首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Occupancy-induced down-regulation of cell surface epidermal growth factor (EGF) receptors attenuates signal transduction. To define mechanisms through which down-regulation of this class of growth factor receptors occurs, we have investigated the relative roles of ligand-induced internalization and recycling in this process. Occupied, kinase-active EGF receptors were internalized through a high affinity, saturable endocytic system at rates up to 10-fold faster than empty receptors. In contrast, full length EGF receptors lacking tyrosine kinase activity underwent internalization at a rate independent of occupancy. This "kinase-independent" internalization rate appeared to reflect constitutive receptor internalization since it was similar to the internalization rate of both receptors lacking a cytoplasmic domain and of antibodies bound to empty receptors. EGF internalized by either kinase-active or kinase-inactive receptors was efficiently recycled and was found within endosomes containing recycling transferrin receptors. However, targeting of internalized receptors to lysosomes did not require receptor kinase activity. All receptors that displayed ligand-induced internalization also underwent down-regulation, indicating that the proximal cause of down-regulation is occupancy-induced endocytosis. Tyrosine kinase activity greatly enhances this process by stabilizing receptor association with the endocytic apparatus.  相似文献   

2.
Regulated migration of epidermal growth factor receptor from caveolae.   总被引:22,自引:0,他引:22  
In quiescent fibroblasts, epidermal growth factor (EGF) receptors (EGFR) are initially concentrated in caveolae but rapidly move out of this membrane domain in response to EGF. To better understand the dynamic localization of EGFR to caveolae, we have studied the behavior of wild-type and mutant receptors expressed in cells lacking endogenous EGFR. All of the receptors we examined, including those missing the first 274 amino acids or most of the cytoplasmic tail, were constitutively concentrated in caveolae. By contrast, migration from caveolae required EGF binding, an active receptor kinase domain, and at least one of the five tyrosine residues present in the regulatory domain of the receptor. Movement appears to be modulated by Src kinase, is blocked by activators of protein kinase C, and occurs independently of internalization by clathrin-coated pits. Two mutant receptors previously shown to induce an oncogenic phenotype lack the ability to move from caveolae in response to EGF, suggesting that a prolonged residence in this domain may contribute to abnormal cell behavior.  相似文献   

3.
To assess the functional significance of phosphorylation of the epidermal growth factor (EGF) receptor at Thr654, we compared the effects of 12-O-tetradecanoyl-13-acetate (TPA) on ligand-induced internalization and down-regulation between wild-type and mutant receptors that contain an alanine substitution at position 654. Activation of protein kinase C with TPA blocked EGF-induced internalization and down-regulation of Thr654 receptors and inhibited in vivo tyrosine kinase activity by 80%. TPA did not inhibit transferrin receptor internalization or constitutive EGF receptor internalization, suggesting that protein kinase C activation inhibits only the ligand-induced process. Inhibition by TPA of induced internalization, down-regulation, and kinase activity required threonine at position 654 since full-length Ala654 EGF receptors were significantly resistant to TPA inhibition of these ligand-induced activities. However, C'-terminal truncation further enhanced this resistance to TPA inhibition. The EGF-dependent internalization of kinase-inactive receptors truncated at residue 1022 was also impaired by TPA in Thr654 receptors, but not in Ala654 receptors, indicating that phosphorylation at Thr654 also interferes with tyrosine kinase-independent receptor activities. We conclude that the dominant regulatory effect of protein kinase C on the EGF receptor is mediated through phosphorylation at Thr654 which effectively inactivates the receptor. The submembrane region of the EGF receptor appears to regulate transmission of conformational information from the extracellular ligand-binding site to the cytoplasmic kinase and regulatory domains.  相似文献   

4.
Regulation of EGF receptor expression and function   总被引:5,自引:0,他引:5  
From the results of these studies of the activities of the various EGF receptor mutants we were able to disassociate the ability of EGF to increase intracellular calcium from its ability to induce genes and to cause morphological transformation and growth. These results lead us to the following concept. The kinase domain has a C-terminal border at about residue 957. The remainder of the C-terminus is regulatory. The 164 amino acids from residue 1022 to 1186 constitute an inhibitory region for the kinase. It contributes to ligand-induced internalization because this is reduced in a mutant receptor truncated to residue 1052. Proximally within the C-terminus kinase inhibitory domain is a domain that is required for endocytosis and for raising intracellular calcium that we call the calcium internalization (CAIN) domain. In summary, we have found that the kinase activity of the EGF receptor is required for its function even when all of the self-phosphorylation sites have been removed. The EGF receptor has several distinct cytoplasmic domains that are important for its activity to regulate gene expression, DNA synthesis, and the intracellular calcium level. Biological signaling occurs from the cell surface via essential protein tyrosine kinase activity with ligand-induced internalization serving to abbrogate the biological signal.  相似文献   

