首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L-Lactate oxidase (LOX) from Aerococcus viridans is a member of the alpha-hydroxyacid-oxidase flavoenzyme family. We have determined the three-dimensional structure of LOX and revealed the mechanism of substrate recognition. The LOX monomer structure has a typical alpha(8)/beta(8) motif commonly found in other flavin family proteins. A related enzyme, glycolate oxidase, catalyzes the oxidation of glycolate rather than lactate. Comparison of the two enzyme structures highlights the importance of five residues around the FMN prosthetic group of LOX, which act synergistically to discriminate between the l/d configurations of lactate. X-ray crystallography of LOX gave a space group I422 of unit-cell parameters a=b=191.096A, c=194.497A and alpha=beta=gamma=90 degrees with four monomers per asymmetric unit. The four independent monomers display slight structural differences around the active site. Diffraction data were collected, under cryogenic conditions to 2.1A resolution at the synchrotron facilities in Japan.  相似文献   

2.
Structures of thermolabile mutants of human glutathione transferase P1-1   总被引:1,自引:0,他引:1  
An N-capping box motif (Ser/Thr-Xaa-Xaa-Asp) is strictly conserved at the beginning of helix alpha6 in the core of virtually all glutathione transferases (GST) and GST-related proteins. It has been demonstrated that this local motif is important in determining the alpha-helical propensity of the isolated alpha6-peptide and plays a crucial role in the folding and stability of GSTs. Its removal by site-directed mutagenesis generated temperature-sensitive folding mutants unable to refold at physiological temperature (37 degrees C). In the present work, variants of human GSTP1-1 (S150A and D153A), in which the capping residues have been substituted by alanine, have been generated and purified for structural analysis. Thus, for the first time, temperature-sensitive folding mutants of an enzyme, expressed at a permissive temperature, have been crystallized and their three-dimensional structures determined by X-ray crystallography. The crystal structures of human pi class GST temperature-sensitive mutants provide a basis for understanding the structural origin of the dramatic effects observed on the overall stability of the enzyme at higher temperatures upon single substitution of a capping residue.  相似文献   

3.
Intrinsically disordered proteins (IDPs) do not adopt stable three-dimensional structures in physiological conditions, yet these proteins play crucial roles in biological phenomena. In most cases, intrinsic disorder manifests itself in segments or domains of an IDP, called intrinsically disordered regions (IDRs), but fully disordered IDPs also exist. Although IDRs can be detected as missing residues in protein structures determined by X-ray crystallography, no protocol has been developed to identify IDRs from structures obtained by Nuclear Magnetic Resonance (NMR). Here, we propose a computational method to assign IDRs based on NMR structures. We compared missing residues of X-ray structures with residue-wise deviations of NMR structures for identical proteins, and derived a threshold deviation that gives the best correlation of ordered and disordered regions of both structures. The obtained threshold of 3.2 Å was applied to proteins whose structures were only determined by NMR, and the resulting IDRs were analyzed and compared to those of X-ray structures with no NMR counterpart in terms of sequence length, IDR fraction, protein function, cellular location, and amino acid composition, all of which suggest distinct characteristics. The structural knowledge of IDPs is still inadequate compared with that of structured proteins. Our method can collect and utilize IDRs from structures determined by NMR, potentially enhancing the understanding of IDPs.  相似文献   

4.
We have compared selected biophysical properties of three phosphodiesterases, from Arabidopsis thaliana, Saccharomyces cerevisiae, and Escherichia coli. All of them belong to a recently identified family of cyclic nucleotide phosphodiesterases. Experiments elucidating folding stability, protein fluorescence, oligomerization behavior, and the effects of substrates were conducted, revealing differences between the plant and the yeast protein. According to CD spectroscopy, the latter protein exhibits an (alpha + beta) fold rather than an (alpha/beta) fold as found with CPDase (A. thaliana). The redox-dependent structural reorganization recently found for the plant protein by X-ray crystallography could not be detected by CD spectroscopy due to its only marginal effect on the total percentage of helical content. However, in the present study a redox-dependent effect was also observed for the yeast CPDase. The enzymatic activity of wild type CPDase (A. thaliana) as well as of four mutants were characterized by isothermal titration calorimetry and the results prove the requirement of all four residues of the previously identified tandem signature motif for the catalytic function. Within the comparison of the three proteins in this study, the PDase Homolog/RNA ligase (E. coli) shares more similarities with the plant than with the yeast protein.  相似文献   

