首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pathogenic Klebsiella pneumoniae, resistant to beta-lactam and quinolone drugs, is widely recognized as important bacteria causing array of diseases. The resistance property is obtained by acquisition of plasmid encoded blaTEM, blaSHV, blaCTX-M, QNRA, QNRB and QNRS genes. The aim of this study was to document the prevalence and association of these resistant genes in K. pneumoniae infecting patients in India. Approximately 97 and 76.7 % of the 73 K. pneumoniae isolates showed resistance towards beta-lactam and quinolone drugs respectively. Bla genes were detected in 74 % of K. pneumoniae isolates; with prevalence in the following order: blaTEM > blaSHV > blaCTXM. QNR genes were detected in 67 % samples. Chi-square analysis revealed significant association between presence of bla and qnr genes in our study (P value = 0.000125). Sequence analysis of some blaTEM, blaSHV, blaCTX-M and QNRB PCR products revealed presence of blaTEM1 (GenBank accession: JN193522), blaTEM116 (JN193523 and JN193524), blaSHV11, blaCTXM72 variants (JF523199) and QNRB1 (JN193526 and JN193527) in our samples.  相似文献   

2.

Background  

Wolbachia (wBm) is an obligate endosymbiotic bacterium of Brugia malayi, a parasitic filarial nematode of humans and one of the causative agents of lymphatic filariasis. There is a pressing need for new drugs against filarial parasites, such as B. malayi. As wBm is required for B. malayi development and fertility, targeting wBm is a promising approach. However, the lifecycle of neither B. malayi nor wBm can be maintained in vitro. To facilitate selection of potential drug targets we computationally ranked the wBm genome based on confidence that a particular gene is essential for the survival of the bacterium.  相似文献   

3.
The human filarial parasite Brugia malayi harbors an endosymbiotic bacterium of the genus Wolbachia. The Wolbachia represent an attractive target for the control of filarial induced disease as elimination of the bacteria affects molting, reproduction and survival of the worms. The molecular basis for the symbiotic relationship between Wolbachia and their filarial hosts has yet to be elucidated. To identify proteins involved in this process, we focused on the Wolbachia surface proteins (WSPs), which are known to be involved in bacteria-host interactions in other bacterial systems. Two WSP-like proteins (wBm0152 and wBm0432) were localized to various host tissues of the B. malayi female adult worms and are present in the excretory/secretory products of the worms. We provide evidence that both of these proteins bind specifically to B. malayi crude protein extracts and to individual filarial proteins to create functional complexes. The wBm0432 interacts with several key enzymes involved in the host glycolytic pathway, including aldolase and enolase. The wBm0152 interacts with the host cytoskeletal proteins actin and tubulin. We also show these interactions in vitro and have verified that wBm0432 and B. malayi aldolase, as well as wBm0152 and B. malayi actin, co-localize to the vacuole surrounding Wolbachia. We propose that both WSP protein complexes interact with each other via the aldolase-actin link and/or via the possible interaction between the host''s enolase and the cytoskeleton, and play a role in Wolbachia distribution during worm growth and embryogenesis.  相似文献   

4.
Complete genome DNA sequence and analysis is presented for Wolbachia, the obligate alpha-proteobacterial endosymbiont required for fertility and survival of the human filarial parasitic nematode Brugia malayi. Although, quantitatively, the genome is even more degraded than those of closely related Rickettsia species, Wolbachia has retained more intact metabolic pathways. The ability to provide riboflavin, flavin adenine dinucleotide, heme, and nucleotides is likely to be Wolbachia's principal contribution to the mutualistic relationship, whereas the host nematode likely supplies amino acids required for Wolbachia growth. Genome comparison of the Wolbachia endosymbiont of B. malayi (wBm) with the Wolbachia endosymbiont of Drosophila melanogaster (wMel) shows that they share similar metabolic trends, although their genomes show a high degree of genome shuffling. In contrast to wMel, wBm contains no prophage and has a reduced level of repeated DNA. Both Wolbachia have lost a considerable number of membrane biogenesis genes that apparently make them unable to synthesize lipid A, the usual component of proteobacterial membranes. However, differences in their peptidoglycan structures may reflect the mutualistic lifestyle of wBm in contrast to the parasitic lifestyle of wMel. The smaller genome size of wBm, relative to wMel, may reflect the loss of genes required for infecting host cells and avoiding host defense systems. Analysis of this first sequenced endosymbiont genome from a filarial nematode provides insight into endosymbiont evolution and additionally provides new potential targets for elimination of cutaneous and lymphatic human filarial disease.  相似文献   