5.
Early events in ligand-induced endocytosis of the EGF receptor have been examined. A mutant EGF receptor devoid of intrinsic protein-tyrosine kinase activity bound EGF and dimerized normally yet failed to undergo ligand-induced internalization. Immunofluorescence microscopy revealed that receptors lacking kinase activity failed to undergo the ligand-induced internalization characteristic of receptors with kinase activity. Monoclonal anti-phosphotyrosine antibodies effectively inhibited phosphorylation of exogenous substrates in vitro and, when microinjected into cells containing active EGF receptors, prevented internalization of the receptor when cells were subsequently challenged with EGF. These results point to a crucial role for the kinase activity of the EGF receptor in the process of ligand-induced endocytosis of receptors, and imply that a phosphorylated substrate(s) is required.  相似文献   

6.
Activated epidermal growth factor receptors (EGFRs) recruit intracellular proteins that mediate receptor signaling and endocytic trafficking. Rin1, a multifunctional protein, has been shown to regulate EGFR internalization (1). Here we show that EGF stimulation induces a specific, rapid, and transient membrane recruitment of Rin1 and that recruitment is dependent on the Src homology 2 (SH2) domain of Rin1. Immunoprecipitation of EGFR is accompanied by co-immunoprecipitation of Rin1 in a time- and ligand-dependent manner. Association of Rin1 and specifically the SH2 domain of Rin1 with the EGFR was dependent on tyrosine phosphorylation of the intracellular domain of the EGFR. The recruitment of Rin1, observed by light microscopy, indicated that although initially cytosolic, Rin1 was recruited to both plasma membrane and endosomes following EGF addition. Moreover, the expression of the SH2 domain of Rin1 substantially impaired the internalization of EGF without affecting internalization of transferrin. Finally, we found that Rin1 co-immunoprecipitated with a number of tyrosine kinase receptors but not with cargo endocytic receptors. These results indicate that Rin1 provides a link via its SH2 domain between activated tyrosine kinase receptors and the endocytic pathway through the recruitment and activation of Rab5a.  相似文献   

7.
Phosphorylation of the Ca2+ and membrane-binding protein annexin 1 by epidermal growth factor (EGF) receptor tyrosine kinase has been thought to be involved in regulation of the EGF receptor trafficking. To elucidate the interaction of annexin 1 during EGF receptor internalization, we followed the distribution of annexin 1-GFP fusion proteins at sites of internalizing EGF receptors. The observed association of annexin 1 with EGF receptors was confirmed by immunoprecipitation. We found that this interaction was independent of a functional phosphorylation site in the annexin 1 N-terminal domain but mediated through the Ca2+ binding core domain.  相似文献   

8.
Phosphorylation of the RAF-1 protooncogene product and activation of its associated serine/threonine kinase are common features of the response of cells to peptide growth factors. We have used wild-type and mutant epidermal growth factor (EGF) receptors to investigate mechanisms of RAF-1 phosphorylation. In vivo EGF treatment rapidly stimulated phosphorylation of RAF-1 exclusively on serine residues. Stimulation of RAF-1 phosphorylation occurred at 37 degrees C but not at 4 degrees C and persisted after dissociation of EGF from its receptor. EGF-induced RAF-1 serine phosphorylation required the intrinsic tyrosine kinase activity of the EGF receptor but was independent of EGF receptor self-phosphorylation and of ligand-induced receptor internalization. Down-regulation of protein kinase C did not affect the EGF-induced increase in RAF-1 phosphorylation. These data suggest that the activated tyrosine kinase activity of the EGF receptor enhances serine phosphorylation of RAF-1 via an intermediary molecule(s).  相似文献   

