首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacterial degradation of 1,1-dichloro-2,2-bis(4-chlorophenyl)ethylene (DDE) has been previously reported, however, its degradation enzyme system has not been characterized. In this study, a DDE-degrading bacterium, Janibacter sp. TYM3221, was isolated and characterized. Transformation of DDE was demonstrated by TYM3211 resting cells grown in LB in the presence and absence of biphenyl. Gas chromatography–mass spectrometry analysis revealed five metabolites of DDE containing a meta-ring cleavage product and 4-chlorobenzoic acid, suggesting that TYM3221 degrades DDE to 4-chlorobenzoic acid via a meta-ring cleavage product. A gene cluster, bphAaAbAcAd, which codes for biphenyl dioxygenase subunits, was cloned from TYM3221. A mutant strain with a bphAa-gene inactivation did not grow on biphenyl, and showed no DDE degradation activity. These results indicate that in strain TYM3221, the bphAa-coded biphenyl dioxygenase is involved not only in the metabolism of biphenyl but also in the degradation of DDE.  相似文献   

2.
Terrabacter sp. strain DDE-1, able to metabolize 1,1-dichloro-2, 2-bis(4-chlorophenyl)ethylene (DDE) in pure culture when induced with biphenyl, was enriched from a 1-1-1-trichloro-2, 2-bis(4-chlorophenyl)ethane residue-contaminated agricultural soil. Gas chromatography-mass spectrometry analysis of culture extracts revealed a number of DDE catabolites, including 2-(4'-chlorophenyl)-3,3-dichloropropenoic acid, 2-(4'-chlorophenyl)-2-hydroxy acetic acid, 2-(4'-chlorophenyl) acetic acid, and 4-chlorobenzoic acid.  相似文献   

3.
Terrabacter sp. strain DDE-1, able to metabolize 1,1-dichloro-2,2-bis(4-chlorophenyl)ethylene (DDE) in pure culture when induced with biphenyl, was enriched from a 1-1-1-trichloro-2,2-bis(4-chlorophenyl)ethane residue-contaminated agricultural soil. Gas chromatography-mass spectrometry analysis of culture extracts revealed a number of DDE catabolites, including 2-(4′-chlorophenyl)-3,3-dichloropropenoic acid, 2-(4′-chlorophenyl)-2-hydroxy acetic acid, 2-(4′-chlorophenyl) acetic acid, and 4-chlorobenzoic acid.  相似文献   

4.
Substantial metabolism of 2,3,4,5-tetrachlorobiphenyl (2,3,4,5-tetraCB) and 2,3′,4′,5-tetraCB by axenic cultures of Ralstonia sp. SA-5 and Pseudomonas sp. SA-6 was observed in the presence of biphenyl supplementation, although, the strains were unable to utilize tetrachlorobiphenyls as growth substrate. The former was more amenable to aerobic degradation (∼70% degradation) than the latter (22–45% degradation). Recovery of 2,5-chlorobenzoic acid and chloride from 2,3′,4′,5-tetraCB assay is an indication of initial dioxygenase attack on the 3,4-dichlorophenyl ring. The PCB-degradative ability of both strains was also investigated by GC analysis of individual congeners in Aroclor 1242 (100 ppm) following 12-day incubation with washed benzoate-grown cells. Results revealed two different catabolic properties. Whereas strain SA-6 required biphenyl as inducer of the degradation activity, such induction was not required by strain SA-5. Nearly all the detectable congeners in the mixture were extensively degraded (% reduction in ECD area counts for individual congeners ranged from 50.0 to 100% and 14.2 to 100%, respectively, for SA-5 and SA-6). The two strains exhibited no noticeable specificity for congeners with varying numbers of chlorine substitution and positions. The degradative competence of these isolates most especially SA-5 makes them among the most versatile PCB-metabolizing organisms yet reported.  相似文献   