5.
In this study, we have collected and screened a total of 268 stool samples from diarrheal patients admitted to an Infectious disease hospital in Kolkata for the presence of Cryptosporidium spp. The initial diagnosis was carried out by microscopy followed by genus specific polymerase chain reaction assays based on 70 kDa heat shock proteins (HSP70). DNA sequencing of the amplified locus has been employed for determination of genetic diversity of the local isolates. Out of 268 collected samples, 12 (4.48%) were positive for Cryptosporidium spp. Sequences analysis of 70 kDa heat shock proteins locus in 12 Cryptosporidium local isolates revealed that 2.24% and 1.86% of samples were showing 99% to 100% identity with C. parvum and C. hominis. Along with the other 2 major species one recently described globally distributed pathogenic species Cryptosporidium viatorum has been identified. The HSP70 locus sequence of the isolate showed 100% similarity with a previously described isolate of C. viatorum (Accession No. JX978274.1, JX978273.1, and JN846706.1) present in GenBank.  相似文献   

6.

Background

In Malaysia, researchers and medical practitioners are unfamiliar with Naegleria infections. Thus little is known about the existence of pathogenic Naegleria fowleri, and the resultant primary amoebic meningoencephalitis (PAM) is seldom included in the differential diagnosis of central nervous system infections. This study was conducted to detect the presence of Naegleria species in various environmental samples.

Methods/Findings

A total of 41 Naegleria-like isolates were isolated from water and dust samples. All these isolates were subjected to PCR using two primer sets designed from the ITS1-ITS2 regions. The N. fowleri species-specific primer set failed to produce the expected amplicon. The Naegleria genus-specific primers produced amplicons of 408 bp (35), 450 bp (2), 457 bp (2) or 381 bp (2) from all 41 isolates isolated from aquatic (33) and dust (8) samples. Analysis of the sequences from 10 representative isolates revealed that amplicons with fragments 408, 450 and 457 bp showed homology with non-pathogenic Naegleria species, and 381 bp showed homology with Vahlkampfia species. These results concurred with the morphological observation that all 39 isolates which exhibited flagella were Naegleria, while 2 isolates (AC7, JN034055 and AC8, JN034056) that did not exhibit flagella were Vahlkampfia species.

Conclusion

To date, pathogenic species of N. fowleri have not been isolated from Malaysia. All 39 isolates that produced amplicons (408, 450 and 457 bp) from the genus-specific primers were identified as being similar to nonpathogenic Naegleria. Amplicon 408 bp from 5 representative isolates showed 100% and 99.7% identity to Naegleria philippinensis isolate RJTM (AM167890) and is thus believed to be the most common species in our environment. Amplicons 450 bp and 457 bp were respectively believed to be from 2 new species of Naegleria, since representative isolates showed lower homology and had a longer base pair length when compared to the reference species in the Genbank, Naegleria schusteri (AJ566626) and Naegleria laresi (AJ566630), respectively.  相似文献   

7.
8.
The purpose of this table is to provide the community with a citable record of publications of ongoing genome sequencing projects that have led to a publication in the scientific literature. While our goal is to make the list complete, there is no guarantee that we may have omitted one or more publications appearing in this time frame. Readers and authors who wish to have publications added to subsequent versions of this list are invited to provide the bibliographic data for such references to the SIGS editorial office.