5.
The structure of the tryptophan synthase beta2 subunit (Pfbeta2) from the hyperthermophile, Pyrococcus furiosus, was determined by X-ray crystallographic analysis at 2.2 A resolution, and its stability was examined by DSC. This is the first report of the X-ray structure of the tryptophan synthase beta2 subunit alone, although the structure of the tryptophan synthase alpha2beta2 complex from Salmonella typhimurium has already been reported. The structure of Pfbeta2 was essentially similar to that of the beta2 subunit (Stbeta2) in the alpha2beta2 complex from S. typhimurium. The sequence alignment with secondary structures of Pfbeta and Stbeta in monomeric form showed that six residues in the N-terminal region and three residues in the C-terminal region were deleted in Pfbeta, and one residue at Pro366 of Stbeta and at Ile63 of Pfbeta was inserted. The denaturation temperature of Pfbeta2 was higher by 35 degrees C than the reported values from mesophiles at approximately pH 8. On the basis of structural information on both proteins, the analyses of the contributions of each stabilization factor indicate that: (a) the higher stability of Pfbeta2 is not caused by either a hydrophobic interaction or an increase in ion pairs; (b) the number of hydrogen bonds involved in the main chains of Pfbeta is greater by about 10% than that of Stbeta, indicating that the secondary structures of Pfbeta are more stabilized than those of Stbeta and (c) the sequence of Pfbeta seems to be better fitted to an ideally stable structure than that of Stbeta, as assessed from X-ray structure data.  相似文献   

6.
Two new, bioactive, pregnane-based natural products, pachysanonin (= 3beta,11alpha,12beta)-12-acetoxy-3-(dimethylamino)-11-[(3,4-dimethylpent-3-enoyl)oxy]pregnan-20-one; 1) and pachysanone (= (11alpha,12beta)-12-acetoxy-11-[(3,4-dimethylpent-3-enoyl)oxy]pregnan-3,20-dion; 2) have been isolated from Pachysandra axillaris. Their structures were determined by spectroscopic methods, and, in the case of 2, by single-crystal X-ray crystallography (Figure). Compound 2 showed significant antitumor activity against Lewis lung carcinoma (LCC) tumor cells, with an IC50 value of 0.020+/-0.006 microg/ml, which is equal or even lower than those of the well-known natural antitumor agents harringtonine (0.02), homoharringtonine (0.15), and adriamycin (0.06 microg/ml; positive control).  相似文献   

7.
BACKGROUND: While X-ray crystallography structures of proteins are considerably more reliable than those from NMR spectroscopy, it has been difficult to assess the inherent accuracy of NMR structures, particularly the side chains. RESULTS: For 15 small single-domain proteins, we used a molecular mechanics-/dynamics-based free-energy approach to investigate native, decoy, and fully extended alpha conformations. Decoys were all less energetically favorable than native conformations in nine of the ten X-ray structures and in none of the five NMR structures, but short 150 ps molecular dynamics simulations on the experimental structures caused them to have the lowest predicted free energy in all 15 proteins. In addition, a strong correlation exists (r(2) = 0.86) between the predicted free energy of unfolding, from native to fully extended conformations, and the number of residues. CONCLUSIONS: This work suggests that the approximate treatment of solvent used in solving NMR structures can lead NMR model conformations to be less reliable than crystal structures. This conclusion was reached because of the considerably higher calculated free energies and the extent of structural deviation during aqueous dynamics simulations of NMR models compared to those determined by X-ray crystallography. Also, the strong correlation found between protein length and predicted free energy of unfolding in this work suggests, for the first time, that a free-energy function can allow for identification of the native state based on calculations on an extended state and in the absence of an experimental structure.  相似文献   

8.
Two-dimensional 1H-NMR studies have been performed on ribonuclease F1 (RNase F1), which contains 106 amino acid residues. Sequence-specific resonance assignments were accomplished for the backbone protons of 99 amino acid residues and for most of their side-chain protons. The three-dimensional structures were constructed on the basis of 820 interproton-distance restraints derived from NOE, 64 distance restraints for 32 hydrogen bonds and 33 phi torsion-angle restraints. A total of 40 structures were obtained by distance geometry and simulated-annealing calculations. The average root-mean-square deviation (residues 1-106) between the 40 converged structures and the mean structure obtained by averaging their coordinates was 0.116 +/- 0.018 nm for the backbone atoms and 0.182 +/- 0.015 nm for all atoms including the hydrogen atoms. RNase F1 was determined to be an alpha/beta-type protein. A well-defined structure constitutes the core region, which consists of a small N-terminal beta-sheet (beta 1, beta 2) and a central five-stranded beta-sheet (beta 3-beta 7) packed on a long helix. The structure of RNase F1 has been compared with that of RNase T1, which was determined by X-ray crystallography. Both belong to the same family of microbial ribonucleases. The polypeptide backbone fold of RNase F1 is basically identical to that of RNase T1. The conformation-dependent chemical shifts of the C alpha protons are well conserved between RNase F1 and RNase T1. The residues implicated in catalysis are all located on the central beta-sheet in a geometry similar to that of RNase T1.  相似文献   