5.
A bacterial strain capable of degrading 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) was isolated from insecticide-contaminated soil by biphenyl enrichment culture and identified as a Pseudomonas species. The organism degraded DDT through the intermediate formation of 2,3-dihydroxy-DDT, which undergoes meta-ring cleavage, ultimately yielding 4-chlorobenzoic acid as a stable metabolite.  相似文献   

6.
Comparative studies were performed to investigate the contribution of microbial consortia, individual microbial populations, and specific plasmids to chlorinated biphenyl biodegradation among microbial communities from a polychlorinated biphenyl-contaminated freshwater environment. A bacterial consortium, designated LPS10, was shown to mineralize 4-chlorobiphenyl (4CB) and dehalogenate 4,4'-dichlorobiphenyl. The LPS10 consortium involved three isolates: Pseudomonas testosteroni (LPS10A), which mediated the breakdown of 4CB and 4,4'-dichlorobiphenyl to 4-chlorobenzoic acid; an isolate tentatively identified as an Arthrobacter sp. (LPS10B), which mediated 4-chlorobenzoic acid degradation; and Pseudomonas putida bv. A (LPS10C), whose role in the consortium has not been determined. None of these isolates contained detectable plasmids or sequences homologous to the 4CB-degradative plasmid pSS50. A freshwater isolate, designated LBS1C1, was found to harbor a 41-megadalton plasmid that was related to the 35-megadalton plasmid pSS50, and this isolate was shown to mineralize 4CB. In chemostat enrichments with biphenyl and 4CB as primary carbon sources, the LPS10 consortium was found to outcomplete bacterial populations harboring plasmids homologous to pSS50. These results demonstrate that an understanding of the biodegradative capacity of individual bacterial populations as well as interacting populations of bacteria must be considered in order to gain a better understanding of polychlorinated biphenyl biodegradation in the environment.  相似文献   

7.
1,1-Dichloro-2,2-bis(4-chlorophenyl)ethylene (DDE), a toxic breakdown product of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT), has traditionally been viewed as a dead-end metabolite: there are no published reports detailing enzymatic ring fission of DDE by bacteria in either soil or pure culture. In this study, we investigated the ability of Pseudomonas acidovorans M3GY to transform DDE and its unchlorinated analog, 1,1-diphenylethylene (DPE). While strain M3GY could grow on DPE, cells grown on DPE as a sole carbon source could not degrade DDE. Cells grown on biphenyl, however, did degrade DDE. Mass balance analysis of [14C]DDE showed transformation of more than 40% of the recoverable radioactivity. Nine chlorinated metabolites produced from DDE were identified by gas chromatography-mass spectrometry–Fourier-transform infrared spectrometry (GC-MS-FTIR) from cultures grown on biphenyl. Recovery of these metabolites demonstrates that biphenyl-grown cells degrade DDE through a meta-fission pathway. This study provides a possible model for biodegradation of DDE in soil by biphenyl-utilizing bacteria.  相似文献   

8.
The microbial degradation of polychlorinated biphenyls (PCBs) has been extensively conducted by many workers, and the following general results have been obtained. (1) PCBs are degraded oxidatively by aerobic bacteria and other microorganisms such as white rot fungi. PCBs are also reductively dehalogenated by anaerobic microbial consortia. (2) The biodegradability of PCBs is highly dependent on chlorine substitution, i.e., number and position of chlorine. The degradation and dehalogenation capabilities are also highly strain dependent. (3) Biphenyl-utilizing bacteria can cometabolize many PCB congeners to chlorobenzoates by biphenl-catabolic enzymes. (4) Enzymes involved in the PCB degradation were purified and characterized. Biphenyl dioxygenase, ring-cleavage dioxygenase, and hydrolase are crystallized, and two ring-cleavage dioxygenases are being solved by x-ray crystallography. (5) The bph gene clusters responsible for PCB degradation are cloned from a variety of bacterial strains. The structure and function are analyzed with respect to the evolutionary relationship. (6) The molecular engineering of biphenyl dioxygenases is successfully performed by DNA shuffling, domain exchange, and subunit exchange. The evolved enzymes exhibit wide and enhanced degradation capacities for PCBs and other aromatic compounds.  相似文献   