9.
The feline sarcoma virus oncogene v-fms has significantly contributed to the dissection of peptide growth factor action since it encodes the transmembrane tyrosine kinase gp140v-fms, a transforming version of colony-stimulating factor 1 receptor, a member of the growth factor receptor tyrosine kinase family. In this study, the functional significance of structural differences between distinct tyrosine kinase types, in particular between cellular receptors and viral transforming proteins of distinct structural types, has been further investigated, and their functional compatibility has been addressed. For this purpose, major functional domains of three structurally distinct tyrosine kinases were combined into two chimeric receptors. The cytoplasmic gp140v-fms kinase domain and the kinase domain of Rous sarcoma virus pp60v-src were each fused to the extracellular ligand-binding domain of the epidermal growth factor (EGF) receptor to create chimeras EFR and ESR, respectively, which were studied upon stable expression in NIH 3T3 fibroblasts. Both chimeras were faithfully synthesized and routed to the cell surface, where they displayed EGF-specific, low-affinity ligand-binding domains in contrast to the high- and low-affinity EGF-binding sites of normal EGF receptors. While the EFR kinase was EGF controlled for autophosphorylation and substrate phosphorylation in vitro, in vivo, and in digitonin-treated cells, the ESR kinase was not responsive to EGF. While ESR appeared to recycle to the cell surface upon endocytosis, EGF induced efficient EFR internalization and degradation, and phorbol esters stimulated protein kinase C-mediated downmodulation of EFR. Despite its ligand-inducible kinase activity, EFR was partly EGF independent in mediating mitogenesis and cell transformation, while ESR appeared biologically inactive.  相似文献   

10.
EGF-receptor (EGF-R) tyrosine kinase is required for the down- regulation of activated EGF-R. However, controversy exists as to whether ligand-induced activation of the EGF-R tyrosine kinase is required for internalization or for lysosomal targeting. We have addressed this issue using a cell-free assay that selectively measures the recruitment of EGF-R into coated pits. Here we show that EGF bound to wild-type receptors is efficiently sequestered in coated pits. In contrast, sequestration of kinase-deficient receptors occurs inefficiently and at the same basal rate of endocytosis of unoccupied receptors or receptors lacking any cytoplasmic domain. Sequestration of deletion mutants of the EGF-R that lack autophosphorylation sites also requires an active tyrosine kinase. This suggests that a tyrosine kinase substrate(s) other than the EGF-R itself, is required for its efficient ligand-induced recruitment into coated pits. Addition of a soluble EGF-R tyrosine kinase fully and specifically restores the recruitment of kinase-deficient EGF-R into coated pits providing a powerful functional assay for identification of these substrate(s).  相似文献   

11.
G protein-coupled receptor (GPCR) kinases (GRKs) are key regulators of GPCR function. Here we demonstrate that activation of epidermal growth factor receptor (EGFR), a member of receptor tyrosine kinase family, stimulates GRK2 activity and transregulates the function of G protein-coupled opioid receptors. Our data showed that EGF treatment promoted DOR internalization induced by DOR agonist and this required the intactness of GRK2-phosphorylation sites in DOR. EGF stimulation induced the association of GRK2 with the activated EGFR and the translocation of GRK2 to the plasma membrane. After EGF treatment, GRK2 was phosphorylated at tyrosyl residues. Mutational analysis indicated that EGFR-mediated phosphorylation occurred at GRK2 N-terminal tyrosyl residues previously shown as c-Src phosphorylation sites. However, c-Src activity was not required for EGFR-mediated phosphorylation of GRK2. In vitro assays indicated that GRK2 was a direct interactor and a substrate of EGFR. EGF treatment remarkably elevated DOR phosphorylation in cells expressing the wild-type GRK2 in an EGFR tyrosine kinase activity-dependent manner, whereas EGF-stimulated DOR phosphorylation was greatly decreased in cells expressing mutant GRK2 lacking EGFR tyrosine kinase sites. We further showed that EGF also stimulated internalization of mu-opioid receptor, and this effect was inhibited by GRK2 siRNA. These data indicate that EGF transregulates opioid receptors through EGFR-mediated tyrosyl phosphorylation and activation of GRK2 and propose GRK2 as a mediator of cross-talk from RTK to GPCR signaling pathway.  相似文献   