Phylum Crenarchaeota

Phylum Deinococcus-Thermus

Phylum Proteobacteria

Phylum Tenericutes

Phylum Firmicutes

Phylum Actinobacteria

Phylum Spirochaetes

Non-Bacterial genomes

  相似文献   

9.
Individual, naturally occurring Phlebotomus mongolensis and Phlebotomus caucasicus from Iran were screened for infections with the maternally inherited intracellular Rickettsia-like bacterium Wolbachia pipientis via targeting a major surface protein gene (wsp). The main objective of this study was to determine if W. pipientis could be detected in these species. The sandflies were screened using polymerase chain reaction to amplify a fragment of the Wolbachia surface protein gene. The obtained sequences were edited and aligned with database sequences to identify W. pipientis haplotypes. Two strains of Wolbachia were found. Strain Turk 54 (accession EU780683) is widespread and has previously been reported in Phlebotomus papatasi and other insects. Strain Turk 07 (accession KC576916) is a novel strain, found for first time in the two sister species. A-group strains of W. pipientis occur throughout much of the habitat of these sandflies. It is possible that Wolbachia is transferred via horizontal transmission. Horizontal transfer could shed light on sandfly control because Wolbachia is believed to drive a deleterious gene into sandflies that reduces their natural population density. With regard to our findings in this study, we can conclude that one species of sandfly can be infected with different Wolbachia strains and that different species of sandflies can be infected with a common strain.  相似文献   

10.
Glutathione S-transferases (GSTs) are one of the major families of detoxifying enzymes that detoxifies different chemical compounds including insecticides in different insect species. Among the GST subclasses, sigma GSTs are found to be the most abundant and conserved among different insect orders. These GSTs are found to play an important role in lipid peroxidation as well as detoxification. Cotton aphid, Aphis gossypii is the most damaging sucking pest with a wide range of hosts and vector of more than 50 plant viruses. Resistance to insecticides in A. gossypii is reported in India and in other countries. Glutathione S transferases (GSTs), an oxidative enzyme is understood to have a role in insecticide resistance and plant resistance breakdown. In relation to this, we have focused on the sigma 1 (GenBank Accession No: JN989964.1) and sigma 2 (GenBank Accession No: JN989965.1) GSTs of A. gossypii and their interaction with plant natural compounds and insecticides. Molecular screening of different insecticides (Chlorphinamidine, Mevinphos, Nitenpyrum, Piperonyl butoxide, Tetrachlorovinphos, Pyrethrins, Resmetrin, Pirimicarb and Dinotefuran) and known plant derived natural compounds (Catechin, Gossypol, Myrcene, Kaempferol, P-coumaric acid, Quercetin, Tannins, α-mangostin, Capsaicin, Cinnamic acid, Citronellal, Curcumin, Dicumarol, Ellagic acid, Eugenol, Geriniol, Isoeugenol, Juglone, Menadione, Methyl jasmonate, Morin, Myricetin, Myristicin, Piperine, Plumbagin, Tangitinin C, Thymol, Vanillin, Alpha pipene, α-terpineol Apigenin and β-Caryophyllene) with sigma 1 and sigma 2 GST protein models was completed using Maestro 9.3 (Schrodinger, USA). This exercise showed the binding of piperonyl butoxide with sigma 1 GST and tannin with sigma 2 GST for further consideration.  相似文献   

11.
Complete genome DNA sequence and analysis is presented for Wolbachia, the obligate alpha-proteobacterial endosymbiont required for fertility and survival of the human filarial parasitic nematode Brugia malayi. Although, quantitatively, the genome is even more degraded than those of closely related Rickettsia species, Wolbachia has retained more intact metabolic pathways. The ability to provide riboflavin, flavin adenine dinucleotide, heme, and nucleotides is likely to be Wolbachia's principal contribution to the mutualistic relationship, whereas the host nematode likely supplies amino acids required for Wolbachia growth. Genome comparison of the Wolbachia endosymbiont of B. malayi (wBm) with the Wolbachia endosymbiont of Drosophila melanogaster (wMel) shows that they share similar metabolic trends, although their genomes show a high degree of genome shuffling. In contrast to wMel, wBm contains no prophage and has a reduced level of repeated DNA. Both Wolbachia have lost a considerable number of membrane biogenesis genes that apparently make them unable to synthesize lipid A, the usual component of proteobacterial membranes. However, differences in their peptidoglycan structures may reflect the mutualistic lifestyle of wBm in contrast to the parasitic lifestyle of wMel. The smaller genome size of wBm, relative to wMel, may reflect the loss of genes required for infecting host cells and avoiding host defense systems. Analysis of this first sequenced endosymbiont genome from a filarial nematode provides insight into endosymbiont evolution and additionally provides new potential targets for elimination of cutaneous and lymphatic human filarial disease.  相似文献   

12.
13.
14.
The purpose of this table is to provide the community with a citable record of publications of ongoing genome sequencing projects that have led to a publication in the scientific literature. While our goal is to make the list complete, there is no guarantee that we may have omitted one or more publications appearing in this time frame. Readers and authors who wish to have publications added to subsequent versions of this list are invited to provide the bibliographic data for such references to the SIGS editorial office.