9.
10.
Comparative studies were performed to investigate the contribution of microbial consortia, individual microbial populations, and specific plasmids to chlorinated biphenyl biodegradation among microbial communities from a polychlorinated biphenyl-contaminated freshwater environment. A bacterial consortium, designated LPS10, was shown to mineralize 4-chlorobiphenyl (4CB) and dehalogenate 4,4'-dichlorobiphenyl. The LPS10 consortium involved three isolates: Pseudomonas testosteroni (LPS10A), which mediated the breakdown of 4CB and 4,4'-dichlorobiphenyl to 4-chlorobenzoic acid; an isolate tentatively identified as an Arthrobacter sp. (LPS10B), which mediated 4-chlorobenzoic acid degradation; and Pseudomonas putida bv. A (LPS10C), whose role in the consortium has not been determined. None of these isolates contained detectable plasmids or sequences homologous to the 4CB-degradative plasmid pSS50. A freshwater isolate, designated LBS1C1, was found to harbor a 41-megadalton plasmid that was related to the 35-megadalton plasmid pSS50, and this isolate was shown to mineralize 4CB. In chemostat enrichments with biphenyl and 4CB as primary carbon sources, the LPS10 consortium was found to outcomplete bacterial populations harboring plasmids homologous to pSS50. These results demonstrate that an understanding of the biodegradative capacity of individual bacterial populations as well as interacting populations of bacteria must be considered in order to gain a better understanding of polychlorinated biphenyl biodegradation in the environment.  相似文献   

11.
12.
Pseudomonas paucimobilis Q1 originally isolated as biphenyl degrading organism (Furukawa et al. 1983), was shown to grow with naphthalene. After growth with biphenyl or naphthalene the strain synthesized the same enzyme for the ring cleavage of 2,3-dihydroxybiphenyl or 1,2-dihydroxynaphthalene. The enzyme, although characterized as 2,3-dihydroxybiphenyl dioxygenase (Taira et al. 1988), exhibited considerably higher relative activity with 1,2-dihydroxynaphthalene. These results demonstrate that this enzyme can function both in the naphthalene and biphenyl degradative pathway.Abbreviations DHBP dihydroxybiphenyl - DHBPDO 2,3-dihydroxybiphenyl dioxygenase - DHDHNDH 1,2-dihydroxy-1,2-dihydronaphthalene dehydrogenase - DHN 1,2-dihydroxynaphthalene - DHNDO 1,2-dihydroxynaphthalene dioxygenase - HBP cis-2-hydroxybenzalpyruvate - HOPDA 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate - PCB polychlorinated biphenyl - 2NS naphthalene-2-sulfonic acid  相似文献   

13.
Summary A bioconversion process was demonstrated by manipulation of catabolic genes. Catabolic intermediates of various biphenyl compounds could be efficiently produced by Pseudomonas aeruginosa carrying recombinant plasmids containing a set of cloned bph genes. A dihydrodiol compound was produced by the strain carrying plasmid pMFB4 containing bphA (encoding biphenyl dioxygenase) gene. A dihydroxy compound was produced from 4-chlorobiphenyl by the strain carrying plasmid pMFB6 containing bphA and bphB (encoding dihydrodiol dehydrogenase) genes. Tetrahydroxybiphenyl was accumulated as the final product via dihydroxybiphenyl from biphenyl by the same pMFB6 carrying strain. Meta-cleavage yellow compounds were produced from biphenyl and its derivatives substituted with methyl, chloro, bromo, or nitro group on one of the biphenyl rings by the strain carrying plasmid pMFB2 containing bphA, bphB and bphC (encoding dihydroxybiphenyl dioxygenase) genes.  相似文献   

