificities toward selected PCBs is also discussed.  相似文献   

11.
The biodegradation of polychlorinated biphenyls (PCBs) relies on the ability of aerobic microorganisms such as Burkholderia xenovorans sp. LB400 to tolerate two potential modes of toxicity presented by PCB degradation: passive toxicity, as hydrophobic PCBs potentially disrupt membrane and protein function, and degradation-dependent toxicity from intermediates of incomplete degradation. We monitored the physiological characteristics and genome-wide expression patterns of LB400 in response to the presence of Aroclor 1242 (500 ppm) under low expression of the structural biphenyl pathway (succinate and benzoate growth) and under induction by biphenyl. We found no inhibition of growth or change in fatty acid profile due to PCBs under nondegrading conditions. Moreover, we observed no differential gene expression due to PCBs themselves. However, PCBs did have a slight effect on the biosurface area of LB400 cells and caused slight membrane separation. Upon activation of the biphenyl pathway, we found growth inhibition from PCBs beginning after exponential-phase growth suggestive of the accumulation of toxic compounds. Genome-wide expression profiling revealed 47 differentially expressed genes (0.56% of all genes) under these conditions. The biphenyl and catechol pathways were induced as expected, but the quinoprotein methanol metabolic pathway and a putative chloroacetaldehyde dehydrogenase were also highly expressed. As the latter protein is essential to conversion of toxic metabolites in dichloroethane degradation, it may play a similar role in the degradation of chlorinated aliphatic compounds resulting from PCB degradation.  相似文献   

12.
This study aimed to evaluate the efficiency of Burkholderia xenovorans LB400 cells and their cell extract to remediate 4-chlorobiphenyl (4-CB). The bacterium previously induced with 4-CB was able to degrade up to 98% of initial 50 mg L?1 of 4-CB from mineral medium within 96 h of incubation. The degradation of 4-CB occurred through the formation of meta-cleavage product 2-hydroxy-6-oxo-6phenylhexa-2,4-dienoic acid (HOPDA), as revealed through enzymatic assay of 2,3-dihydroxybiphenyl 1,2-dioxygenase (2,3-DHBD). A derivative of 1,2-benzenedicarboxylic acid was observed as one of the major intermediate metabolites of 4-CB degradation. Time course production of 2,3-DHBD during growth corresponds with the degradation pattern of 4-CB by the bacterium. In vitro degradation of 4-CB using cell extract of B. xenovorans showed complete degradation of initial 25 mg L?1 of 4-CB within 6 h of incubation. To the best of the authors' knowledge, this is the first report in which in vitro degradation of 4-CB using cell extract of Burkholderia xenovorans is presented.  相似文献   

13.
Xu L  Xu JJ  Jia LY  Liu WB  Jian X 《Current microbiology》2011,62(3):784-789
The relationship between the selectivity of a particular polychlorinated biphenyls (PCBs) congener and its biodegradability under the same concentration, especially by Enterobacter sp. LY402, is less well studied. To measure congener selectivity of Enterobacter sp. LY402, several influencing factors were studied. The results showed LY402 effectively degraded coplanar 3,4,3',4'-chlorobiphenyl (CB) at a concentration of 0.05 μM, but not 0.5 μM. The degradation rates of 2,4,5,2',3'-CB and 2,4,5,2',4',5'-CB were increased significantly when the sample constituents were changed from 12 to 5 congeners or to one congener. This indicated that bioremediation of individual congener was affected by other congeners present in the mixture. Moreover, for PCBs containing one chlorine on each phenyl ring, the reactivity preference of LY402 was 2,2'-CB ≥ 3,3'-CB ? 4,4'-CB. For two ortho chlorines congeners of PCBs, 2,2'-CB was degraded faster than 2,6-CB. Although 2,6-CB and 4,4'-CB were poorly degraded, the addition of one (i.e., 2,4,4'-CB and 2,6,3'-CB) or two more chlorines (i.e., 2,4,2',4'-CB) on the phenyl ring significantly increased their biodegradability. In addition, comparing the two congeners of ortho-meta-chlorinated biphenyl, 2,3,2',3'-CB with neighbor meta chlorines was degraded slower than 2,5,2',5'-CB with interval meta chlorines. All these indicated that the transformation rates of PCBs were not consistent with the number of chlorines, and PCBs containing the same numbers of chlorines but at different positions also resulted in different conversions. In principle, the extents of effect caused by the position of chlorine substituents on the degradation of PCBs by LY402 were ortho- > meta- > para-CB. In conclusion, the congener selectivity of LY402 was determined by many factors, including the composition of the congeners, their concentrations in the mixture and location and number of chlorine substituents on the phenyl rings.  相似文献   