9.
V Biou  F Shu    V Ramakrishnan 《The EMBO journal》1995,14(16):4056-4064
The structures of the two domains of translational initiation factor IF3 from Bacillus stearothermophilus have been solved by X-ray crystallography using single wavelength anomalous scattering and multiwavelength anomalous diffraction. Each of the two domains has an alpha/beta topology, with an exposed beta-sheet that is reminiscent of several ribosomal and other RNA binding proteins. An alpha-helix that protrudes out from the body of the N-terminal domain towards the C-terminal domain suggests that IF3 consists of two RNA binding domains connected by an alpha-helix and that it may bridge two regions of the ribosome. This represents the first high resolution structural information on a translational initiation factor.  相似文献   

10.
The new functionality of the program CONGEN (Bruccoleri RE, Karplus M, 1987, Biopolymers 26:137-168; Bassolino-Klimas D et al., 1996, Protein Sci 5:593-603) has been applied for energy refinement of two previously determined solution NMR structures, murine epidermal growth factor (mEGF) and human type-alpha transforming growth factor (hTGF alpha). A summary of considerations used in converting experimental NMR data into distance constraints for CONGEN is presented. A general protocol for simulated annealing with restrained molecular dynamics is applied to generate NMR solution structures using CONGEN together with real experimental NMR data. A total of 730 NMR-derived constraints for mEGF and 424 NMR-derived constraints for hTGF alpha were used in these energy-refinement calculations. Different weighting schemes and starting conformations were studied to check and/or improve the sampling of the low-energy conformational space that is consistent with all constraints. The results demonstrate that loosened (i.e., "relaxed") sets of the EGF and hTGF alpha internuclear distance constraints allow molecules to overcome local minima in the search for a global minimum with respect to both distance restraints and conformational energy. The resulting energy-refined structures of mEGF and hTGF alpha are compared with structures determined previously and with structures of homologous proteins determined by NMR and X-ray crystallography.  相似文献   

11.
Integrins are found in adhesion structures, which link the extracellular matrix to cytoskeletal proteins. Here, we attempt to further define the distribution of beta1 integrins in the context of their association with matrix proteins and other cell surface molecules relevant to the endocytic process. We find that beta1 integrins colocalize with fibronectin in fibrillar adhesion structures. A fraction of caveolin is also organized along these adhesion structures. The extracellular matrix protein laminin is not concentrated in these structures. The alpha4beta1 integrin exhibits a distinct distribution from other beta1 integrins after cells have adhered for 1 h to extracellular matrix proteins but is localized in adhesion structures after 24 h of adhesion. There are differences between the fibronectin receptors: alpha5beta1 integrins colocalize with adaptor protein-2 in coated pits, while alpha4beta1 integrins do not. This parallels our earlier observation that of the two laminin receptors, alpha1beta1 and alpha6beta1, only alpha1beta1 integrins colocalize with adaptor protein-2 in coated pits. Calcium chelation or inhibition of mitogen-activated protein kinase kinase, protein kinase C, or src did not affect localization of alpha1beta1 and alpha5beta1 integrins in coated pits. Likewise, the integrity of coated-pit structures or adhesion structures is not required for integrin and adaptor protein-2 colocalization. This suggests a robust and possibly constitutive interaction between these integrins and coated pits.  相似文献   

12.
Two different structures of ligand-free HIV protease have been determined by X-ray crystallography. These structures differ in the position of two 12 residue, β-hairpin regions (or “flaps”) which cap the active site. The movements of the flaps must be involved in the binding of substrates since, in either conformation, the flaps block the binding site. One of these structures is similar to structures of the ligand-bound enzyme; however, the importance of both structures to enzyme function is unclear. This transformation takes place on a time scale too long for conventional molecular dynamics simulations, so the process was studied by first identifying a reaction path between the two structures and then calculating the free energy along this path using umbrella sampling. For the ligand-free enzyme, it is found that the two structures are nearly equally stable, with the ligand-bound-type structure being less stable, consistent with X-ray crystallography data. The more stable open structure does not have a lower potential energy, but is stabilized by entropy. The transition occurs through a collapse and reformation of the β-sheet structure of the conformationally flexible, glycine-rich flap ends. Additionally, some problems in studying conformational changes in proteins through the use of a single reaction path are addressed. Proteins 32:7–16, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