12.
Signals that can mediate ligand-induced receptor internalization and calcium regulation are present in a 48-amino acid "calcium-internalization" domain in the C' terminus of the epidermal growth factor (EGF) receptor. The basis of calcium and internalization regulation signalled by this 48-amino acid sequence was analyzed using deletion and substitution mutant receptors. Cells expressing truncated receptors containing either the NH2- or COOH-terminal portion of the 48-residue domain displayed high affinity EGF-dependent endocytosis and receptor down-regulation. These endocytosis-competent EGF receptor mutants that lacked any autophosphorylation site were unable to increase the concentration of intracellular calcium. To investigate the role of self-phosphorylation in EGF-induced calcium mobilization, phenylalanine was substituted for the single autophosphorylated tyrosine residue in this region of an internalization-competent truncated receptor. The receptor-mediated calcium response was abolished, while ligand-dependent receptor internalization was unimpaired. These results demonstrate that EGF-dependent receptor endocytosis and calcium mobilization are separate events. Tyrosine self-phosphorylation is required for increased [Ca2+]i, while structural features distinct from autophosphorylation are required for receptor internalization.  相似文献   

13.
Binding of epidermal growth factor (EGF) to its receptor results in a cascade of events that culminate in cell division. The receptor is present on the cell surface in two forms of high and low affinity binding for EGF. EGF binding activates the receptor's intracellular tyrosine kinase activity and subsequently causes the receptor to be rapidly internalized into the cell via clathrin-coated pits. We have cloned the EGF receptor cDNA into a retroviral expression vector and made mutations in vitro to investigate the function of different receptor domains. Deletion of cytoplasmic sequences abolishes high but not low affinity sites as well as impairing the ability of the protein to internalize into cells. Thus, cytoplasmic sequences must be involved in the regulation of high affinity sites and are required for EGF-induced receptor internalization. A four amino acid insertion mutation at residue 708 abolishes the protein-tyrosine kinase activity of the immunoprecipitated receptor. However, this receptor mutant exhibits both the high and low affinity states, internalizes efficiently and is able to cause cells to undergo DNA synthesis in response to EGF. Another four amino acid insertion mutation (residue 888) abolishes protein-tyrosine kinase activity, high affinity binding, internalization and mitogenic responsiveness. Finally, a chimaeric receptor composed of the extracellular EGF binding domain and the cytoplasmic v-abl kinase region transforms Rat-I cells. This chimaeric receptor possesses intrinsic protein tyrosine kinase activity which cannot be regulated by EGF. Moreover, EGF fails to induce the internalization of the chimaeric receptor.  相似文献   

14.
Regulation of transmembrane signaling by receptor phosphorylation   总被引:65,自引:0,他引:65  
At least two major effects of receptor phosphorylation have been identified--regulation of receptor function, and regulation of receptor distribution. In many cases where phosphorylation directly alters the functions of receptors, this appears to be in a negative direction. Such decreases in receptor activity may reflect reduced ability to interact with biochemical effectors (e.g., the beta-adrenergic receptor, rhodopsin), reduced affinity for binding agonist ligands (EGF,IGF-I, insulin receptors) or reduced enzymatic activity (e.g., tyrosine kinase activity of the insulin or EGF receptor). In all instances, these negative modulations are associated with phosphorylation of serine and/or threonine residues of the receptor proteins. In contrast, the tyrosine kinase receptors also appear to be susceptible to positive modulation by phosphorylation. With these receptors, autophosphorylation of tyrosine residues may lead to enhanced protein-tyrosine kinase activity of the receptors and increased receptor function. In addition, the subcellular distribution of a receptor may be regulated by its phosphorylation status (e.g., the beta-adrenergic receptor, receptors for insulin, EGF, IGF-II, and transferrin). The emerging paradigm is that receptor phosphorylation may in some way promote receptor internalization into sequestered compartments where dephosphorylation occurs. The molecular and cellular mechanisms involved in translating changes in receptor phosphorylation into changes in receptor distribution remain to be elucidated. Moreover, the biological role of receptor internalization may be quite varied. Thus, in the case of the beta-adrenergic receptor, it may serve primarily as a mechanism for bringing the phosphorylated receptors into contact with intracellular phosphatases that dephosphorylate and resensitize it. By contrast, for the transferrin receptor and other receptors involved in receptor-mediated endocytosis, the internalization presumably functions to carry some specific ligand or metabolite into the cell. The role of phosphorylation in regulating receptor function dramatically extends the range of regulatory control of this important covalent modification.  相似文献   

