首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
2.
Mutations at the Werner helicase locus (WRN) are responsible for the Werner syndrome (WS). WS patients prematurely develop an aged appearance and various age-related disorders. We have generated transgenic mice expressing human WRN with a putative dominant-negative mutation (K577M-WRN). Primary tail fibroblast cultures from K577M-WRN mice showed three characteristics of WS cells: hypersensitivity to 4-nitroquinoline-1-oxide (4NQO), reduced replicative potential, and reduced expression of the endogenous WRN protein. These data suggest that K577M-WRN mice may provide a novel mouse model for the WS.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
Bai Y  Murnane JP 《Human genetics》2003,113(4):337-347
Werner Syndrome (WS) is an autosomal recessive disease characterized by premature aging and chromosome instability. The protein involved in WS, WRN, is a RecQ-type helicase that also has exonuclease activity. WRN has been demonstrated to bind to a variety of other proteins, including RPA, DNA-PKcs, and TRF2, suggesting that WRN is involved in DNA replication, repair, recombination, and telomere maintenance. In culture, WS cells show premature senescence, which can be overcome by transfection with an expression vector containing the gene for the catalytic subunit of telomerase. However, telomerase expression does not eliminate chromosome instability in WS cells, which led to the proposal that telomere loss is not the cause of the high rate of chromosome rearrangements in WS cells. In the present study, we have investigated how a WRN protein containing a dominant-negative mutation (K577M-WRN) influences the stability of telomeres in a human tumor cell line expressing telomerase. The results demonstrate an increased rate of telomere loss and chromosome fusion in cells expressing K577M-WRN. Expression of K577M-WRN results in reduced levels of telomerase activity, however, the absence of detectable changes in average telomere length demonstrates that WRN-associated telomere loss results from stochastic events involving complete telomere loss or loss of telomere capping function. Thus, telomere loss can contribute to chromosome instability in cells deficient in WRN regardless of the expression of telomerase activity.  相似文献   

11.
12.
13.
14.
Werner syndrome (WS) is a rare autosomal recessive disorder caused by mutations in the WRN gene. WRN helicase, a member of the RecQ helicase family, is involved in various DNA metabolic pathways including DNA replication, recombination, DNA repair and telomere maintenance. In this study, we have characterized the G574R missense mutation, which was recently identified in a WS patient. Our biochemical experiments with purified mutant recombinant WRN protein showed that the G574R mutation inhibits ATP binding, and thereby leads to significant decrease in helicase activity. Exonuclease activity of the mutant protein was not significantly affected, whereas its single strand DNA annealing activity was higher than that of wild type. Deficiency in the helicase activity of the mutant may cause defects in replication and other DNA metabolic processes, which in turn could be responsible for the Werner syndrome phenotype in the patient. In contrast to the usual appearance of WS, the G574R patient has normal stature. Thus the short stature normally associated with WS may not be due to helicase deficiency.  相似文献   

15.
16.
Activation of the human immunodeficiency virus type-1 (HIV-1) promoter in infected cells requires the sequential recruitment of several cellular factors to facilitate the formation of a processive elongation complex. The nucleosomal reorganization of the HIV-1 long terminal repeat (LTR) observed upon Tat stimulation suggests that chromatin-remodeling complexes could play a role during this process. Here, we reported that Tat interacts directly with Brm, a DNA-dependent ATPase subunit of the SWI/SNF chromatin-remodeling complex, to activate the HIV-1 LTR. Inhibition of Brm via small interfering RNAs impaired Tat-mediated transactivation of an integrated HIV-1 promoter. Furthermore, Brm is recruited in vivo to the HIV-1 LTR in a Tat-dependent manner. Interestingly, we found that Tat/Brm interaction is regulated by Tat lysine 50 acetylation. These data show the requirement of Tat-mediated recruitment of SWI/SNF chromatin-remodeling complex to HIV-1 promoter in the activation of the LTR.  相似文献   

17.
Werner syndrome (WS) is an autosomal recessive genetic disorder that is manifested by genetic instability and premature onset of age-related diseases, including atherosclerosis and cancer. The gene that is mutated in WS cells (WRN) has been identified recently. Characterizations of the WRN gene product indicate that WRN encodes both a 3'-->5' DNA helicase, belonging to the Escherichiacoli RecQ helicase family, and a 3'-->5' DNA exonuclease. Studies to define the molecular mechanism of WRN-DNA transactions are currently underway in many laboratories. Preliminary results indicate that WRN functions as a key factor in resolving aberrant DNA structures that arise from DNA metabolic processes such as replication, recombination and/or repair, to preserve the genetic integrity in cells.  相似文献   

18.
Werner syndrome (WS) is characterized by features of premature aging and is caused by loss of the RecQ helicase protein WRN. WS fibroblasts display defects associated with telomere dysfunction, including accelerated telomere erosion and premature senescence. In yeast, RecQ helicases act in an alternative pathway for telomere lengthening (ALT) via homologous recombination. We found that WRN associates with telomeres when dissociation of telomeric D loops is likely during replication and recombination. In human ALT cells, WRN associates directly with telomeric DNA. The majority of TRF1/PCNA colocalizing foci contained WRN in live S phase ALT cells but not in telomerase-positive HeLa cells. Biochemically, the WRN helicase and 3' to 5' exonuclease act simultaneously and cooperate to release the 3' invading tail from a telomeric D loop in vitro. The telomere binding proteins TRF1 and TRF2 limit digestion by WRN. We propose roles for WRN in dissociating telomeric structures in telomerase-deficient cells.  相似文献   

19.
20.
Tat是人免疫缺陷病毒(HIV)基因组编码的反式激活因子,突变分析表明它含有几个重要的功能域。为寻找控制HIV复制的途径,构建了以HIV-1LTR(-158-+80)为启动子的Tat cDNA全长反义表达质粒pAS-Tat,并用已经构建的HIV LTR-158到+80为启动子,具有不同突变点的突变Tat基因表达质粒,以荧光酶基因为报告基因,共转染Jurkat细胞,结果发现无论是反义Tat表达质粒还  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号