Non-Bacterial genomes

  相似文献   

15.
Human bocavirus (HBoV) is a novel parvovirus associated with respiratory tract diseases and gastrointestinal illness in adult and pediatric patients throughout the world. To investigate the epidemiological and genetic variation of HBoV in Guangzhou, South China, we screened 3460 throat swab samples from 1686 children and 1774 adults with acute respiratory infection symptoms for HBoV between March 2010 and February 2011, and analyzed the complete genome sequence of 2 HBoV strains. Specimens were screened for HBoV by real-time PCR and other 6 common respiratory viruses by RT-PCR or PCR. HBoV was detected in 58 (1.68%) out of 3460 samples, mostly from pediatric patients (52/58) and inpatient children (47/58). Six adult patients were detected as HBoV positive and 5 were emergency cases. Of these HBoV positive cases, 19 (32.76%) had co-pathogens including influenza virus (n = 5), RSV (n = 5), parainfluenza (n = 4), adenovirus (n = 1), coronavirus (n = 7). The complete genome sequences of 2 HBoVs strains (Genbank no. JN794565 and JN794566) were analyzed. Phylogenetic analysis showed that the 2 HBoV strains were HBoV1, and were most genetically close to ST2 (GenBank accession number DQ0000496). Recombination analysis confirmed that HBoV strain GZ9081 was an intra–genotype recombinant strain among HBoV1 variants.  相似文献   

16.
The purpose of this table is to provide the community with a citable record of publications of ongoing genome sequencing projects that have led to a publication in the scientific literature. While our goal is to make the list complete, there is no guarantee that we may have omitted one or more publications appearing in this time frame. Readers and authors who wish to have publications added to subsequent versions of this list are invited to provide the bibliographic data for such references to the SIGS editorial office.

Phylum Euryarchaeota

Phylum Crenarchaeota

Phylum Deinococcus-Thermus

Phylum Proteobacteria

Phylum Tenericutes

Phylum Firmicutes

Phylum Actinobacteria

Non-Bacterial genomes

  相似文献   

17.

Background

Highly charged compounds typically suffer from low membrane permeability and thus are generally regarded as sub-optimal drug candidates. Nonetheless, the highly charged drug fosmidomycin and its more active methyl-derivative FR900098 have proven parasiticidal activity against erythrocytic stages of the malaria parasite Plasmodium falciparum. Both compounds target the isoprenoid biosynthesis pathway present in bacteria and plastid-bearing organisms, like apicomplexan parasites. Surprisingly, the compounds are inactive against a range of apicomplexans replicating in nucleated cells, including Toxoplasma gondii.

Methodology/Principal Findings

Since non-infected erythrocytes are impermeable for FR90098, we hypothesized that these drugs are taken up only by erythrocytes infected with Plasmodium. We provide evidence that radiolabeled FR900098 accumulates in theses cells as a consequence of parasite-induced new properties of the host cell, which coincide with an increased permeability of the erythrocyte membrane. Babesia divergens, a related parasite that also infects human erythrocytes and is also known to induce an increase in membrane permeability, displays a similar susceptibility and uptake behavior with regard to the drug. In contrast, Toxoplasma gondii-infected cells do apparently not take up the compounds, and the drugs are inactive against the liver stages of Plasmodium berghei, a mouse malaria parasite.

Conclusions/Significance

Our findings provide an explanation for the observed differences in activity of fosmidomycin and FR900098 against different Apicomplexa. These results have important implications for future screens aimed at finding new and safe molecular entities active against P. falciparum and related parasites. Our data provide further evidence that parasite-induced new permeability pathways may be exploited as routes for drug delivery.  相似文献   

18.
The purpose of this table is to provide the community with a citable record of publications of ongoing genome sequencing projects that have led to a publication in the scientific literature. While our goal is to make the list complete, there is no guarantee that we may have omitted one or more publications appearing in this time frame. Readers and authors who wish to have publications added to this subsequent versions of this list are invited to provide the bibliometric data for such references to the SIGS editorial office.

Non-Bacterial genomes

  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号