15.
Desensitization and internalization of G-protein-coupled receptors can reflect receptor phosphorylation-dependent binding of beta-arrestin, which prevents G-protein activation and targets receptors for internalization via clathrin-coated vesicles. These can be pinched off by a dynamin collar, and proteins controlling receptor internalization can also mediate mitogen-activated protein kinase signaling. Gonadotropin-releasing hormone (GnRH) stimulates internalization of its receptors via clathrin-coated vesicles. Mammalian GnRH receptors (GnRH-Rs) are unique in that they lack C-terminal tails and do not rapidly desensitize, whereas non-mammalian GnRH-R have C-terminal tails and, where investigated, do rapidly desensitize and internalize. Using recombinant adenovirus expressing human and Xenopus GnRH-Rs we have explored the relationship between receptor internalization and mitogen-activated protein kinase signaling in HeLa cells with regulated tetracycline-controlled expression of wild-type or a dominant negative mutant (K44A) of dynamin. These receptors were phospholipase C-coupled and had appropriate ligand affinity and specificity. K44A dynamin expression did not alter human GnRH-R internalization but dramatically reduced internalization of Xenopus GnRH-R (and epidermal growth factor (EGF) receptor). Blockade of clathrin-mediated internalization (sucrose) abolished internalization of all three receptors. Both GnRH-Rs also mediated phosphorylation of ERK 2 and for both receptors, this was inhibited by K44A dynamin. The same was true for EGF- and protein kinase C-mediated ERK 2 phosphorylation. ERK 2 phosphorylation was also inhibited by a protein kinase C inhibitor but not affected by an EGF receptor tyrosine kinase inhibitor. We conclude that a) desensitizing and non-desensitizing GnRH-Rs are targeted for clathrin-coated vesicle-mediated internalization by functionally distinct mechanisms, b) GnRH-R signaling to ERK 2 is dynamin-dependent and c) this does not reflect a dependence on dynamin-dependent GnRH-R internalization.  相似文献   

16.
The current activation model of the EGF receptor (EGFR) predicts that binding of EGF results in dimerization and oligomerization of the EGFR, leading to the allosteric activation of the intracellular tyrosine kinase. Little is known about the regulatory mechanism of receptor oligomerization. In this study, we have employed FRET between identical fluorophores (homo-FRET) to monitor the dimerization and oligomerization state of the EGFR before and after receptor activation. Our data show that, in the absence of ligand, ~40% of the EGFR molecules were present as inactive dimers or predimers. The monomer/predimer ratio was not affected by deletion of the intracellular domain. Ligand binding induced the formation of receptor oligomers, which were found in both the plasma membrane and intracellular structures. Ligand-induced oligomerization required tyrosine kinase activity and nine different tyrosine kinase substrate residues. This indicates that the binding of signaling molecules to activated EGFRs results in EGFR oligomerization. Induction of EGFR predimers or pre-oligomers using the EGFR fused to the FK506-binding protein did not affect signaling but was found to enhance EGF-induced receptor internalization. Our data show that EGFR oligomerization is the result of EGFR signaling and enhances EGFR internalization.  相似文献   

17.
We have developed a quantitative method to evaluate the interaction between cell surface receptors and the endocytic apparatus. This method exploits occupancy-dependent changes in internalization rates that occur in cells expressing high numbers of receptors. We found that constitutive internalization of the transferrin receptor behaves as a simple, first order process that is unaltered by ligand. Internalization of the epidermal growth factor (EGF) receptor, however, behaves as a saturable, second order process that is induced by receptor occupancy. Internalization of EGF receptors occurs through at least two distinct pathways: a low capacity pathway that has a relatively high affinity for occupied receptors, and a low affinity pathway that has a much higher capacity. The high affinity pathway was observed in all cells having receptors with intrinsic tyrosine kinase activity. Mutant EGF receptors lacking kinase activity could not utilize the high affinity pathway and were internalized only through the low affinity one. Mutated receptors with decreased affinity for kinase substrates were also internalized at decreased rates through the high affinity, inducible pathway. In the case of vitellogenin receptors in Xenopus oocytes, occupied receptors competed more efficiently for internalization than empty ones. Insulin increased the endocytic capacity of oocytes for vitellogenin receptors. Similarly, serum increased the capacity of the inducible pathway for EGF receptors in mammalian cells. These data are consistent with a model of internalization in which occupied receptors bind to specific cellular components that mediate rapid internalization. Ligand-induced internalization results from an increase in the affinity of occupied receptors for the endocytic apparatus. Hormones can also indirectly regulate endocytosis by increasing the number of coated pits or their rate of internalization. The ability to dissect receptor-specific effects from cell-specific ones should be very useful in investigating the molecular mechanisms of receptor mediated endocytosis.  相似文献   