13.
It is well known that water molecules surrounding a protein play important roles in maintaining its structural stability. Water molecules are known to participate in several physiological processes through the formation of hydrogen bonds. However, the hydration structures of most proteins are not known well at an atomic level at present because X-ray protein crystallography has difficulties to localize hydrogen atoms. In contrast, neutron crystallography has no problem in determining the position of hydrogens with high accuracy.1 In this article, the hydration structures of three proteins are described- myoglobin, wild-type rubredoxin, and a mutant rubredoxin-the structures of which were solved at 1.5- or 1.6-A resolution by neutron structure determination. These hydration patterns show fascinating features and the water molecules adopt a variety of shapes in the neutron Fourier maps, revealing details of intermolecular hydrogen bond formation and dynamics of hydration. Our results further show that there are strong relationships between these shapes and the water environments.  相似文献   

14.
Crystal structures of Nova-1 and Nova-2 K-homology RNA-binding domains.   总被引:3,自引:0,他引:3  
BACKGROUND: Nova-1 and Nova-2 are related neuronal proteins that were initially cloned using antisera obtained from patients with the autoimmune neurological disease paraneoplastic opsoclonus-myoclonus ataxia (POMA). Both of these disease gene products contain three RNA-binding motifs known as K-homology or KH domains, and their RNA ligands have been identified via binding-site selection experiments. The KH motif structure has been determined previously using NMR spectroscopy, but not using X-ray crystallography. Many proteins contain more than one KH domain, yet there is no published structural information regarding the behavior of such multimers. RESULTS: We have obtained the first X-ray crystallographic structures of KH-domain-containing proteins. Structures of the third KH domains (KH3) of Nova-1 and Nova-2 were determined by multiple isomorphous replacement and molecular replacement at 2.6 A and 2.0 A, respectively. These highly similar RNA-binding motifs form a compact protease-resistant domain resembling an open-faced sandwich, consisting of a three-stranded antiparallel beta sheet topped by three alpha helices. In both Nova crystals, the lattice is composed of symmetric tetramers of KH3 domains that are created by two dimer interfaces. CONCLUSIONS: The crystal structures of both Nova KH3 domains are similar to the previously determined NMR structures. The most significant differences among the KH domains involve changes in the positioning of one or more of the alpha helices with respect to the betasheet, particularly in the NMR structure of the KH1 domain of the Fragile X disease protein FMR-1. Loop regions in the KH domains are clearly visible in the crystal structure, unlike the NMR structures, revealing the conformation of the invariant Gly-X-X-Gly segment that is thought to participate in RNA-binding and of the variable region. The tetrameric arrangements of the Nova KH3 domains provide insights into how KH domains may interact with each other in proteins containing multiple KH motifs.  相似文献   

15.
16.
Characterizing the three-dimensional structure of macromolecules is central to understanding their function. Traditionally, structures of proteins and their complexes have been determined using experimental techniques such as X-ray crystallography, NMR, or cryo-electron microscopy—applied individually or in an integrative manner. Meanwhile, however, computational methods for protein structure prediction have been improving their accuracy, gradually, then suddenly, with the breakthrough advance by AlphaFold2, whose models of monomeric proteins are often as accurate as experimental structures. This breakthrough foreshadows a new era of computational methods that can build accurate models for most monomeric proteins. Here, we envision how such accurate modeling methods can combine with experimental structural biology techniques, enhancing integrative structural biology. We highlight the challenges that arise when considering multiple structural conformations, protein complexes, and polymorphic assemblies. These challenges will motivate further developments, both in modeling programs and in methods to solve experimental structures, towards better and quicker investigation of structure–function relationships.  相似文献   