14.
It is now established that several amino acids of region III of the biphenyl dioxygenase (BPDO) alpha subunit are involved in substrate recognition and regiospecificity toward chlorobiphenyls. However, the sequence pattern of the amino acids of that segment of seven amino acids located in the C-terminal portion of the alpha subunit is rather limited in BPDOs of natural occurrence. In this work, we have randomly mutated simultaneously four residues (Thr(335)-Phe(336)-Ile(338)-Ile(341)) of region III of Burkholderia xenovorans LB400 BphA. The library was screened for variants able to oxygenate 2,2'-dichlorobiphenyl (2,2'-CB). Replacement of Phe(336) with Met or Ile with a concomitant change of Thr(335) to Ala created new variants that transformed 2,2'-CB into 3,4-dihydro-3,4-dihydroxy-2,2'-dichlorobiphenyl, which is a dead end metabolite that was not cleaved by BphC. Replacement of Thr(335)-Phe(336) with Ala(335)-Leu(336) did not cause this type of phenotypic change. Regiospecificity toward congeners other than 2,2'-CB that were oxygenated more efficiently by variant Ala(335)-Met(336) than by LB400 BPDO was similar for both enzymes. Thus structural changes that altered the regiospecificity toward 2,2'-CB did not affect the metabolite profile of other congeners, although it affected the rate of conversion of these congeners. It was especially noteworthy that both LB400 BPDO and the Ala(335)-Met(336) variant generated 2,3-dihydroxy-2',4,4'-trichlorobiphenyl as the sole metabolite from 2,4,2',4'-CB and 4,5-dihydro-4,5-dihydroxy-2,3,2',3'-tetrachlorobiphenyl as the major metabolite from 2,3,2',3'-CB. This shows that 2,4,2',4'-CB is oxygenated principally onto vicinal ortho-meta carbons 2 and 3 and that 2,3,2',3'-CB is oxygenated onto meta-para carbons 4 and 5 by both enzymes. The data suggest that interactions between the chlorine substitutes on the phenyl ring and specific amino acid residues of the protein influence the orientation of the phenyl ring inside the catalytic pocket.  相似文献   

15.
Biphenyl and polychlorinated biphenyls (PCBs) are typical environmental pollutants. However, these pollutants are hard to be totally mineralized by environmental microorganisms. One reason for this is the accumulation of dead-end intermediates during biphenyl and PCBs biodegradation, especially benzoate and chlorobenzoates (CBAs). Until now, only a few microorganisms have been reported to have the ability to completely mineralize biphenyl and PCBs. In this research, a novel bacterium HC3, which could degrade biphenyl and PCBs without dead-end intermediates accumulation, was isolated from PCBs-contaminated soil and identified as Sphingobium fuliginis. Benzoate and 3-chlorobenzoate (3-CBA) transformed from biphenyl and 3-chlorobiphenyl (3-CB) could be rapidly degraded by HC3. This strain has strong degradation ability of biphenyl, lower chlorinated (mono-, di- and tri-) PCBs as well as mono-CBAs, and the biphenyl/PCBs catabolic genes of HC3 are cloned on its plasmid. It could degrade 80.7% of 100 mg L −1 biphenyl within 24 h and its biphenyl degradation ability could be enhanced by adding readily available carbon sources such as tryptone and yeast extract. As far as we know, HC3 is the first reported that can degrade biphenyl and 3-CB without accumulation of benzoate and 3-CBA in the genus Sphingobium, which indicates the bacterium has the potential to totally mineralize biphenyl/PCBs and might be a good candidate for restoring biphenyl/PCBs-polluted environments.  相似文献   