18.
This report describes analysis of factors which regulate the binding of EGF to EGF receptor, receptor internalization, and receptor recycling. Three different methods were used to inhibit high-affinity EGF binding as measured at equilibrium: treatment of cells with an active phorbol ester (PMA), binding of a mAb directed against the EGF receptor (mAb108), and truncation of most of the cytoplasmic domain of the receptor. These treatments reduced the rate at which low concentrations of EGF bound to cells, but did not affect the rate of EGF dissociation. We conclude that high-affinity EGF binding on living cells results from a difference in the apparent on rate of EGF binding. We then used these conditions and cell lines to test for the rate of EGF internalization at different concentrations of EGF. We demonstrate that internalization of the EGF receptor is stimulated roughly 50-fold at saturating concentrations of EGF, but is stimulated an additional two- to threefold at low concentrations (less than 1 nM). Four treatments reduce the rate of internalization of low concentrations of EGF to the rate seen at saturating EGF concentrations. Phorbol ester treatment and mAb108 binding to "wild type" receptor reduce this rate (and reduce high-affinity binding). Point mutation at Lys721 (kinase negative EGF receptor) and point mutation at Thr654 (removing a major site of protein kinase C phosphorylation) reduce the internalization rate, without affecting high-affinity binding. We suggest that while EGF stimulates endocytosis for all receptors, high-affinity receptors bind and are internalized more quickly than low-affinity receptors. Tyrosine kinase activity and the Thr654 region appear necessary for this response.  相似文献   

19.
Kim J  Ahn S  Guo R  Daaka Y 《Biochemistry》2003,42(10):2887-2894
The epidermal growth factor (EGF) receptor (EGFR) plays a central role in regulating cell proliferation, differentiation, and migration. Cellular responses to EGF are dependent upon the amount of EGFR present on the cell surface. Stimulation with EGF induces sequestration of the receptor from the plasma membrane and its subsequent downregulation. Recently, internalization of the EGFR was also shown to be required for mitogenic signaling via the activation of MAP kinases. Therefore, mechanisms regulating internalization of the EGFR represent an important facet for the control of cellular response. Here, we demonstrate that EGFR is removed from the cell surface not only following stimulation with EGF, but also in response to stimulation of G protein-coupled lysophosphatidic acid (LPA) and beta2 adrenergic (beta2AR) receptors. Using a FLAG epitope-tagged EGFR to quantitate receptor internalization, we show that incubation with EGF, LPA, or isoproterenol (ISO) causes the time-dependent loss of cell surface EGFR. Internalization of EGFR by these ligands involves the tyrosine kinase activity of the receptor itself and c-Src, as well as the GTPase activity of dynamin. Unexpectedly, we find that internalization of the EGFR by EGF is dependent upon Gbetagamma and beta-arrestin proteins; expression of minigenes encoding the carboxyl terminii of the G protein-coupled receptor kinase 2, or beta-arrestin1, attenuates LPA-, ISO-, and EGF-mediated internalization of EGFR. Thus, G protein-coupled receptors can control the function of the EGFR by regulating its endocytosis.  相似文献   

20.
A study was made of the functional state of the epidermal growth factor (EGF)--receptor complexes in A-431 cells. Conditions of surface bound EGF extraction were selected which allow to consider the intracellular EGF--receptor complexes only. A procedure of high efficient and specific immunoprecipitation of tyrosyl-phosphorylated EGF receptors was developed. It is shown that the dissociation of EGF--receptor complexes leads to receptor dephosphorylation due to a rapid and reversible inactivation of EGF receptor tyrosine kinase. The internalized receptor is found to be tyrosyl-phosphorylated and to retain tyrosine kinase for at least an hour after the internalization. The dynamics of dissociation, degradation and dephosphorylation of EGF--receptor complexes has been estimated. The rates of these processes prove to be almost negligible for the first 2.5 hours after internalization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号