14.
Hydrolysis following meta-ring cleavage by a dioxygenase is a well-known step in aromatic compound metabolism. The 2-hydroxy-6-oxo-6-(2'-aminophenyl)hexa-2,4-dienoic acid hydrolase from Pseudomonas LD2 is a new member of the small group of characterized aromatic hydrolases that catalyze the cleavage of C-C bonds. In this study, the His(6)-tagged 2-hydroxy-6-oxo-6-(2'-aminophenyl)hexa-2,4-dienoic acid (HOPDA) hydrolase was purified from a recombinant Escherichia coli strain utilizing immobilized metal affinity chromatography. 2-Hydroxy-6-oxo-6-(2'-aminophenyl)hexa-2,4-dienoic acid hydrolase is a colorless homodimer with no cofactor requirement. The enzyme actively converted HOPDA into benzoic acid and 2-hydroxypenta-2,4-dienoic acid. The enzyme exhibited activity between pH 6.5 and 10.5 with a maximum activity at pH 7.0. The optimum temperature at pH 7.0 was 60 degrees C. The calculated K'(m) for HOPDA was 4.6 microM, the V(max) was 3.3 micromol min(-1), and the K(s) was 70.0 microM. This corresponds to a maximum specific turnover rate of 1300 HOPDAs(-1)dimer(-1). The deduced amino acid sequence of CarC showed 30.3, 31.3, and 31.8% identity with TodF (P. putida F1), XylF (P. putida), and DmpD (Pseudomonas sp. CF600), respectively, which are meta-cleavage compound hydrolases from other Pseudomonads. The amino acid sequence Gly-X-Ser-X-Gly, which is highly conserved in these hydrolases, is also found in CarC. Lysates from a strain expressing enzyme in which the putative active site serine is mutated to alanine showed a significant reduction in activity.  相似文献   

15.
16.
The metabolism of biphenyl by Mycobacterium sp. PYR-1 was investigated. The Mycobacterium sp. degraded >98% of the biphenyl added within 72 h. Analysis of ethyl acetate extracts of the culture medium by HPLC indicated that benzoic acid was the major metabolite. Other products were 4-hydroxybiphenyl, 4-hydroxybenzoic acid, and 5-oxo-5-phenylpentanoic acid. The metabolites were characterized by mass and 1H NMR spectrometry. Identification of benzoic acid and 5-oxo-5-phenylpentanoic acid indicates that biphenyl degradation by Mycobacterium sp. PYR-1 is generally similar to known pathways. A novel alternative metabolic pathway consisted of monooxygenation at C-4 of biphenyl to give 4-hydroxybiphenyl, with subsequent degradation via ring cleavage to 4-hydroxybenzoic acid.  相似文献   

17.
Li JJ  Li C  Blindauer CA  Bugg TD 《Biochemistry》2006,45(41):12461-12469
C-C hydrolase enzymes MhpC and BphD catalyze the hydrolytic C-C cleavage of meta-ring fission intermediates on the Escherichia coli phenylpropionic acid and Burkholderia xenovorans LB400 biphenyl degradation pathways and are both members of the alpha/beta-hydrolase family containing a Ser-His-Asp catalytic triad. The catalytic mechanism of this family of enzymes is thought to proceed via a gem-diol reaction intermediate, which has not been observed directly. Site-directed single mutants of BphD in which catalytic residues His-265 and Ser-112 were replaced with Ala were found to possess 10(4)-fold reduced k(cat) values, and in each case, the C-C cleavage step was shown by pre-steady-state kinetic analysis to be rate-limiting. The processing of a 6-(13)C-labeled aryl-containing substrate by these H265A or S112A mutant BphD enzymes was monitored directly by (13)C NMR spectroscopy. A new line-broadened signal was observed at 128 ppm for each enzyme, corresponding to the proposed gem-diol reaction intermediate, over a time scale of 1-24 h. A similar signal was observed upon incubation of the (13)C-labeled substrate with an H114A MhpC mutant, which is able to accept the 6-phenyl-containing substrate, on a shorter time scale. The direct observation of a gem-diol intermediate provides further evidence that supports a general base mechanism for this family of enzymes.  相似文献   