16.
Previous work has shown that the C-terminal portion of BphA, especially two amino acid segments designated region III and region IV, influence the regiospecificity of the biphenyl dioxygenase (BPDO) toward 2,2'-dichlorobiphenyl (2,2'-CB). In this work, we evolved BPDO by shuffling bphA genes amplified from polychlorinated biphenyl-contaminated soil DNA. Sets of approximately 1-kb DNA fragments were amplified with degenerate primers designed to amplify the C-terminal portion of bphA. These fragments were shuffled, and the resulting library was used to replace the corresponding fragment of Burkholderia xenovorans LB400 bphA. Variants were screened for their ability to oxygenate 2,2'-CB onto carbons 5 and 6, which are positions that LB400 BPDO is unable to attack. Variants S100, S149, and S151 were obtained and exhibited this feature. Variant S100 BPDO produced exclusively cis-5,6-dihydro-5,6-dihydroxy-2,2'-dichlorobiphenyl from 2,2'-CB. Moreover, unlike LB400 BPDO, S100 BphA catalyzed the oxygenation of 2,2',3,3'-tetrachlorobiphenyl onto carbons 5 and 6 exclusively and it was unable to oxygenate 2,2',5,5'-tetrachlorobiphenyl. Based on oxygen consumption measurements, variant S100 oxygenated 2,2'-CB at a rate of 16 +/- 1 nmol min(-1) per nmol enzyme, which was similar to the value observed for LB400 BPDO. cis-5,6-Dihydro-5,6-dihydroxy-2,2'-dichlorobiphenyl was further oxidized by 2,3-dihydro-2,3-dihydroxybiphenyl dehydrogenase (BphB) and 2,3-dihydroxybiphenyl dioxygenase (BphC). Variant S100 was, in addition, able to oxygenate benzene, toluene, and ethyl benzene. Sequence analysis identified amino acid residues M237 S238 and S283 outside regions III and IV that influence the activity toward doubly ortho-substituted chlorobiphenyls.  相似文献   

17.
Many investigations have provided evidence that plant secondary metabolites, especially flavonoids, may serve as signal molecules to trigger the abilities of bacteria to degrade chlorobiphenyls in soil. However, the bases for this interaction are largely unknown. In this work, we found that BphAE(B356), the biphenyl/chlorobiphenyl dioxygenase from Pandoraea pnomenusa B356, is significantly better fitted to metabolize flavone, isoflavone, and flavanone than BphAE(LB400) from Burkholderia xenovorans LB400. Unlike those of BphAE(LB400), the kinetic parameters of BphAE(B356) toward these flavonoids were in the same range as for biphenyl. In addition, remarkably, the biphenyl catabolic pathway of strain B356 was strongly induced by isoflavone, whereas none of the three flavonoids induced the catabolic pathway of strain LB400. Docking experiments that replaced biphenyl in the biphenyl-bound form of the enzymes with flavone, isoflavone, or flavanone showed that the superior ability of BphAE(B356) over BphAE(LB400) is principally attributable to the replacement of Phe336 of BphAE(LB400) by Ile334 and of Thr335 of BphAE(LB400) by Gly333 of BphAE(B356). However, biochemical and structural comparison of BphAE(B356) with BphAE(p4), a mutant of BphAE(LB400) which was obtained in a previous work by the double substitution Phe336Met Thr335Ala of BphAE(LB400), provided evidence that other residues or structural features of BphAE(B356) whose precise identification the docking experiment did not allow are also responsible for the superior catalytic abilities of BphAE(B356). Together, these data provide supporting evidence that the biphenyl catabolic pathways have evolved divergently among proteobacteria, where some of them may serve ecological functions related to the metabolism of plant secondary metabolites in soil.  相似文献   