17.
DNA sequence of the tryptophan synthase genes of Pseudomonas putida   总被引:6,自引:0,他引:6  
I P Crawford  L Eberly 《Biochimie》1989,71(4):521-531
Genes encoding the 2 subunits of tryptophan synthase in Pseudomonas putida have been identified and cloned by their similarity to the corresponding genes in Pseudomonas aeruginosa. The deduced amino acid sequences were confirmed by comparison with regions ascertained earlier by protein sequencing. The Pseudomonas amino acid sequences are 85% identical for the beta subunit and 70% identical for the alpha subunit. These sequences are compared to those of Salmonella typhimurium, where the structure is known from X-ray crystallography. Although amino acid conservation drops to 54% and 36% for the beta and alpha subunits, only 3 single residue gaps are required to maintain alignment throughout and most of the residues identified as important for catalysis or cofactor binding are conserved. The 23 residues surrounding the beta chain lysine that enters into a Schiff base linkage with the pyridoxal phosphate cofactor are compared in 13 species, including representatives from the eukaryotic and both prokaryotic kingdoms; appreciable conservation is apparent. The approximately 100 base pairs separating the trpB gene from its divergently transcribed activator gene are similar in the 2 pseudomonads, but do not resemble those of any other bacterium or fungus studied to date.  相似文献   

18.
《Molecular membrane biology》2013,30(5-8):156-178
Abstract

Solid-state NMR is unique for its ability to obtain three-dimensional structures and to measure atomic-resolution structural and dynamic information for membrane proteins in native lipid bilayers. An increasing number and complexity of integral membrane protein structures have been determined by solid-state NMR using two main methods. Oriented sample solid-state NMR uses macroscopically aligned lipid bilayers to obtain orientational restraints that define secondary structure and global fold of embedded peptides and proteins and their orientation and topology in lipid bilayers. Magic angle spinning (MAS) solid-state NMR uses unoriented rapidly spinning samples to obtain distance and torsion angle restraints that define tertiary structure and helix packing arrangements. Details of all current protein structures are described, highlighting developments in experimental strategy and other technological advancements. Some structures originate from combining solid- and solution-state NMR information and some have used solid-state NMR to refine X-ray crystal structures. Solid-state NMR has also validated the structures of proteins determined in different membrane mimetics by solution-state NMR and X-ray crystallography and is therefore complementary to other structural biology techniques. By continuing efforts in identifying membrane protein targets and developing expression, isotope labelling and sample preparation strategies, probe technology, NMR experiments, calculation and modelling methods and combination with other techniques, it should be feasible to determine the structures of many more membrane proteins of biological and biomedical importance using solid-state NMR. This will provide three-dimensional structures and atomic-resolution structural information for characterising ligand and drug interactions, dynamics and molecular mechanisms of membrane proteins under physiological lipid bilayer conditions.  相似文献   

19.
High stability is a prominent characteristic of integral membrane proteins of known atomic structure. But rather than being an intrinsic property, it may be due to a selection exerted by biochemical procedures prior to structure determination, since solubilization results in the transient exposure of membrane proteins to solution conditions. This may cause structural perturbations that interfere with 3D crystallization and hence with X-ray analysis. This problem also affects the preparation of samples for electron crystallography and NMR studies and may account for the fact that high-resolution structures of representatives of whole groups, such as transport proteins and signal transducers, have not been elucidated so far by any method. A knowledge of the proportion of labile proteins among membrane proteins, and of the kinetics of their denaturation, is therefore necessary. Establishing stability profiles, developing methods to maintain lateral pressure, or preventing contact with water (or both) should prove significant in establishing the structures of conformationally flexible proteins.  相似文献   

20.
The secondary structure for two murine recombinant proteins, interleukins 1 alpha and 1 beta (rmIL-1 alpha and -1 beta), has been analyzed by Fourier transform infrared (IR) spectroscopy and then compared to results obtained by X-ray diffraction, circular dichroism (CD), and nuclear magnetic resonance (NMR) spectroscopy. The IR results obtained here for rmIL-1 alpha and -1 beta suggested that their secondary structures consisted predominantly of beta-sheets or strands. However, the analysis also revealed a significant absorption band near 1656 cm-1, which is typically assigned to alpha-helical or random structures. When these same murine polypeptides were analyzed by CD, no evidence of alpha-helical structures was observed. Further, published X-ray diffraction and NMR studies characterizing the human forms of IL-1 alpha and -1 beta indicate the absence of alpha-helices and that the human proteins are composed mainly of beta-strands (i.e., greater than 55%), with approximately 24% of the amino acids involved in large loops connecting the strands. The murine IL-1 proteins, when compared to their respective human counterparts, each show greater than 80% sequence homology. Given this fact, the CD analyses, and the result that this IR band amounted to 21% of the overall integrated area, the absorption peak at 1656 cm-1 was attributed to the presence of large loops rather than to alpha-helical or random structures. Such a structural assignment appears reasonable and is totally consistent with the established existence of large loops in the human forms as well as in other proteins found to fold similarly (viz., human bFGF).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号