18.
In this work, we have compared the ability of Pandoraea pnomenusa B356 and of Burkholderia xenovorans LB400 to metabolize diphenylmethane and benzophenone, two biphenyl analogs in which the phenyl rings are bonded to a single carbon. Both chemicals are of environmental concern. P. pnomenusa B356 grew well on diphenylmethane. On the basis of growth kinetics analyses, diphenylmethane and biphenyl were shown to induce the same catabolic pathway. The profile of metabolites produced during growth of strain B356 on diphenylmethane was the same as the one produced by isolated enzymes of the biphenyl catabolic pathway acting individually or in coupled reactions. The biphenyl dioxygenase oxidizes diphenylmethane to 3-benzylcyclohexa-3,5-diene-1,2-diol very efficiently, and ultimately this metabolite is transformed to phenylacetic acid, which is further metabolized by a lower pathway. Strain B356 was also able to cometabolize benzophenone through its biphenyl pathway, although in this case, this substrate was unable to induce the biphenyl catabolic pathway and the degradation was incomplete, with accumulation of 2-hydroxy-6,7-dioxo-7-phenylheptanoic acid. Unlike strain B356, B. xenovorans LB400 did not grow on diphenylmethane. Its biphenyl pathway enzymes metabolized diphenylmethane, but they poorly metabolize benzophenone. The fact that the biphenyl catabolic pathway of strain B356 metabolized diphenylmethane and benzophenone more efficiently than that of strain LB400 brings us to postulate that in strain B356, this pathway evolved divergently to serve other functions not related to biphenyl degradation.  相似文献   

19.
Thirty-five strains of soil bacteria were grown with biphenyl (BP) and tested for their capacity to cooxidize dibenzofuran (DBF). During metabolism of DBF, the culture medium of 17 strains changed from colorless to orange, indicating a meta-cleavage pathway of DBF degradation. The ring cleavage product of these isolates was shown to be 2-hydroxy-4-(3'-oxo-3' H-benzofuran-2'-yliden)but-2-enoic acid (HOBB). The strain SBUG 271, studied in detail and identified as Rhodococcus erythropolis, degraded DBF via 1,2-dihydroxydibenzofuran. The ensuing meta-cleavage yielded HOBB and salicylic acid. In addition, the four monohydroxylated monomers of DBF and two metabolites, which were not further characterized, were detected. Thus, our results demonstrate that the metabolic mechanism involves lateral dioxygenation of DBF followed by meta-cleavage and occurs in Gram-negative as well as in Gram-positive BP-degrading bacteria.  相似文献   

20.
Pseudomonas sp. strain HBP1 Prp grew on 2-isopropylphenol as the sole carbon and energy source with a maximal specific growth rate of 0.14 h-1 and transient accumulation of isobutyric acid. Oxygen uptake experiments with resting cells and enzyme assays with crude-cell extracts showed that 2-isopropylphenol was catabolized via a broad-spectrum meta cleavage pathway. These findings were confirmed by experiments with partially purified enzymes. Identification of 3-isopropylcatechol and 2-hydroxy-6-oxo-7-methylocta-2,4-dienoic acid as the products of the initial monooxygenase reaction and the subsequent extradiol ring cleavage dioxygenase reaction, respectively, was based on gas chromatography-mass spectrometry analysis of the corresponding trimethylsilyl derivatives. The meta cleavage product hydrolase hydrolyzed 2-hydroxy-6-oxo-7-methylocta-2,4-dienoic acid (meta cleavage product of 2-isopropylphenol) to isobutyric acid and 2-hydroxypent-2,4-dienoic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号