18.
We investigated induction of biphenyl dioxygenase in the psychrotolerant polychlorinated biphenyl (PCB) degrader Pseudomonas strain Cam-1 and in the mesophilic PCB degrader Burkholderia strain LB400. Using a counterselectable gene replacement vector, we inserted a lacZ-Gm(r) fusion cassette between chromosomal genes encoding the large subunit (bphA) and small subunit (bphE) of biphenyl dioxygenase in Cam-1 and LB400, generating Cam-10 and LB400-1, respectively. Potential inducers of bphA were added to cell suspensions of Cam-10 and LB400-1 incubated at 30 degrees C, and then beta-galactosidase activity was measured. Biphenyl induced beta-galactosidase activity in Cam-10 to a level approximately six times greater than the basal level in cells incubated with pyruvate. In contrast, the beta-galactosidase activities in LB400-1 incubated with biphenyl and in LB400-1 incubated with pyruvate were indistinguishable. At a concentration of 1 mM, most of the 40 potential inducers tested were inhibitory to induction by biphenyl of beta-galactosidase activity in Cam-10. The exceptions were naphthalene, salicylate, 2-chlorobiphenyl, and 4-chlorobiphenyl, which induced beta-galactosidase activity in Cam-10, although at levels that were no more than 30% of the levels induced by biphenyl. After incubation for 24 h at 7 degrees C, biphenyl induced beta-galactosidase activity in Cam-10 to a level approximately four times greater than the basal level in cells incubated with pyruvate. The constitutive level of beta-galactosidase activity in LB400-1 grown at 15 degrees C was approximately five times less than the level in LB400-1 grown at 30 degrees C. Thus, there are substantial differences in the effects of physical and chemical environmental conditions on genetic regulation of PCB degradation in different bacteria.  相似文献   

19.
The degradation of polychlorobiphenyls (PCBs) by diverse bacteria, including Burkholderia sp. LB400, is incomplete with a concomitant accumulation of metabolic intermediates. In this study, the toxicity of diverse (chloro)biphenyls and of their biotransformation into the first two metabolic intermediates of the biphenyl pathway, were determined for the model bacterium Escherichia coli. Recombinant E. coli strains expressing different subsets of bph genes of strain LB400 accumulated metabolic intermediates from (chloro)biphenyls. During biotransformation of these compounds into metabolic intermediates, the viability and metabolic kinetics were determined. The toxicity of biotransformation of (chloro)biphenyls into different metabolic intermediates of (chloro)biphenyls varied. Dihydrodiols and dihydroxybiphenyls are very toxic metabolites for bacteria even after short incubation times, affecting the cell viability much more than (chloro)biphenyls. When bacteria transformed 2-CB into dihydrodiol or dihydroxybiphenyl, a great decrease of intact cells and abundant cell lysis was observed by transmission electronic microscopy. Cell viability of Burkholderia sp. LB400 and of E. coli exposed directly to 2,3-dihydroxybiphenyl decreased also drastically. The toxicity of metabolites generated during oxidation of PCBs may partly explain the recalcitrance to biodegradation of these pollutants. Conversion of less toxic compounds into products with increased toxicity resembles the bioactivation of xenobiotics in higher organisms.  相似文献   

20.
A 70 day pot experiment was conducted for the cleaning-up of a PCBs-contaminated soil (104 mg kg?1 soil DW) using bioaugmentation with Burkholderia xenovorans LB400 (LB400) assisted or not by the use of tall fescue (Festuca arundinacea). The total cultivable bacteria of the soil were higher with the presence of plants. Real-time PCR showed that LB400 (targeting 16S–23S rRNA ITS) survived with abundance related to total bacteria (targeting 16S rRNA) being higher with fescue (up to a factor of three). Bioaugmentation had a positive effect on fescue biomass and more specifically on roots (by a factor of three). PCB dissipation (sum of congeners 28, 52, 101, 118, 153, 180) averaged 13 % (bioaugmented-planted) up to 32 % (non bioaugmented-planted), without any significant difference between treatments. Basically our results demonstrated that indigenous bacteria were able to dissipate PCBs (26.2 % dissipation). PCB dissipation was not related to the abundance of LB400 or to the total bacterial counts. Bioaugmentation or fescue altered the structure of the bacterial community of the soil, not the combination of both. Principal component analysis showed that bioaugmentation tended to improve the control of the process (lower variability in PCB dissipation). Opposite to that bioaugmentation increased the variability of the structure of the bacterial community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号